1. Solutions of first order ODEs $\frac{dy}{dt} = f(t, y)$
 ○ Show that a given function solves a given ODE
 Examples: HW 1: 3
 ○ Solve separable equations

 $y' = f(t)g(y)$

 using separation of variables. Careful!! Only separate variables if $g(y) \neq 0$. Also: be careful with your algebra, and always check your antiderivatives.
 Examples: 11th ed: §2.2 7,8,12,13. HW 1: 4. HW 2: 5,6,8. HW 3: 3,4,6,8,9
 ○ Solve linear equations

 $y' + p(t)y = q(t)$

 using integrating factors.
 What is the main idea behind the method? Can you derive the integrating factor without memorizing formulas?
 ○ Investigate autonomous equations drawing the phase line and direction fields. Find equilibria and their stability.
 Examples: §1.1, §2.5: first set of problems. HW 2: 1-3,5. HW 3: 5,9
 ○ Know: Integration by parts, partial fraction, substitution.
 ○ Use the solutions you found (as well as direction fields and phaseline where available) to investigate limiting behaviour as $t \to \infty$, or as $t \to 0$, and the dependence of the limiting behaviour on the initial condition.
 Examples: §2.1: Example 3,4. HW 2: 1-3,7. HW 3: 5,7,8,9,10

2. Mathematical Models
 ○ Find differential equation models for simple applications (mixing, population dynamics, falling objects with or without drag, raindrop, bucket)
 Examples: 10th ed: §1.1: 22,23,24,25. HW 2: 4-8, HW 3: 4-10

3. Theory
 ○ What can you say about the existence and uniqueness of a solution to a linear first order ode, $y' + p(t)y = q(t)$?
 ○ What can you say about the existence and uniqueness of a solution to a nonlinear first order ode, $y' = f(t, y)$?
 Examples: HW 2: 1-3,9,10. HW 3: 1-3,11
 ○ Give an example of a nonlinear ODE whose solution blows up in finite time.
 ○ Give an example of a linear ODE whose solution does not exist for all time.

4. Combo problem
 Consider the temperature T of coffee in a cup in a room of ambient temperature T_a.
 (a) Using Newton’s law of cooling, find an (autonomous) ODE modeling the temperature T.
 (b) Draw the phaseline, determine the stability of all equilibria, and draw several solution curves in the t-T plane.
 (c) Find all the solutions to the ODE with initial condition $T(t_0) = T_0$, using the method of separation of variables.
 (d) Find all the solutions to the ODE with initial condition $T(t_0) = T_0$, using the method of integrating factor.
 (e) For how long does the temperatures function $T(t)$ exist, continuously? Explain, using both your above results and the theoretical results of §2.4.
 (f) If the coffee in two cups in the same room have two different temperatures at time t_0, will they ever have the same temperature? Explain.