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1 MATLAB Basics

1.1 Example: Plotting a function

Starting MATLAB:
Windows: search for MATLAB icon or link and click
Linux: % ssh linux.unm.edu

% matlab

or
% matlab -nojvm

Sample MATLAB code illustrating several Matlab features; code to plot the graph of y =
sin(2πx), x ∈ [0, 1]: What is really going on when you use software to graph a function?

1. The function is sampled at a set of points xk to obtain yk = f(xk).

2. The points (xk, yk) are then plotted together with some interpolant of the data (piece-
wise linear or a smoother curve such as splines of Bezier curves).

In MATLAB you specify xk, then compute yk. The command plot(x,y) outputs a piecewise
linear interpolant of the data.

% Set up gridpoints x(k)

x=[0.0, 0.1,0.2,0.3,0.4...

0.5,0.6,0.7,0.8,0.9,1.0];

% Set up function values y(k)

n=length(x);

y=zeros(1,n);

for k=1:n

y(k)=sin(2*pi*x(k)); %pi is predefined

end

% plot a piecewise linear interpolant to the points (x(k),y(k))

plot(x,y)

Notes:

(1) The % sign denotes the begining of a comment. Code is well commented!

(2) The continuation symbol is ...

(3) The semicolon prevents displaying intermediate results (try it, what happens if you omit
it?)
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(4) length,zeros,sin,plot are built in MATLAB functions. Later on we will write our
own functions.

(5) In Matlab variables are defined when they are used. Reason for y=zeros(1,n): allocate
amount of memory for variable y; initialize. How much memory space is allocated to y if
that line is absent, as you step through the loop? Why is zeros not used before defining x?

(6) In Matlab all variables are matrices. Column vectors are nx1, row vectors are 1xn, scalars
are 1x1 matrices. What is output of size(x)?

(7) All vectors/matrices are indexed starting with 1. What is x(1), x(2), x(10), x(0)?

(8) Square brackets are used to define vectors. Round brackets are used to access entries in
vectors.

(9) Note syntax of for loop.

(10) What is the output of

plot(x,y,’*’)

plot(x,y,’*-’)

plot(x,y,’*-r’)

See Tutorial for further plotting options, or help plot. Lets create a second vector z =
cos(2πx) and plot both y vs x in red dashed curve with circle markers, and z in green solid
curve with crosses as markers. Then use default. But first:

1.2 Scripts

MATLAB Script m-file: A file (appended with .m) stored in a directory containing MATLAB
code. From now on I will write all code in scripts so I can easily modify it. To write above
code in script:

make a folder with your name

if appropriate, make a folder in that folder for current howework/topic

in MATLAB, go to box next to "current directory" and find directory

click on "File/New/M-file", edit, name, save

or click on existing file to edit

execute script by typing its name in MATLAB command window

lets write a script containing above code
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Save your work on Floppy or USBport, or ftp to other machine. No guarantees that your
folders will be saved.

Now I’d like to modify this code and use more points to obtain a better plot by changing
the line defining x, using spacing of 1/100 instead of 1/10. But how to set up x with 101
entries??

1.3 Setting up vectors

Row Vectors

• Explicit list

x=[0 1 2 3 4 5];

x=[0,1,2,3,4,5];

• Using a:increment:b. To set up a vector from x=a to x=b in increments of size h you
can use

x=a:h:b;

Here you specify beginning and endpoints, and stepsize. Most natural to me. However,
if (b-a) is not an integer multiple of stepsize, endpoint will be omitted. Note, if h
omitted, default stepsize =1. What is?

x=0:0.1:1;

x=0:5;

We already used this notation in the for loop!

• Using linspace

x=linspace(a,b,n);

Use linspace to set up x=[0 1 2 3 4], x=[0,0.1,0.2,...,1], x=[0,0.5,1,1.5,2],

x=a:h:b

• Using for loops

Column Vectors

• Explicit list

x=[0;1;2;3;4;5];
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• Transpose row vector

x=[0:.1:1]’;

Matrices

A=[1 1 1; 2 0 -1; 3 -1 2; 0 1 -1];

A=zeros(1,4); B=zeros(5,2); C=eye(3); D=ones(2,4); %special matrices

How to access entry in second row, first column? What is A(1,1), A(2,0)?

Now we have a better way to define x using h = 1/100! Do it.

Try x-y where x row, y column!!

1.4 Vector and Matrix operations

We can replace the for loop in the example in §1.1 by

y=sin(2*pi*x);

The sine function is applied to a vector x and applies the sine operation to each entry in the
vector. This is the same as

y(1:n)=sin(2*pi*x(1:n));

and thereby the same as (!)

k=1:n

y(k)=sin(2*pi*x(k));

Note that this looks almost like the for loop in the example in §1.1 but it is not a loop. All
entries of y are set at once. We can now give a short version of the MATLAB code to plot
the graph of y = sin(2πx):

x=0:.01:1;

y=sin(2*pi*x);

plot(x,y)
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Since vectors are special cases of matrices, the above operation can also be applied to ma-
trices. The statement B=sin(A) applies the sine function to every entry in A.

Setting up matrices. Before further addressing matrix operations, I want to mention
another possibility to set up matrices. First note that the line A=[1 1 1; 2 0 -1; 3 -1

2; 0 1 -1]; in §1.3 can be written as

A=[1 1 1

2 0 -1

3 -1 2

0 1 -1

];

(the commas and semicolons are not necessary in this form). If you create, possibly using
FORTRAN or C, a file that contains a matrix of numbers, and enter A=[ and ]; before and
after, you can read these numbers in as a script. For example, I created (in FORTRAN) a
file called t22dat.m that contains the following lines

% t xcore ycore ylmb ulmb uf xf jctr n

a=[

0.00000 0.000000 0.924700 0.81650 0.16004 0.590545 0.000000 2 400

0.02500 0.002659 0.924680 0.81650 0.16013 0.590451 0.014763 93 400

0.05000 0.005320 0.924620 0.81650 0.16039 0.590168 0.029521 92 400

0.07500 0.007981 0.924520 0.81650 0.16081 0.589698 0.044270 93 400

0.10000 0.010643 0.924380 0.81650 0.16141 0.589041 0.059004 92 400

0.12500 0.013301 0.924190 0.81650 0.16216 0.588201 0.073720 93 400

...

59.90000 12.920807 0.822010 0.81665 0.21526 0.216202 13.726140 73 3761

59.92500 12.926320 0.822030 0.81665 0.21526 0.216193 13.731545 72 3764

59.95000 12.931837 0.822050 0.81665 0.21526 0.216184 13.736949 73 3768

59.97500 12.937345 0.822080 0.81665 0.21526 0.216175 13.742354 72 3772

];

(where the dots denote the remaining 2390 lines). I can now read this matrix into MATLAB
and extract the vectors t and ylmb for example as follows

t22dat %this executes all 2402 lines in the script

t=a(:,1) %extract vector t, note colon notation

ylmb=a(:,4) %extract vector ylmb

plot(t,ylmb) %plot one vs the other
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Note: entries of vectors are accessed using round brackets. Vectors are defined using square
brackets.

More matrix operations.

A+B %A,B need to have same dimensions

A*B %A,B need to have proper dimensions (number

% of columns of A=number of rows of B)

If x is a vector, what is

x*x

? Answer: error!, Inner matrix dimensions dont agree. If x and y are 1xn row vectors,

x*y’

Answer: the inner product
∑N

k=1 xkyk. For example to compute the Euclidean norm of x,√∑N
k=1 x2

k you can use the one-line code

euclidnormx=sqrt(x*x’);

What is

y’*x

Answer: an nxn matrix called the outer product.

What if you instead of plotting y = sin(x) you want to plot y = x2? Given a vector x you
want to create a vector y whose entries are the square of the entries of x. The following

x=0:.01:1;

y=x*x;

or

y=x^2; %the hat is MATLABs symbol for exponentiation

wont work. Instead, to perform componentwise operations you need to replace * by .*, b̂y .̂,
etc. for example:
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y=x.^2;

y=A.^2;

y=1./x;

y=x.*z; %where x,z are vectors/matrices of same length

Another useful built in MATLAB function is

s=sum(x);

Use the help command to figure out what it does.

1.5 Plotting

Labelling plots. In class we used:

plot(x,y,’r:x’) %options for color/line type/marker type

xlabel(’this is xlabel’)

ylabel(’this is ylabel \alpha \pi’) %using greek alphabet

title(’this is title’)

text(0.1,0.3,’some text’) %places text at given coordinates

text(0.1,0.3,’some text’,’FontSize’,20) %optional override fontsize

set(gca,’FontSize’,20) %override default fontsize

axis([0,1,-2,2]) %sets axis

axis square %square window

axis equal %units on x- and y-axis have same length

figure(2) %creates new figure or accesses existing figure(2)

Plotting several functions on one plot. Suppose we created x=0:.1:1; y1=sin(x);

y2=cos(x);. Two options. First one:

plot(x,y1,x,y2) %using default colors/lines/markers

plot(x,y1,’b--0’,x,y2,’r-’) %customizing

legend(’sin(x)’,’cos(x)’,3) %nice way to label, what does entry ’3’ do?

Second one: using hold command:

plot(x,y1)

hold on

plot(x,y2)

hold off
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Type help hold to see what this does. If you dont want to save the previous plot you can
view consecutive plots using pause command in your script (what happens if pause is missing
from below?)

plot(x,y1)

pause

plot(x,y2)

Creating several plots.

subplot(3,2,1) %creates and accesses 1st subplot of a 3x2 grid

figure(3) %creates and accesses new window

1.6 Printing data

Printing tables:

disp(’ j x sin(x)’)

for k=1:n

disp(sprintf(’%4d %5.1f %10.4f’,k,x(k),y(k)));

end

What does the format %3.1f specify? Type help sprintf to see how to format integers,
character strings, etc.

Printing figure:

print %prints current figure to printer

print -deps name %creates name.eps file (encapsulated postscript)

% of current figure and stores in directory

print -depsc name %creates name.eps file in color of current figure

print -dpsc name %creates name.ps (postscript) file in color

1.7 For loops

% The command for repeats statements for a specific number of times.

% The general form of the while statement is
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FOR variable=expr

statements

END

% expr is often of the form i0:j0 or i0:l:j0.

% Negative steps l are allowed.

% Example : What does this code do?

n = 10;

for i=1:n

for j=1:n

a(i,j) = 1/(i+j-1);

end

end

1.8 While loops

% The command while repeats statements an indefinite number of times,

% as long as a given expression is true.

% The general form of the while statement is

WHILE expression

statement

END

% Example 1: What does this code do?

x = 4;

y = 1;

n = 1;

while n<= 10;

y = y + x^n/factorial(n);

n = n+1;

end

% Remember to initialize $n$ and update its value in the loop!
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1.9 Timing code

tic % starts stopwatch

statements

toc % reads stopwatch

Exercise: Compare the following runtimes. What do you deduce?

tic; clear, for j=1:10000, x(j)=sin(j); end, toc

tic; clear, j=1:10000; x(j)=sin(j); toc

tic; for j=1:10000, x(j)=sin(j); end, toc

Exercise: Compare the following runtimes. What do you deduce?

clear

tic; for j=1:10000, sin(1.e8); end, toc

format long, pi2=2*pi; 1.e8/pi2

clear, alf = 1.e8-1.5915494e7;

tic; for j=1:10000, sin(alf); end, toc

clear

tic; for j=1:10000, sin(0.1); end, toc

1.10 Functions

MATLAB Functions are similar to functions in Fortran or C. They enable us to write the
code more efficiently, and in a more readable manner.

The code for a MATLAB function must be placed in a separate .m file having the same name
as the function. The general structure for the function is

function <Output parameters>=<Name of Function><Input Parameters>

% Comments that completely specify the function

<function body>

When writing a function, the following rules must be followed:
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• Somewhere in the function body the desired value must be assigned to the output
variable!

• Comments that completely specify the function should be given immediately after the
function statement. The specification should describe the output and detail all input
value assumptions.

• The lead block of comments after the function statement is displayed when the func-
tion is probed using help.

• All variables inside the function are local and are not part of the MATLAB workspace

Exercise 1: Write a function with input parameters x and n that evaluates the nth order Taylor
approximation of ex. Write a script that calls the function for various values of n and
plots the error in the approximation.

Solution: The following code is written in a file called ApproxExp.m:

function y=ApproxExp(x,n);

% Output parameter: y (nth order Taylor approximation of $e^x$)

% Input parameters: x (scalar)

% n (integer)

sumo = 1;

for k=1:n

sumo = sumo + x^k/factorial(k);

end

y = sumo;

(What does this code do? First, set k=1. Then k=2. Then k=3. etc. Write out the
result after each time through loop.) A script that references the above function and plots
approximation error is:

x=4;

for n=1:10

z(n) =ApproxExp(x,n)

end

exact=exp(4)

plot(abs(exact-z))

Exercise 2: Do the same as Exercises 1, but let x and y be vectors.

Example: An example of a function that outputs more than one variable. The function computes
the approximate derivative of function fname, the error in the approximation, and
the estimated error. The following code is written in a file called MyDeriv.m:
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function [d,err]=MyDeriv(fname,dfname,a,h);

% Output parameter: d (approximate derivative using

% finite difference (f(h+h)-f(a))/h)

% err (approximation error)

% Input parameters: fname (name of function)

% dfname (name of derivative function)

% a (point at which derivative approx)

% h (stepsize)

d = ( fname(a+h)-fname(a) )/h;

err = abs(d-dfname(a));

(Note: this works using MATLAB versions 7.0 but not 6.1. For an older MATLAB version
you may have to use the feval command. See help, Daishu or me.)

A script that references the above function and plots the approximation error:

a=1;

h=logspace(-1,-16,16);

n=length(h);

for i=1:n

[d(i),err(i)]=MyDeriv(@sin,@cos,a,h(i));

end

loglog(h,err)

Exercise: What happens if you call

d=MyDeriv(@sin,@cos,a,h)

or simply

MyDeriv(@sin,@cos,a,h)

You can replace sin and cos by user defined functions, for example ’f1’ and ’df1’. Do
it. That is, you need to write the function that evaluates f1 and df1 at x (in files f1.m and
df1.m).
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2 Computing Fundamentals

2.1 Vectorizing, timing, operation counts, memory allocation

2.1.1 Vectorizing for legibility and speed

MATLAB allows you to write the code in vectorized form. For example you can assign the
vector x using

x=0:0.01:1;

instead of the for loop

for j=1:101, x(j) = (j-1)*0.01; end

The first statement is more concise and more legible. MATLAB also evaluates it faster. The
following code times the two statements

m=10^4;

tic

for i=1:m

x=0:0.01:1;

end

time1=toc;

for i=1:m

for j=1:101, x(j) = (j-1)*0.01; end

end

time2=toc;

times=[time1, time2]

ratios=[time2/time1]

On my machine the second version takes 1.9 times more time than the first.
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2.1.2 Memory allocation

If your code requires much memory, it helps to preallocate memory before assigning large
vectors or matrices. For example, if the entries of a vector are assigned in a for loop (as is
often unavoidable), we preassign memory to the vector by initializing it using the commands
zeros, ones, eye. Example:

x=zeros(1,n+1);

for j=1:n+1, x(j) = (j-1)*h; end

Preallocating memory reduces coding errors, and can significantly reduce execution times.

2.1.3 Counting operations: Horner’s algorithm

The way you write a code to perform certain operations affects how fast it runs. And if it
makes a difference between 1 hour and 1 day, it matters! As we saw, the runtime depends
on vectorization. But the runtime depends mainly on how many floating point opera-
tions the computer has to perform. A floating point operation is a multiplication, addition
or subtraction of real numbers. These are much more costly than integer operations
(adding/multiplying integers), therefore they dominate the runtime.

Lets look at examples on how implementation affects the total number of operation counts.
The following are three ways to evaluate the sample polynomial of degree 4, y = 2 + 4x −
3x2 − x3 + x4:

y= 2 + 4*x - 3*x*x - x*x*x + x*x*x*x

y= 2 + 4*x - 3*x.^2 - x.^3 + x.^4

y= 2 + x*(4 + x.*(-3 + x.*(-1 + 1*x)))

More generally, if the polynomial is of degree N (assume a0,a1,...,amin1,an are constants
that have already been defined in the code, and x is a vector of length m):

y= a0 + a1*x + a2*x*x + a3*x*x*x + ... + an*x*x*x*...*x

y= a0 + a1*x + a2*x.^2 + a3*x.^3 + ... + an*x.^n

y= a0 + x*(a1 + x.*(a2 + x.*(a3 + x.*(a4 ..... + x.*(amin1 + am*x)..))))

Lets count the number of operations for each entry of the vector x. The first approach
contains N additions and 1 + 2 + 3 + · · ·+ N =

∑N
k=1 k = N(N + 1)/2 multiplications for a

total of
N2/2 + 3N/2

21



floating point operations. For the second approach lets assume that one integer power
operation takes as much as 2 multiplications (this is approximately true for some computers;
others take much longer). Since the second approach contains N additions, N multiplications
and N − 1 powers (with our assumption) it takes as much as

4N − 2

floating point operations. The third approach takes only N multiplications and N additions
for a total of

2N

floating point operations. This is the fastest and best approach, specially if N is large, and if
the polynomial evaluation is a significant portion of your code (performed possibly millions
of times). This approach is called Horner’s rule or nested multiplication.

I compared the timings for an example polynomial of degree 20 and found that MATLAB
uses about the same amount of time for the second and third approach, probably due to
internal optimization when it generates machine code.

2.1.4 Counting operations: evaluating series

Let’s implement the function ApproxExp

function y=ApproxExp(x,n);

% Output parameter: y (nth order Taylor approximation of $e^x$)

% Input parameters: x (scalar)

% n (integer)

sumo = 1;

for k=1:n

sumo = sumo + x^k/factorial(k);

end

y = sumo;

in a more efficient way using less floating point operations, as follows:

function y=ApproxExp2(x,n);

% Output parameter: y (nth order Taylor approximation of $e^x$)

% Input parameters: x (scalar)

% n (integer)

temp = 1;
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sumo = temp;

for k=1:n

temp = temp*x/k;

sumo = sumo + temp;

end

y = sumo;

Note that the second code replaced a power and a factorial by a multiplication and a division,
which should be more efficient. The script

n=100;

x=1;

tic

ApproxExp(x,n);

t1=toc

tic

ApproxExp2(x,n);

t2=toc

t1/t2

shows that the second approach is 80 times faster than the first, depending on the values of
n and on the machine.

2.2 Machine Representation of real numbers, Roundoff errors

2.2.1 Decimal and binary representation of reals

Reals can be represented in base 10 (decimal representation) using digits 0,. . . ,9, or base 2
(binary representation), using digits 0,1, or any other base. Examples next.

Example: What number is (1534.4141)10?

Example: Find the base 10 representation of (1011.01101)2

Example: Find the first 10 digits of the base 2 representation of 53.710. (Use common sense,
no need to learn an algorithm here.)
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(11 bits) (52 bits)

mantissa

Figure 1: Machine representation of double precision real numbers in the IEEE standard.
Number is stored in 64 bits: the first is the sign bit s, the following 11 ones are the exponent
bits e0, . . . , e10, the last 52 bits are the mantissa d1, . . . , d52.

2.2.2 Floating point representation of reals

Machines store numbers using their binary representation (as opposed to the decimal rep-
resentation). The coefficients in the binary representation are either 0 or 1 and these can
easily be stored electronically. One 0 or 1 coefficient is called a bit. Eight bits are a byte.
The amount of storage in a device is measured either in kilobyte (103 bytes), megabyte
(106 bytes), gigabyte (109 bytes) or terrabytes (1012 bytes).

The IEEE standard uses 64 bits (8 bytes) to store one real number in double machine
precision. See Figure 1. The first bit is the sign bit s. The following 11 ones are the
exponent bits e0 . . . e10. The remaining 52 bits form the mantissa d1, . . . , d52. What number
do these 64 digits represent? First we have to determine the exponent

F = (e10e9 . . . e1e0)2 = e102
10 + e92

9 + . . . e12
1 + e02

0

which is an integer. Note that the largest exponent corresponds to e0 = e1 = · · · = e10 = 1
and equals

∑10
k=0 2k = 211 − 1 = 2047 and the smallest one corresponds to e0 = e1 = · · · =

e10 = 0 and equals 0. Thus
0 ≤ F ≤ 2047

To determine which number is represented by the 64 bits one of 4 definitions is used, de-
pending on the value of F :

1. Normalized numbers. If 1 ≤ F ≤ 2046 the represented real number is

V = (−1)s2E(d0.d1d2d3 . . . d52)2

where E = F −1023, d0 = 1. Thus −1022 ≤ E ≤ 1023. The smallest normalized num-
ber is ±2−1022×1.000 . . . 0 = ±2−1022 The unnormalized numbers enable representation
of even smaller numbers.
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2. Unnormalized numbers. If F = 0

V = (−1)s2−1022(0.d1d2d3 . . . d52)2

3. NaN. If F = 2047 and mantissa 6= 0:

V = NaN (not-a-number)

Invalid operations such as 0/0 or ∞−∞ lead to NaNs.

4. Infinity. If F = 2047 and mantissa = 0:

V = (−1)s∞

If a valid operation leads to x too large, the result is set to ∞ with the appropriate
sign.

Largest and smallest numbers. The largest number that can be representd is the largest
normalized number

Vmax = ±21023(1.1111 . . . 1)2 = ±21023

52∑

k=0

(1/2)k = ±21023(2 − 2−52) ≈ 1.7975 × 10308

The smallest number that can be representd is the smallest unnormalized number

Vmin = ±2−1022(0.000 . . . 01)2 = ±2−1074 ≈ 4.9407 × 10−324

What is result of x=1.797e308; 2*x? And of x=4.941e-324; x/2? They result in overflow
or underflow exceptions respectively.

2.2.3 Machine precision, IEEE rounding, roundoff error

In double machine precision, the computer stores only the first 53 binary digits (or 52
if unnormalized) of a real number x (this is equivalent to roughly 16 decimal digits). The
remaining digits that are present if x has a longer binary expansion are truncated or rounded.
Thus the machine representation of x is not the same as x! We call the floating point
representation of x

fl(x)

Thus: fl(x) − x 6= 0 and define

fl(x) − x as the absolute roundoff error.

f l(x) − x

x
as the relative roundoff error.
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Note: What is the result of computing 9.4-9-0.4 in MATLAB?

IEEE addition and rounding. When two numbers are added they are first placed out of
storage into a register in which addition is performed using higher than machine precision.
The result is then rounded to 52 digits after decimal (with at most 1 nonzero digit before
decimal) and stored. IEEE rounding consists of rounding down (truncating) if the 53rd digit
equals 0. Otherwise, if the 53rd digit equals 1, it rounds up UNLESS all digits to the right
of the 53rd and the 52nd digit are zero.

all 52 digits in the mantissa are zeros, the number is rounded down (truncated). Thus:

1 + 2−52 + 2−54 is rounded down to 1 + 2−52

1 + 2−52 + 2−53 is rounded up to 1 + 2−51

1 + 2−53 is rounded down to 1

1 + (2−53 + 2−54) is rounded up to 1 + 2−52

1 + 2−53 + 2−54 is rounded down to 1

1 + 2−51 + 2−53 is rounded down to 1 + 2−51

To see for example the last three, type (1+(2^ -53+2^ -54))-1, (1+2^ -53+2^ -54)-1, and
(1+(2^ -51+2^ -53))-1.

Machine precision. Machine precision, or machine ǫ, measures the amount of relative
precision you have in the floating point representation of a number. It is defined as

machine ǫ: distance between 1 and the smallest floating point number greater than 1.
That is, smallest number such that

fl(1 + ǫ) 6= 1

In the IEEE standard

ǫ = 2−52 ≈ 2.2 × 10−16 (double machine precision)

ǫ = 2−23 ≈ 1.2 × 10−7 (single machine precision)

since any floating point number not equal to one has to have at least one of d1, . . . , d52

nonzero. The smallest such number bigger than 1 is the one with d52 = 1 and all other
d1 = · · · = d51 = 0. In MATLAB, it is defined as the variable eps. The relative roundoff
error in representing a number is

fl(x) − x

x
≤ ǫ

2
.

Be sure to understand the difference between the smallest representable number 2−2074 and
machine ǫ. Many numbers below ǫ are representable, but adding them to 1 has no effect.

26



2.2.4 Loss of significant digits during subtraction

While the relative precision in the numerical representation of a number is at most ǫ/2,
precision can be lost in particular during subtraction of almost equal numbers. Imagine for
simplicity that we are computing using 5 significant decimal digits.Then consider subtracting
300.3 − 300. In exact arithmetic

300.3 − 300 = 1/3

In floating point arithmetic keeping 5 significant digits

fl(300.3) − fl(300) = 300.33 − 300 = 0.33

Thus the answer is represented with only 2 significant digits of accuracy. This loss of signif-
icance due to subtraction of almost equal numbers can be a problem that can sometimes be
remedied.

Example: Consider computing
1 − cos x

sin2 x
for small x. In that case, the numerator will lead to loss of significance due to subtraction of
almost equal numbers. The resulting error is then amplified by dividing by a small number.
The alternative formulation

1

1 + cos x

(which is equal in exact arithmetic) does not lead to loss of significance. See our text-
book, p 18 for a comparison of the two formulations in MATLAB. Plot both expressions vs
h=logspace(-1,-16,16).

Example: The quadratic formula to solve ax2 + bx + c = 0,

x1 =
−b +

√
b2 − 4ac

2a
, x2 =

−b −
√

b2 − 4ac

2a

leads to loss of significance in x1 if 4ac ≪ b2 (much less than), and b > 0. One avoids this
loss of significance by rewriting (multiply top and bottom by conjugate and simplify) the
formula for x1 as:

x1 =
−c

b +
√

b2 − 4ac

Example: Plot (x − 1)3 and x3 − 3x2 + 3x − 1 vs x − 1 for x = linspace(1 − h, 1 + h, 1000)
for h = 10−5.

Example: This issues can be relevant in applications. Figure 2 illustrates the loss of sig-
nificance when computing the velocity of a bubble in viscous fluid using a straight forward
implementation of the governing equation (top) and after cleverly rewriting them to remove
subtraction of large numbers (bottom).
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Figure 2: Effect of roundoff error on velocity of a bubble in the limit of infinite viscosity
(Stokes flow). Top: subtracting large numbers introduces errors of about 109 times machine
precision. Bottom: rewriting the differences using algebraic manipulations (determining
dominant terms in the large numbers and removing them algebraically) reduces the error
by a factor of 106. The different curves correspond to using increasing number of points to
represent the bubble, with the goal of reducing the discretization error. (From Nitsche et al
2010, preprint.)
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2.3 Approximating derivatives, Taylor’s Theorem, plotting y = hp

Another example of loss of significance due to subtraction comes in approximating deriva-
tives, as we did earlier (MATLAB Tutorial, page 16). This example also gives us a reason
to review Taylors theorem (which is fundamental for all that we will do in this class!) and
go over plots of y = hp on a log-log scale.

Taylor’s Theorem for functions of one variable. If the n + 1st derivative of f exists
and is continuous on [x, x + h] then

f(x + h) = f(x) + f ′(x)h +
f ′′(x)

2
h2 +

f ′′′(x)

3!
h3 + · · · + f (n)(x)

n!
hn +

f (n+1)(ξ)

n!
hn+1

for some value ξ ∈ [x0, x]. If M is an upper bound for f (n+1) on this interval we see that the
last term is ≤ Mhn+1 and thus

f(x + h) = f(x) + f ′(x)h +
f ′′(x)

2
h2 +

f ′′′(x)

3!
h3 + · · · + f (n)(x)

n!
hn + O(hn)

using the Big-O notation defined in next section.

Approximating derivatives. Using Taylor’s theorem with n = 1 we can show that in
exact arithmetic

f(x + h) − f(x)

h
= f ′(x) + O(h)

Thus the approximation of the first derivative by the left hand side makes an O(h1) error,
we call it a first order approximation.

Approximating derivatives in IEEE arithmetic. If h is small, then the numerator of

f(x + h) − f(x)

h

leads to loss of significance due to subtraction of almost equal numbers. In particular:

fl(f(x + h)) − fl(f(x))

fl(h)
=

f(x + h) + ǫ1 − (f(x) + ǫ2)

h + ǫ3

≈ f(x + h) − f(x)

h
+

ǫ4

h
= O(h)+O(1/h)

where ǫ1,2,3,4 are of the order of ǫf(x). If h is large, the first term will dominate, if h is small
the second term will dominate!. This is what we saw in the plot obtained in section 1.9.

Plotting y = hp on log-log scale. Note that if y = Chp then log y = log C + p log h.
Thus plotting log y vs log h (ie, using log-log scale) we obtain a linear plot with slope p! For
example when we plotted the error above of the form O(h) + O(1/h) we obtained a portion
of the curve with slope 1 (where O(h) term dominates) and a portion with slope -1 (where
O(1/h) term dominates).
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2.4 Big-O Notation

Let E be a function of h. We say that E(h) = O(hp) as h → 0 (Read as “E is big-O of h to
the p as h goes to 0”, or “E is of order h to the p”) if there exists constants ǫ and C such
that

‖E(h)‖ < Chα ∀h ∈ [0, ǫ]

This is of interest since it gives an upper bound on how fast a function approaches zero in
the limit as h goes to zero. Similarly E(N) = O(N) as N → ∞ means that there exists
constants C and N0 such that

‖E(N)‖ < CN ∀N ≥ N0

and as a result, this notation gives a bound on how fast E can grow as N → ∞ (in this case,
at most linearly). (Usually, we use h or ǫ to denote small numbers and N to denote large
numbers.)

30



3 Solving nonlinear equations f(x) = 0

Problem Statement: Find root of a function f(x) (linear or nonlinear). Equivalently, the
problem is to solve an equation (linear or nonlinear).

Definition:A function f(x) has a root r if f(r) = 0.

Note: Why are the two problems stated above equivalent? Because we can write the solution
to any equation as the root of a function. For example, solution to cos3 x = x+ 1 is the root
of f(x) = cos3 x − x − 1.

Intermediate Value Theorem (IVT): The IVT is a theorem that guarantees that f has
a root if it satisfies certain conditions. The theorem says:

If f(a)f(b) < 0 and f is continuous on [a, b] then f has a root in (a, b).

Note that no conclusions can be drawn if the conditions of the theorem does not apply. For
example, if f is not continuous on [a, b], or if f(a)f(b) > 0 we CANNOT conclude anything
about the roots of f in (a, b). But if the conditions apply, we know f has a root and we
want a numerical method to find it. Moreover, the method should be as accurate as desired
(if possible), and fast.
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3.1 Bisection method to solve f(x) = 0 (§1.1)

• Basic idea: If f is known to have a root on [a, b] by IVT, bisect interval into two
subintervals, choose the one containing the root (using IVT), repeat. The length of
the interval decreases by half at each step, the root is known to within that precision,
and can be found to specified precision by taking sufficiently many steps. In theory.

• The algorithm. Outline of algorithm for function root=bisect(f,a,b,tol)

while abs(a-b)/2>tol

c=(a+b)/2

if f(c)==0 done

if f(a)*f(c)<0

b=c

else

a=c

end

end

root = c

Problems: what if tol too small? Two function evaluations per loop. Filling in the
details. Explain modification to book algorithm.

function [root,i]=bisect(f,a,b,tol)

fa=f(a); fb=f(b);

if (fa*fb >= 0 )

error(’f(a)f(b)<0 not satisfied’)

endif

i=0;

disp(sprintf(’ %3d %20.15f ’,i,a))

while abs(a-b)/2 > tol

c= (a+b)/2; fc=f(c);

if fc==0

break

end

if fa*fc<0

b=c; fb=fc;

else

a=c; fa=fc;

end

i=1+1;

disp(sprintf(’ %3d %20.15f ’,i,a))

end

root = (a+b)/2;
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Example: Apply to solve 3x3 + x2 = x + 5 to within 7 decimal places.

Definition: A solution is correct within p decimal places if the error is less than
0.5 × 10−p. Note, this does not mean that the pth digit is exact!

Example: Apply to approximate the cube root of 5 to within 10 decimal places.

Example: What happens if you type

[xc,niter]=bisect(@sin,3,4,10^-20)

? Fix the problem. (Replace tol by tol+eps*max(abs(a),abs(b))).

• Convergence rate. Rate of reduction of error.

The method builds a sequence of approximate solutions xk, given by the midpoints
of the relevant interval. We know that, up to roundoff, the sequence of midpoints
xk computed by the bisection method converges to the exact root. How fast does it
converge? That is, how fast does the error decrease in each step? We know that after
n steps, the root r lies in the n + 1st subinterval, with length (b − a)/2n+1. So

|xn − r| ≤ b − a

2n+1
.

That is, the error goes down by 1/2 in each step. This is called Linear convergence
which we will define more precisely later.

With this result we can estimate how many steps it takes to get within a prescripbed
tolerance.

Example: If |b − a| = 1, tolerance tol = 5 · 10−8, the error is guaranteed to be < tol,
after n = 24 steps.
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3.2 Fixed point iteration to solve x = g(x) (FPI, §1.2)

3.2.1 Examples

• Starting with any number x0 of your choice, compute xk+1 = cos(xk) for approximately
0 ≤ k ≤ 20 (by repeatedly hitting the cosine button). What do you observe?

• Method of the Babylonians (1750 BC!) to approximate
√

2: Note that if x >
√

2,
then 2/x < 2/

√
2 =

√
2. The Babylonians proposed to, starting with any initial guess

x0, obtain a better approximation to
√

2 by averaging x and 2/x. This leads to the
iteration

xk+1 =
xk + 2

xk

2
Try it out with an initial guess of your choice (6= 0), and see how quickly the iterates
approach

√
2.

3.2.2 The FPI

• A fixed point iteration is of the form

xk+1 = g(xk) , with xo given

IF the iteration converges, that is, limk→∞ xk = r for some r, as in the above examples,
then r satisfies

r = g(r)

and is called a fixed point of g. Geometrically, this point is the x-coordinate of the
intersection of the graphs of y = g(x) and y = x. (Show that the fixed point of the
Babylonian map satisfies x2 = 2.)

• The iterates of FPI can be visualized by a cobweb diagram. Starting with the point
(x0, 0), get to x1 geometrically by going vertically up to the point (x0, g(x0)) on the
curve y = g(x), and then moving over horizontally to point (g(x0), g(x0)) on the line
y = x. This new point has x-coordinate x1. Repeat this process. Note, to obtain an
accurate cobweb diagram, the line y = x must be drawn correctly. This is easiest if,
by hand and in matlab, we use a 1-1 scale (in matlab, use axis equal).

• The cobweb diagrams for the cosine map above show that the iterates converge to the
root of r = cos r, for any x0. In this case we say the iteration is globally convergent.
The cobweb diagram for the Babylonian map shows that for x0 > 0, the iterates
converge to r =

√
2, while for x0 < 0, the iterates converge to r = −

√
2. It also shows

that the iterates converge very fast to r ones they are close to r, because g′(r) = 0.

• Can always rewrite f(x) = 0 as g(x) = x, but not uniquely! For example: can rewrite
x3 + x − 1 = 0 in three ways: as x = g1(x) = 1 − x3, x = g2(x) = (1 − x)1/3,
x = g3(x) = 1+2x2

1+3x2 .
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3.2.3 Implementing FPI in Matlab

• Pseudocode 1:

initialize vector x %to alot memory to it

initialize x(1) %to the given initial guess

for k=1:iter

x(k+1)=g(x(k))

end

where iter is the total number of iterations performed. This code saves all the iterates
of the iteration in a vector x. We are mostly interested only in the last iterate and
dont want to save all the intermediate steps, in which case we simply overwrite the
current iterate:

Pseudocode 2:

initialize x %to the given initial guess

for k=1:iter

x=g(x)

end

• Using a function that implements either of the above, we now apply FPI to solve
x3 + x − 1 = 0 in three ways. We find that (1) Diverges, (2) converges, (3) converges
much faster.

• The cobweb diagram show that (1) diverges because the slope of g at the root is > 1
in magnitude!, |g′

1(r)| > 1. (2) converges to r (provided x0 is sufficiently close to r)
since |g′

2(r)| < 1 and (3) converges faster since |g′
3(r)| ≪ |g′

2(r)| < 1. Suggestion:
convergence depends on local slope.

3.2.4 Theoretical Results

• Theorem: If |g′(r)| < 1 and x0 is sufficiently close to r, then the fixed point iteration
converges to r. Furthermore, the error ek = xk+1 − r satisfies

lim
k→∞

ek+1

ek

= g′(r)

Proof: If |g′(r)| < 1 then |g′(r)| ≤ S < 1 in some neighbourhood of r. If x0 is in this
neighbourhood, then, by Taylor’s Theorem,

|x1 − r| = |g′(ξ0)||x0 − r| ≤ S|x0 − r| (1)

|x2 − r| = |g′(ξ1)||x1 − r| ≤ S|x1 − r| ≤ S2|x0 − r| (2)

. . . (3)
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where ξ0 is some point between x0 and r, ξ1 is some point between x2 and r, etc. By
iterating this process we find that

|xk − r| ≤ Sk|x0 − r| or |ek| ≤ Sk|e0|

Note that the right hand side → 0 as k → ∞ because S < 1, and thus, limk→∞ xk = r,
or limk→∞ ek = 0. and we proved the first part.
Now note that

(xk+1 − r) = g′(ξk)(xk − r) or
ek+1

ek

= g′(ξk)

where ξk is between xk and r. Since xk → r as k → ∞, also ξk → r. Thus

lim
k→∞

ek+1

ek

= g′(r)

and we proved the second part.

Note: This implies that if k is sufficiently large, ek+1 ≈ g′(r)ek. The error decays by
a factor of g′(r) at each step. If g′(r) is small, it will decay very fast. If g′(r) ≈ 1, it
will decay very slowly.

• Example: For the cosine map, print k, xk, ek, ek+1/ek. Compare to g′(r). Run the
following matlab code.

clear

g=inline(’cos(x)’); gp=inline(’sin(x)’); f=inline(’cos(x)-x’);

%g=inline(’(x+2./x)/2’);gp=inline(’(1-2./x.^2)/2’);

%f=inline(’x.^2-2’);fp=inline(’2*x’);fpp=inline(’2’);

a=1; kmax=20;

x=fixedpt2(g,a,kmax); %this function returns a vector of all iterates, x

r=fzero(f,a);

n=length(x);

e=abs(x-r);

disp(’ k x error ratio ’)

for k=1:n-1

disp(sprintf(’%3d %15.10f %14.10f %10.6f’, k,x(k),e(k),e(k+1)/e(k)) )

% disp(sprintf(’%3d %15.10f %13.10f %10.6f’, k,x(k),e(k),e(k+1)/e(k)^2) )

end

disp(sprintf(’\n Compare limit of ratios with g’’(r)= %9.6f’, gp(r)))

%disp(sprintf(’\n Compare limit of ratios with g’’(r)/(2g’’(r))= %9.6f’,...

% fpp(r)/(2*fp(r))))

• Example: Repeat for the two converging maps for x3 + x − 1 = 0.
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3.2.5 Definitions

• Local vs global convergence. An iterative scheme is locally convergent if xk → r
as k → ∞ provided x0 is sufficiently close to r. FPI is locally convergent.
An iterative scheme is globally convergent if xk → r as k → ∞ for any x0. Some
FPI, such as cosine map, are globally convergent. We can deduce this from the cobweb
diagram.

• Rates of convergence.

If lim
k→∞

ek+1

ek

= S , with 0 < S < 1, then the iteration xk is linearly convergent. This

implies that for sufficiently large k, ek+1 ≈ Sek (the error gets reduced by a factor S).
If 0 < |g′(r)| < 1, FPI is locally convergent.

If lim
k→∞

ek+1

e2
k

= S , with 0 < S, then the iteration xk converges quadratically. This

implies that for sufficiently large k, ek+1 ≈ Se2
k. Once ek is small, this convergence is

much better than linear.

If lim
k→∞

ek+1

ep
k

= S , with 0 < S, then the iteration xk converges to order p.

• What is convergence rate for Babylonian method? Hint: run the matlab code above
after replacing the three lines starting with ”g. . . ”, and ”disp. . . ” by the commented
lines below them. We will see the reason for the last line in this code in the next
section.

3.2.6 Stopping criterion

• Implement stopping criterion: iterate FPI until |xk+1 − xk| < tol, for some given
tolerance.
How do you do this in Pseudocode 1? Pseudocode 2?
Note that even if |xk+1 −xk| < tol, we dont know what the actual error |xk+1 − r| after
that step is.
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3.3 Newton’s method to solve f(x) = 0 (§1.4)

3.3.1 The algorithm

• Picture and derivation of algorithm. Stopping criteria.

• Write out Newton’s algorithm to solve x2 = 2 (!)
Write out Newton’s algorithm to solve x3 + x − 1. Combine terms. (!)

• What can go wrong? f ′(xk) = 0, oscillation between two points.
If f ′(xk) ≈ 0, move far away from initial condition, and may converge to a far away
root.
What happens if f ′(r) = 0?

• Note: Newton’s is a special type of fixed point iteration.

3.3.2 Matlab implementation

Again, two choices: either return vector of solutions or overwrite old iterate by current

• Pseudocode 1:

initialize vector x

initialize x(1)

for k=1:kmax

x(k+1) = x(k)-f(x(k))/fp(x(k));

if abs(x(k+1)-x(k)) < tol exit loop

end

• Pseudocode 2:

initialize x

set xold=x

for k=1:kmax

x = x-f(x)/fp(x);

if abs(x-xold) < tol exit loop

xold=x

end

• Apply to x3 + x − 1 = 0. Plot ek+1/e
2
k.
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3.3.3 Theoretical results

• Prove: if f ′(r) 6= 0 then Newton’s method is locally convergent. (to prove, view
Newtons as fixed point iteration for some g. Find g′(r))

• Prove: if f ′(r) 6= 0, Newton’s method is quadratically convergent. (Hint: Use Talor
polynomial of order 1 for f , with remainder.)

• State: if f ′(r) = 0, method still converges but slower: linear convergence, with
limk→∞ ek+1/ek = (m − 1)/m. (To see this, apply Newtons method to solve xm)
State modified Newton’s method for multiple roots, with quadratic convergence.

• Summary. Ups: fast convergence. Downs: requires f ′. Only locally convergent (but
this is true for most methods).

3.4 Secant method (§1.5)

• State Secant Method

3.5 How things can go wrong. Conditioning. (§1.3)

Example: Apply bisection algorithm to solve

x3 − 2x2 +
4

3
x − 8

27
= 0

(which equals (x − 2
3
)3 = 0) to within 4 digits, 6, 10, 20 digits. Compare approximate and

exact roots. How big is the error? Repeat with fzero. Plot y = f(x) = x3 − 2x2 + 4
3
x− 8

27
,

zoom into region near triple root. Repeat for f(x) = (x − 2
3
)3. What is the problem? Why

does it occur in one formulation, and not the other? (Answer: loss of significance due to
cancellation in one case, not the other.)

3.5.1 Multiple roots

Definition:A function f(x) has a root of multiplicity n at x = r if f(r) = f ′(r) = f ′′(r) =
· · · = f (n−1)(r) = 0 but f (n)(r) 6= 0. Alternatively, the root r has multiplicity n if the
function’s Taylor series about x = r has leading order term

f(x) ∼ C(x − r)n + smaller terms of higher order

For example it is easy to check using either criterion that f(x) = sin(x)−x has a triple root
at x = 0. It is easy to check using Taylor series that sin(x100) has a root of multiplicity 100
at the origin.
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function f

INPUT OUTPUT

root x=r

Problem to be solved
such as

solve f(x)=0

Figure 3: Input and output of a problem to be solved.

We see that in the above example, the large multiplicity of the root causes a problem: for
a relatively large range of values of x away from the root the floating point values of the
function are near 0 and thus the bisection algorithm (or fzero or any other algorithm) finds
many incorrect roots. In other words, here,

large changes in x yield small changes in f

The problem occurs only in one formulation and not in the other because the relative size
of roundoff error differs in the two cases.

3.5.2 Forward and Backward error. Error magnification.

One can view the problem to be solved as having input values (in our case f) and output
values (in our case the root r). See figure 3.

The numerical method outputs an approximate solution, call it xc. Define

Forward error: Error in output, in our case |xc − r|

Backward error: Error in input (introduced for example by machine precision, noisy
measurements, etc), in our case |f(xc) − f(r)| = |f(xc) − 0|

So the problem is that the forward error is very large relative to the backward error! That
is, the

error magnification =
forward error

backward error
(4)

is very large. The input is represented accurately numerically, but since the error magnifi-
cation is large, the output is much less accurate. Problems for which this is true are said
to be ill-conditioned. For such problems we cannot obtain good answers numerically, no
matter which method we use! Note that the conditioning is inherent to the problem, not the
method.
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Why is this a problem? In general we do not know the forward error since we dont have the
exact solution (bisection algorithm is an exception!), and we can only compute the backward
error. But we would like, based on the backward, to know the forward error. If we knew
the error magnification factor we could do that. In some cases an estimate for the error
magnification factor can be found.

3.5.3 Other examples of ill-conditioned problems

Multiple roots are not the only cases yielding ill-conditioned problems.

Example: Solve x + y = 2, 1.00001x + y = 2.00001 using Matlabs A\b solver of linear
systems. Note: exact solution x = 1, y = 1. Numerical solution relatively far from it. Why?
Geometric interpretation.

Example: Wilkinsons polynomial

W (x) = (x − 1)(x − 2) . . . (x − 20) = x20 − 210x19 + 20615x18 + . . . 243290200817664000

has simple roots, yet, if implemented in the formulation on the right hand side,

fzero(wilkpoly, 16) = 16.014...

The problem here is again loss of precision due to subtraction of almost equal numbers. For
x near 16, each term in the sum is large, and they need to cancel to yield the resulting value
near 0. The relative errors in each number, due to finite machine precision, is amplified,
yielding very large relative error (only 2 correct digits since the relative error is only less
than 0.51̇0−2))

Thus, small relative errors (of 1.e-16) in the coefficients yield large relative errors in the
solution ⇒ ill-conditioned.

3.5.4 The condition number

Whether a problem is ill-conditioned or well-conditioned is based on the magnification of
the relative errors (as opposed to the absolute errors considered in Eq 4).

Definition: The condition number of a problem is

cond = maximum
relative forward error

relative backward error
(5)

over all changes in input. For example, in the Wilkinson polynomial case, the relative
changes in the coefficients of f are of order 10−16 and the relative change in the output is
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10−2, yielding condition number of at least 1014. The maximal amplification of the relative
errors can sometimes be found precisely. More later. Note that if we know the condition
number and we know the backward error we can estimate the forward error.
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4 Solving linear systems

4.1 Gauss Elimination (§2.1)

• Solve sample 2x2 linear system x + y = 3, 3x− 4y = 2, geometrically and algebraically

• Solve sample 3x3 linear system

2x + y − 4z = −7

x − y + z = −2

−x + 3y − 2z = 6

by hand (using Tableau form), doing Gauss Elimination, then back substitution. Define
pivots. Keep track of the multipliers, and carefully do all algebra.

• Write GE algorithm (no pivoting). Note that we only have to update the nonzero
entries aik, i, k ≥ j + 1, that is, the entries below and to the right of ajj.

[n,n]=size(A);

for j=1:n-1 %go over all columns j except the last one

for i=j+1:n %eliminate all entries A(i,j) below A(j,j), i>j

m=A(i,j)/A(j,j); % compute multipliers to eliminate entry

for k=j+1:n % replace all entries A(i,k) in Row i to the

A(i,k)=A(i,k)-m*A(j,k); % right of column j

end

b(i)=b(i)-m*b(j); % do row operation on rhs b

end

end

• Count number of operations for GE:
∑n−1

j=1 [2(n − j) + 3](n − j). Use

n∑

j=1

1 = n ,
n∑

j=1

j =
n(n + 1)

2
,

n∑

j=1

j2 =
n(n + 1)(2n + 1)

6

to evaluate.

• Backward substitution to solve Ux = b, algorithm and operation count.

for i=n:-1:1

for j=i+1:n

b(i)=b(i)-a(i,j)*x(j)

end

x(i)=b(i)/a(i,i);

end
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• Operation counts:

Gauss Elimination :
2

3
n3 + l.o.t

Upper Triangular system : n2

Lower Triangular system : n2

4.2 LU decomposition (§2.2)

• Today we’ll show that GE is equivalent to factoring A = LU , where L is lower trian-
gular, U is upper triangular. Why is such a factorization useful? Suppose you need to
solve Axk = bk for many bk, suppose k = 1, 1000. One option is to use GE each time
for a total cost of

1000(2/3)n3

The alternative is to find the LU factorization once (at a cost of 2/3 n3) and then solve
LUxk = bk in two steps:

(1) Solve Ly = bk for y
(2) Solve Uxk = bk for xk

for a cost of n2 each step, and a total cost of

(2/3)n3 + 2000n2 .

The O(n3) operation can be viewed as an initialization cost, and all subsequent steps
are O(n2) instead of O(n3). Big savings.

• To show that GE is equivalent to factoring A = LU : Every step in GE consists of
adding a multiple of −mij of the jth row to the ith row.

This is an elementary row operation. There are 3 elementary row operations:

Replacing Rowi by Rowi − m · Rowj

Replacing Rowi by m · Rowi

Exchanging Rowi and Rowj

Each one is equivalent to premultiplying A by an elementary matrix. The first oper-
ation, replacing Rowi by Rowi − m · Rowj is equivalent to premultiplying A by Lij,
where L is the lower triangular matrix which equals the identity except that it contains
−mij in its (ij)th position. (That is, it is the matrix obtained from the identity matrix
by performing the desired row operation on it.)

Thus at the end of GE we have performed the following operations

Ln,n−1 . . . L3,2Ln,1 . . . L3,1L2,1Ax = Ln,n−1 . . . L3,2Ln,1 . . . L3,1L2,1b
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and
Ln,n−1 . . . L3,2Ln,1 . . . L3,1L2,1A = U

Now note that Lij are invertible with simple inverse and compute

L−1
2,1L

−1
3,1 . . . L−1

n,1L
−1
3,2 . . . L−1

n,n−1 = L

where L contains the mij below the diagonal, and ones on the diagonal. Thus, after
GE have A = LU decomposition.

• Change GE algorithm so as to return L,U . Test for an example.

[n,n]=size(A);

for j=1:n-1

for i=j+1:n

A(i,j)=A(i,j)/A(j,j); % overwrite A(i,j) by multiplier

for k=j+1:n

A(i,k)=A(i,k)-A(i,j)*A(j,k);

end

end

end

L=eye(n,n)+tril(A,-1);

U=triu(A);

Write main portion of above algorigthm more concisely in matlab (just for curiosity).

for j=1:n-1

A(j+1:n,j)=A(j+1:n,j)/A(j,j);

A(j+1:n,j+1:n)=A(j+1:n,j+1:n)-A(j+1:n,j)*A(j,j+1:n);

end

• Find LU -factorization of A by hand for

A =




2 1 −4
1 −1 1
−1 3 −2





4.3 Partial Pivoting (§2.3, §2.4)

• What if pivots ajj = 0? Then the LU decomposition does not exist

Example: Show that A =

[
0 1
1 1

]
has no LU decomposition.

What if pivots ajj are small? Then multipliers aij/ajj are large, which can lead to loss
of precision when computing aik − majj.

Example: Show that using GE to solve

[
10−20 1

1 2

]
x =

[
1
4

]
leads to large amplification

of small errors introduced by roundoff. ⇒ GE without pivoting is UNSTABLE
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• Solution: pivoting (exchanging rows so that maximal entry aij in jth column, with
i ≥ j, moves into the pivot position). As a result the multipliers aij/ajj will always be
< 1.

• Describe partial pivoting. Use it to solve

[
10−20 1

1 2

]
x =

[
1
4

]
to show roundoff errors

stay small. ⇒ GE with partial pivoting is STABLE (small erros are not amplified,
provided the problem we are trying to solve is WELL-POSED.) we have not proven
this, only illustrated by example, but it can be proven to be true. Note that if the
problem we are trying to solve is ILL-POSED, than no method can give a good result:
small errors are amplified by the problem, even if the method is stable.

• Switching rows is equivalent to premultiplying by elementary matrices Pk. (What
happens if you postmultiply A by Pk?) Show that it leads to decomposition PA = LU .
(For this we need to know how to write PkLij = L̃ijPk.

• Find the PLU factorization P,L, U for a sample 3x3 matrix A, by hand. Check result
by confirming that PA = LU .

• Check result using MATLABs lu(A) function.

• How to use PLU decomposition to solve Ax = b for many b.

• What is full pivoting?

4.4 Conditioning of linear systems (§2.3)

• Consider Ax = b

0.835x + 0.667y = 0.168

0.333x + 0.266y = 0.067

Has exact solution x = (1,−1). If b is changed to b̃ = (0.168, 0.066) the exact solution
is x̃ = (−666, 834)! That is, the forward error (change in output x) is much larger than
the small backward error (change in input A,b). This is a symptom of an illconditioned
problem: small perturbations, such as introduced by roundoff or measurement errors,
can be amplified significantly.

For a 2x2 linear system this illconditioning can be explained geometrically: graph the
lines represented by each of the two equations and find their slopes are almost identical,
so small changes in the line (input) cause large changes in the intersection (output).

For general linear system, the amplification factor of the relative forward error is mea-
sured by the condition number. The exact statement follows next.
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• To measure the changes in vectors and matrices we need vector and matrix norms.
The vector norm you are probably most familiar with is the Euclidean 2-norm, for
example

||〈a, b〉||2 =
√

a2 + b2

||〈x1, x2, . . . , xn〉||2 =
√

x2
1 + x2

2 + · · · + x2
n

A compatible matrix norm needs to satisfy certain properties (too learn more about
this, take Math 464). The matrix norm compatible with the vector 2-norm is given in
terms of the largest absolute singular value of the matrix.

Instead, we will use a simpler vector- and matrix- norm. (For a rule to be a norm, it
must satisfy certain properties. Again, more on this in Math 464.) We will use the
inf-norm. For a n × 1 vector x and an n × n matrix A it is defined as

vector inf-norm ||x||∞ = max
1≤j≤n

|xj|

matrix inf-norm ||A||∞ = max
1≤i≤n

n∑

j=1

|Aij| (maximum absolute row sum)

• Define relative forward error ||x − x̃||/||x||

relative backward error ||b − b̃||/||b||

The backward error is the residual Ax̃− b. The example shows that residual can be
small even if the error in the solution is very large. The next theorem shows that this
amplification factor can be as large as the condition number of the matrix.

• Theorem:
||x − x̃||
||x|| ≤ K(A)

||b − b̃||
||b|| where K(A) = ||A||||A−1||

with equality attainable for some b. (This theorem holds using any matrix norm.)

Note: the condition number is a property of the matrix, not of any numerical method
used to solve the system. In MATLAB, you can use the function cond to obtain the
condition number of a matrix, using a norm of your choice. You can also use norm to
compute norms of matrices and vectors.

One can expect that roundoff error introduces errors of size of machine epsilon ǫ in the
matrix A and the right hand side b. Then the relative forward error can be expected
to be

||x − x̃||
||x|| ≤ K(A)ǫ
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So if, for example, K(A) ≈ 109, then you loose 9 digits of accuracy in solving the linear
system Ax = b.

Example: Hilbert matrix (example 2.12)

4.5 Iterative methods (§2.5)

• GE with pivoting solves the problem Ax = b to within machine precision (times
condition number, see §3.5). Why do we need to study other methods to solve this
problem? After obtaining the LU decomposition once, GE is fast (O(n2)) if Ax = b
has to be solve repeatedly for many right hand sides. However, if Ax = b has to be
solved once (for example, new A and b at every timestep in a time-evolution problem)
then it is expensive (O(n3)). Need faster methods.

• Iterative methods to solve Ax = b are of the form

x(k+1) = Bx(k) + c (6)

with some initial guess x0. (This is similar to the fixed point iteration which we studied
for nonlinear scalar problems.) Under what conditions do such iterative methods for
linear nxn systems converge?

• Answer (which can be motivated using the fixed point iteration result): The iteration
xk+1 = Bxk + c converges if and only if the spectral radius ρ(B) < 1. The spectral
radius is defined to be the largest absolute eigenvalue of B: ρ(B) = max

1≤j≤n
|λj|.

• Jacobi method. Example. This method consists of solving the jth equation in
Ax = b for xj, that is, which yields a specific equivalent system x = Bx + c, and then
performing the fixed point iteration.

Go through examples 2.19 and 2.20. Show how to get the system u = f(u) = Bu + c,
where u = 〈u, v〉 by solving first equation for u, second one for v. Write a MATLAB
function f(u) and iterate

u(k+1) = f(u(k))

(we dont need save all iterates of the vector u, but simply overwrite the old u. Note
that:

– The resulting system u = Bu + c depends on the order of the original equation

– Using one order, the method converges, in the other, the method does not con-
verge. Can you explain this fact by looking at the eigenvalues of the corresponding
matrix B?

• Jacobi method for general Ax=b. Solving the jth equation for xj yields the
(linear) system of equations

xj =
1

ajj



bj −
∑

l=1

l 6=j

ajlxl
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(Note: this system clearly depends on the order of the equations. For example, need
ajj 6= 0!) Jacobi’s method consists of the fixed point iteration

x
(k+1)
j =

1

ajj

(
bj −

∑

l 6=j

ajlx
(k)
l

)
(7)

using some initial guess for x
(0)
j .

Let’s write the method (7) in matrix form and then state under which conditions it
converges. Write A = L + D + U where D contains the diagonal elements of A, and L
and U the elements below and above the diagonal respectively. Then we can solve the
jth equation for xj (assuming D is invertible) as follows:

Ax = b ⇐⇒
Lx + Dx + Ux = b ⇐⇒

Dx = b − (L + U)x ⇐⇒
x = D−1(b − (L + U)x)

x = D−1b − D−1(L + U)x

Jacobi’s method consist of the iteration

x(k+1) = D−1(b − (L + U)x(k)) (8)

where x(0) is some initial guess. Typically we let x(0) = 0, unless there is information
to make a better initial choice. Thus Jacobi is of the form 6 with

BJac = −D−1(L + U), c = D−1b

From the theorem above it follows that Jacobi converges if ρ(BJac) < 1.

• An easier convergence criterium.

Definition : A matrix is strictly diagonally dominant if

|aii| >

n∑

j=1

j 6=i

|aij| .

Theorem: Jacobi method converges if A is strictly diagonally dominant. (One can
show that this implies ρ(B) < 1.)

Example: go back to examples 2.19, 2.20. Can we determine convergence based on
this criterium?

• A better implementation. Stopping criteria. We can rewrite Jacobi’s method
by noting that D−1(b− (L+U)x) = D−1(b− (L+U +D)x+Dx) = x+D−1(b−Ax)
and thus (8) is equivalent to

x(k+1) = x(k) + D−1(b − Ax(k)) (9)
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In practice, we stop iterating when the residual r(k) = b−Ax(k) (which is the same as
the backward error), has norm

||r(k)||∞ = max
j

|r(k)
j | < tol (10)

for some chosen tolerance tol. In the homework you are asked to stop when

||x(k+1) − x(k)|| < tol (11)

Note however that in view of equation (9),

x(k+1) − x(k) = D−1(b − Ax(k))

is basically the residual, up to multiplication by D−1. That is the two stopping criteria
(10) and (11) are not that different.

• Numerical cost: How expensive is Jacobi? If A is full, how many flops does it take
to compute Ax? How many iterations did it take in you homework? How does Jacobi
then compare to GE?

• Faster iterative methods: Gauss-Seidel, SOR, Conjugate gradient, GMRES (briefly
describe their uses)
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5 Interpolation

Problem statement: Given n data points (xj, yj), j = 1, . . . , n, find a function g(x) such that
g(xj) = yj. (See Figure 3.1, page 140)

Some interpolating functions may do a much better job at approximating the actual function
than others. We will consider 3 possible types of interpolating functions f(x):

• polynomials

• piecewise polynomials

• trigonometric polynomials

5.1 Polynomial Interpolants

Theorem: Given n points (xj, yj), j = 1, . . . , n, there exists a unique polynomial

p(x) = c1 + c2x + c3x
2 + · · · + cnx

n−1

of degree n − 1 such that p(xj) = yj. (Note, the n conditions p(xj) = yj will be used to
determine the n unknowns cj.)

Example: Find the cubic polynomial that interpolates the four points (−2, 10), (−1, 4),
(1, 6), (2, 3). Set up the linear system that determines the coefficients cj. Solve using
Matlabs backslash, print polynomial on a finer mesh.

Example: Find the linear polynomial through (1,2), (2,3) using different bases.

Two Questions:

1. How good is the method? There are many methods, depending on how we repre-
sent the polynomial. There are many ways to represent a polynomial p(x). For exam-
ple, you can represent the quadratic polynomial interpolating (x1, y1), (x2, y2), (x3, y3)
in the following ways

p(x) = c1 + c2x + c3x
2 Vandermonde approach

p(x) = c̃1 + c̃2(x − x1) + c̃3(x − x1)(x − x2) Newton interpolant

p(x) = c′1
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)
+ c′2

(x − x1)(x − x3)

(x2 − x1)(x2 − x3)
+ c′3

(x − x1)(x − x2)

(x3 − x1)(x3 − x2)

Lagrange interpolant
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were the coefficients ck, c̃k, ĉk, c
′
k are chosen to satisfy that p(xk) = yk, k = 1, 2, 3.

All we’ve done is used different bases to represent the polynomial p(x). In exact
arithmetic, the result with any of these bases is the same: p(x). But numerically,
we will see that it will make a difference which basis we choose, in terms of accuracy
and/or speed.

2. How good is the problem? Given a set of data {xk, yk}, where yk = f(xk), there
is an interpolant. How good does the interpolant approximate the underlying function
f(x)?? We will see that for certain classes functions and points, certain types of
interpolants are bad. This is why we also consider other types of interpolants.

5.1.1 Vandermonde approach

Let
p(x) = c1 + c2x + · · · + cnx

n−1

where ck are determined by the conditions that p(xj) = yj, j = 1, . . . , n. Write out these
conditions as a linear system V c = b. What is V ? What is b? MATLAB code to find the
coefficients:

function c=interpvan(x,y)

n=length(x);

V(:,1)=ones(n,1);

for i=2:n

V(:,i)=x’.*V(:,i-1);

end

c=V\y’;

Note that V is full. That is, solving V c = y for the coefficients is an O(n3) operation.
Furthermore, in class, we found the condition number of V for n equally spaced points, and
found that already for n = 10 it is 107 (exact values depend on range of x), and becomes
much larger as n increased.

If you now want to evaluate the polynomial at an arbitrary set of values x (different than
the originally given data points), the most efficient way (using O(n) flops) to do this is to
use Horner’s rule. For example, for n = 5 this consists of rewriting p as

p(x) = c1 + x(c2 + x(c3 + x(c4 + x(c5)))) .

A MATLAB implementation is:

function p=evalpvan(c,x)

%evaluates Vandermonde polynomial coefficients c using Horner’s algorithm
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%Input x: row vector

%Output p: row vector

n=length(c); m=length(x);

p=c(n)*ones(size(x));

for k=n-1:-1:1

p=p.*x+c(k);

end

So, for this method:

Cons: 1. large condition numbers leading to inaccuracies
2. O(n3) amount or work to invert linear system

Pros: 1. O(n) algorithm to evaluate polynomial once coefficients are known

Example: Use above to find interpolant through (−2, 10), (−1, 4), (1, 6), (2, 3). Plot poly-
nomial on x ∈ [−3, 3] using a fine mesh.

xx=[-2,-1,1,2];

yy=[10,4,6,3];

c=interpvan(xx,yy);

x=-3:.05:3;

y=evalpvan(c,x);

plot(xx,yy,’r*’,x,y,’b-’)

5.1.2 Lagrange interpolants

The polynomial interpolant through (x1, y1), (x2, y2), . . . , (xn, yn) is

p(x) = c1L1(x) + c2L2(x) + . . . cnLn(x)

where

Lk(x) =
(x − x1) . . . (x − xk−1)(x − xk+1) . . . (x − xn)

(xk − x1) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn)

and the cj = yj. This follows since the basis function Lk satisfy

Lk(xj) = 0, j 6= k , Lk(xk) = 1 .

Thus, no work needed to find c’s! Find operation count to evaluate p(x).

Pros: Explicit representation (no need to solve for cks).

Cons: O(n2) operations to evaluate polynomial
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Good for small n and number m at which to evaluate. Good as theoretical tool. Can use
to prove existence of unique poly interpolating n points. Outline: 1. Existence: here is a
formula 2. Uniqueness: assume another poly q interpolates same points. Then difference
p − q is poly of degree n-1 that is zero at n points. By fund thm of algebra: must be zero
poly.

5.1.3 Newton’s divided differences

We represent the polynomial interpolant through (x1, y1), (x2, y2), . . . , (xn, yn) by

p(x) = c1 + c2(x − x1) + c3(x − x1)(x − x2) + · · · + cn(x − x1)(x − x2) . . . (x − xn−1)

where coefficients ck are chosen such that p(xj) = yj, j = 1, . . . , n. For example, with n = 4,
these n equations determining the unkowns ck are

c1 = y1

c1 + c2(x2 − x1) = y2

c1 + c2(x3 − x1) + c3(x3 − x1)(x3 − x2) = y3

c1 + c2(x4 − x1) + c3(x4 − x1)(x4 − x2) + c4(x4 − x1)(x4 − x2)(x4 − x3) = y4

You can see that the resulting linear system for ck is triangular and can be evaluated in O(n2)
operations. In class we solved the system with n = 3 and saw that solution is obtained in
terms of divided differences. The book gives an algorithm for computing these differences
and obtaining the result by hand. We’ll skip this and write a MATLAB algorithm to solve
the problem. To arrive at the MATLAB algorithm lets go back to the case n = 4 and do
one step of Gauss Elimination, then divide each equation by leading coefficient to obtain





1 0 0 0 | y1

1 x2 − x1 0 0 | y2

1 x3 − x1 (x3 − x1)(x3 − x2) 0 | y3

1 x4 − x1 (x4 − x1)(x4 − x2) (x4 − x1)(x4 − x2)(x4 − x3) | y4





→





1 0 0 0 | y1

0 x2 − x1 0 0 | y2 − y1

0 x3 − x1 (x3 − x1)(x3 − x2) 0 | y3 − y1

0 x4 − x1 (x4 − x1)(x4 − x2) (x4 − x1)(x4 − x2)(x4 − x3) | y4 − y1





→





1 0 0 0 | y1

0 1 0 0 | (y2 − y1)/(x2 − x1)
0 1 x3 − x2 0 | (y3 − y1)/(x3 − x1)
0 1 x4 − x2 (x4 − x2)(x4 − x3) | (y4 − y1)/(x4 − x1)





Note that the 3x3 lower right subsystem is of identical form as the original one except with
fewer points and a right hand side replaced by divided differences. Now repeat this process
n− 1 times. At end the right hand side will contain the solution ck. In class we derived the
resulting algorithm:
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function c=interpnew(x,y)

n=length(x);

for k=1:n-1

y(k+1:n)=(y(k+1:n)-y(k))./(x(k+1:n)-x(k));

end

c=y;

So, coefficients can be obtained in O(n2) flops. (how many exactly?) Another advantage of
this approach is that the polynomials in Newton representation can be evaluated in O(n)
flops using a nested algorithm similar to the one for monomials. Write out Horner’s rule for
the Newton polynomial with n = 5. Deduce the following algorithm:

function p=evalpnew(c,xx,x)

n=length(c);

p=c(n)*ones(size(x));

for k=n-1:-1:1

p=p.*(x-xx(k))+c(k);

end

Pros: 1. O(n2) algorithm to find ck (faster than Vandermonde approach)
2. O(n) nested algorithm to evaluate polynomial

Cons: condition numbers still large

Example: Use above to find interpolant through (0, 0), (1, 1), (3,−1), (4,−1). Plot polyno-
mial on x ∈ [0, 5] using a fine mesh.

5.2 Accuracy of Polynomial interpolation

Here we get to the second question: How good is the polynomial interpolant? Suppose the
points (xj, yj), j = 1, . . . , n satisfy yj = f(xj), where f may or may not be known a priori.
Now you interpolate them by a polynomial pn(x), as discussed in previous section. This
polynomial equals f at the gridpoints. But how close is it to f away from the gridpoints??

That is, how well does the p(x) approximate f(x) for all x? So we want to know something
about the maximum error difference between f and pn at any given point x.

Theorem: If pn is the (unique) polynomial of degree n − 1 that interpolates f at xj,
j = 1, . . . , n (that is, f(xj) = p(xj)) then

f(x) − pn(x) =
(x − x1)(x − x2) . . . (x − xn)

n!
f (n)(c)
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for some c ∈ (x1, xn) (assuming the xjs are in increasing order).

There are a few items to deduce from this

• If we know an upper bound |f (n)(x)| ≤ Mn for all x ∈ (x1, xn), then we know a bound
for the error

|f(x) − pn(x)| =
Mn

n!
|(x − x1)(x − x2) . . . (x − xn)|

• The error is a product of a terms that depend solely on the points xk, and a term that
depends solely on the derivative of f .

• If we can choose the points xk, we can find the best polynomial pn for any given f , by
finding the points xk that minimize the maximum of

|(x − x1)(x − x2) . . . (x − xn)|

Example: Investigate the error graphically for f(x) = 1
1+25x2 for x ∈ [−1, 1], using n

uniformly spaced points. Plot f , f ′, f ′′. Plot (x − x1) . . . (x − xn), compare to f − pn.

5.2.1 Uniform points vs Tschebischeff points

Theorem: The set of points x1, . . . , xn that minimizes the maximum of |(x − x1)(x −
x2) . . . (x − xn)| are the Tschebischeff points

xj = cos

(
π(2j − 1)

2n

)
, j = 1, . . . , n

Note that the argument of the cosine is odd multiples 1, 3, . . . , (2n−1) of π/(2n), so it ranges
from just a little above 0 to just below π. Therefore the xj range from just below 1 to just
above -1. Visualize the points as in book, by plotting semi-circle and marking x-coordinates
of points on semicircle at equally spaced arclength. Alternatively, figure (4) plots the cos
values at equal spaced arguments, showing that they buch up at ±1. For an interval [a,b],
the corresponding points would be

xj =
a + b

2
+

b − a

2
cos

(
π(2j − 1)

2n

)
, j = 1, . . . , n

[Side note : The way to prove this theorem requires properties of the Tschebyscheff (or
Chebichev) polynomials

Tn(x) = cos(n arccos x)

Pafnuti Lwowitsch Tschebyschow was an important Russian Mathematician in the 19th
centure, 1821-1894. Some of the properties of Tn: Tn(x) is the unique polynomial of degree
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ππ/20
x

−1

y

1

y=cos(x)

Figure 4: Image of equally spaced points under cosine map, showing how they bunch up
near ±1. These are the Tschebischeff points.

n that satisfies Tn(xj) = 0, where xj j = 1, . . . , n, are the Tschebyscheff points given above,
and Tn(1) = 1. The fact that it is a polynomial of degree n follows from the recurrence
relation

Tn+1(x) = 2xTn(x) − Tn−1(x)

which can be deduced using trigonometric identities. Its values at xj and at 1 can be found
by inspections. The leading coefficient of xn is 2(n−1), which also follows from the recursive
formula. It thus follows that

Tn(x) = 2n−1(x − x1)(x − x2) . . . (x − xn) .

Finish side note.]

Example: Investigate the error f(x)− pn(x) graphically, for f(x) = 1
1+25x2 and x ∈ [−1, 1],

using n Tschebischeff points.

One can show that

• With equally spaced points, |(x − x1)(x − x2) . . . (x − xn)| ≤ (b − a)n (n − 1)!

(n − 1)n

(Does this term grow or decrease as n → ∞?)

• With Tschebischeff points, |(x − x1)(x − x2) . . . (x − xn)| ≤
(

b − a

2

)n
1

2n−1

(Does this term decrease any faster as n → ∞?)
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5.3 Piecewise Polynomial interpolants

Here we discuss a different approach. Suppose we are given n points (xj, yj), j = 1, . . . , n,
and we want to find an interpolant through the points. Instead of finding one function that
interpolates all n points, we find a function on each interval that interpolates two consecutive
points, with some matching conditions connecting the pieces from one interval to the next.
The result is a piecewise interpolant

g(x) =






S1(x) , x1 ≤ x < x2

S2(x) , x2 ≤ x < x3
...
Sn−1(x) , xn−1 ≤ x < xn

5.3.1 Piecewise linear interpolant

The simplest case is when each Sj(x) is a linear function interpolating (xj, yj) and (xj+1, yj+1).
This is what MATLAB plots when you type plot(x,y). That is,

Sj(x) = aj + bj(x − xj) , x ∈ [xj, xj+1]

where the two unknowns aj, bj are determined by the two conditions S(xj) = yj, S(xj+1) =
yj+1.

5.3.2 Cubic splines

A cubic spline interpolant of the data (xj, yj), j = 1, . . . , n is a piecewise cubic function
defined by

Sj(x) = aj + bj(x − xj) + cj(x − xj)
2 + dj(x − xj)

3 , x ∈ [xj, xj+1] , j = 1, . . . , n − 1

such that

(0) Sj(xj) = yj j = 1, . . . , n − 1

(1) Sj(xj+1) = yj+1 j = 1, . . . , n − 1

(2) S ′
j(xj+1) = S ′

j+1(xj+1) j = 1, . . . , n − 2

(3) S ′′
j (xj+1) = S ′′

j+1(xj+1) j = 1, . . . , n − 2

Conditions (0),(1) ensure that the polynomials interpolate the data, while conditions (2),(3)
enforce continuity of g′, g′′ at the interior data points, thereby ensuring that the interpolant
g is not only continuous, but has continuous slope and curvature. This leads to a smooth-
looking curve to the eye.
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Condition (0) is trivially satisfied by setting aj = yj, leaving us with 3n − 3 unknowns
bj, cj, dj, j = 1, . . . , n − 1. Conditions (1)-(3) give 3n − 5 equations, so that we still need
2 more equations to uniquely solve for the 3n − 3 unknowns. Different conditions can be
chosen. The natural spline consists of specifying zero curvature at the endpoints.

(4a) S ′′
1 (x1) = 0

(4b) S ′′
n−1(xn) = 0

The clamped spline consists of prescribing the derivatives at the endpoints.

(4a′) S ′
1(x1) = α

(4b′) S ′
n−1(xn) = β

The not-a-knot spline consists of prescribing continuous third derivative at the two interior
points closest to the end.

(4a”) S ′′′
1 (x2) = S ′′′

2 (x2)

(4b”) S ′′′
n−2(xn−1) = S ′′′

n−1(xn−1)

We now derive the equations for the coefficients of the natural spline. First, note that

Sj(x) = aj + bj(x − xj) + cj(x − xj)
2 + dj(x − xj)

3

S ′
j(x) = bj + 2cj(x − xj) + 3dj(x − xj)

2

S ′′
j (x) = 2cj + 6dj(x − xj)

Conditions (1)-(3) are

(1) bj∆xj + cj∆x2
j + dj∆x3

j = ∆yj j = 1, . . . , n − 1

(2) bj + 2cj∆xj + 3dj∆x2
j = bj+1 j = 1, . . . , n − 2

(3) 2cj + 6dj∆xj = 2cj+1 j = 1, . . . , n − 2

where ∆xj = xj+1 − xj, ∆yj = yj+1 − yj. The goal now is to do some algebra by hand to
come up with a system of less unknowns that we then solve numerically. First, we introduce
a new variable cn = S ′′

n−1(xn)/2. As we showed in class, it follows that condition (3) above
holds for j = 1, . . . , n − 1. Furthermore, conditions (4ab) can be simply stated as

(4a′) c0 = 0

(4b′) cn = 0

We now solve (3) for dj, to get dj in terms of cjs:

(3′) dj =
cj+1 − cj

3∆xj

j = 1, . . . , n − 1

59



That is, using algebra we have solved for all the unknowns dj. Then, we substitute this
formula for dj into (1) and solve (1) for bj, so that we have bj and dj in terms of cjs:

(1′) bj =
∆yj

∆xj

− ∆xj

3
(2cj + cj+1) j = 1, . . . , n − 1

Finally we substitute the formulas for dj and bj into (2) and obtain an equation for the cjs,
that depends only on the n unknowns cj:

(2′)
∆yj

∆xj

− ∆xj

3
(2cj + cj+1) + 2cj∆xj + (cj+1 − cj)∆xj =

∆yj+1

∆xj+1

− ∆xj+1

3
(2cj+1 + cj+2)

which simplifies to

(2′′) cj∆xj + 2cj+1(∆xj + ∆xj+1) + cj+2∆xj+1 = 3[
∆yj+1

∆xj+1

− ∆yj

∆xj

] j = 1, . . . , n − 2

Together with (4a), (4b), these equations are written as a system as follows:





1

∆x1 2(∆x1 + ∆x2) ∆x2

∆x2 2(∆x2 + ∆x3) ∆x3

. . . . . . . . .

∆xn−2 2(∆xn−2 + ∆xn−1) ∆xn−1

1









c1

c2

c3

...

cn−1

cn





=





0

3[∆y2

∆x2
− ∆y1

∆x1
]

3[∆y3

∆x3
− ∆y2

∆x2
]

...

3[∆yn−1

∆xn−1
− ∆yn

∆xn
]

0





MATLAB function compnatspline that returns the coefficients aj, bj, cj, dj, j = 1, . . . , n− 1
for the natural spline:

function [a,b,c,d]=compnatspline(x,y)

% function [a,b,c,d]=compnatspline(x,y)

% Computes coefficients a,b,c,d of the natural spline through

% the data (x_j,y_j), j=1,\dots n

n=length(x);

delx=(x(2:n)-x(1:n-1))’;

dely=(y(2:n)-y(1:n-1))’;

a=zeros(n,n);

a(1,1)=1; a(n,n)=1;
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r(1)=0; r(n)=0;

for row=2:n-1;

r(row)=3*(dely(row)/delx(row)-dely(row-1)/delx(row-1));

a(row,row-1)=delx(row-1);

a(row,row)=2*(delx(row-1)+delx(row));

a(row,row+1)=delx(row);

end

c=a\r’;

clear a

b(1:n-1)=dely./delx -delx/3.*(2*c(1:n-1)+c(2:n));

d(1:n-1)=(c(2:n)-c(1:n-1))./(3*delx(1:n-1));

a(1:n-1)=y(1:n-1);

c=c(1:n-1);

MATLAB function that plots the spline as well as the data using m points on each of the
n − 1 intervals [xj, xj+1], j = 1, n − 1, using Horner’s nested polynomial evaluation:

function plotspline(a,b,c,d,x,y,m)

% function plotspline(a,b,c,d,x,m)

% plots m points of spline through x_k, coeff a,b,c,d, on each

% interval

plot(x,y,’*r’)

hold on

n=length(x);

for j=1:n-1;

z=linspace(x(j),x(j+1),m)

arg=z-x(j);

y=a(j)+arg.*(b(j)+arg.*(c(j)+arg*d(j)));

plot(z,y)

end

hold off

Script that plots the 6 points (0, 3), (1, 1), (2, 4), (3, 1), (4, 2), (5, 0) and the cubic natural
spline on a fine mesh that has 10 points on each subinterval:

x=0:5; y=[3 1 4 1 2 0];

[a,b,c,d]=compnatspline(x,y);

plotspline(a,b,c,d,x,y,10)
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5.4 Trigonometric interpolants

What if the data is viewed to be periodic? Then we want to use periodic basis functions
(cos kx, sin kx). It turns out that this periodic interpolation works well if the data is uni-
formly spaced in x, and the periodic extension of the data is smooth. (Note: any set of data
may be viewed to be periodic. The only problem is that the periodic extension may not
correspond to a smooth function.)

For what follows, the total number of points n must be even.

So, let’s consider n points (xj, yj), j = 0, . . . , n − 1, where the xj are uniformly distributed
in an interval [0, T ], n is even, and the yj correspond to a periodic function with period T .
To begin with, we will assume T = 2π. That is, we are given data (xj, yj)

xj = j
2π

n
, yj = f(xj) , j = 0, . . . , n − 1

where f(x+2π) = f(x). Then it is natural to fit data using periodic basis functions, such as
1, cos kx, sin kx. Note that these functions have period T = 2π with k oscillations per period.
We call k the wavenumber and k/T the oscillation frequency (number of oscillations
per unit time). The oscillation period is T/k.

5.4.1 Using a basis of sines and cosines

As we did in §4.1 (and unlike the splines in §4.3) we will try to fit all the data using one
linear combination of n basis functions. Here we use the basis

1, cos x, cos 2x, . . . , cos
n

2
x, sin x, sin 2x, . . . , sin(

n

2
− 1)x .

(The next sine mode, sin n
2
x, is zero at the gridpoints, and thus is no different from the zero

function and makes no contribution on the grid. Hence, no loss by excluding it, no gain from
including it.) Thus we want to approximate f(x) by a trigonometric polynomial

g(x) =

n/2∑

k=0

ak cos(kx) +

n/2−1∑

k=1

bk sin(kx) (12)

where the n coefficients ak, bk as chosen such that g(xj) = f(xj).

5.4.2 Using a basis of complex exponentials

Note that we can write cos kx and sin kx in terms of complex exponential functions eikx using
Euler’s formula

cos(kx) =
eikx + e−ikx

2
, sin(kx) =

eikx − e−ikx

2i
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and similarly, we can write eikx in terms of sines and cosines

eikx = cos(kx) + i sin(kx) .

Hence, at the gridpoints, the basis of n sines and cosines is equivalent to the basis of n
exponentials

eikx , k = −n/2, . . . , n/2 − 1

It turns out to be slightly more direct to use this basis for our trigonometric polynomials.
So, instead of finding g as in (12) we will find

T (x) =

n/2−1∑

k=−n/2

cke
ikx

such that T (xj) = f(xj), j = 0, . . . , n − 1. These n equations determine the n coefficients
ck, which are called the Fourier coefficients.

In class we show that at the gridpoints we can rewrite T (xj) (using the change of summation
index l = k + n for one part of the sum) as

T (xj) =

n/2−1∑

k=−n/2

cke
ikxj =

−1∑

k=−n/2

cke
ikj2π/n +

n/2∑

k=0

cke
ikj2π/n

=
n−1∑

l=n/2

cl−ne
i(l−n)j2π/n +

n/2∑

k=0

cke
ikj2π/n =

n−1∑

l=n/2

cl−ne
ilj2π/ne−ij2π +

n/2∑

k=0

cke
ikxj

=
n−1∑

l=n/2

cle
ilj2π/n +

n/2∑

k=0

cke
ikj2π/n =

n−1∑

k=n/2

cke
ikj2π/n +

n/2∑

k=0

cke
ikj2π/n

=
n−1∑

k=0

cke
ikxj

provided the coefficients are taken to be periodic, cl−n = cl, any l. In that case the equations
T (xj) = f(xj), or

fj =
n−1∑

k=0

cke
2πikj/n , j = 0, . . . , n − 1

where fj = f(xj), can be written as Fc = f where F = F (ω) is the Fourier matrix, given in
terms of nth unit root ω = e2πi/n as

F =





1 1 1 . . . 1 1
1 ω ω2 ω3 . . . ωn−1

1 ω2 ω4 ω6 . . . ω2(n−1)

...
...

... . . .
...

1 ω(n−1) ω2(n−1) ω3(n−1) . . . ω(n−1)2
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This matrix is invertible. It is easy to check that

F−1 =
1

N
F (ω−1) . =





1 1 1 . . . 1 1
1 ω−1 ω−2 ω−2 . . . ω−(n−1)

1 ω−2 ω−4 ω−6 . . . ω−2(n−1)

...
...

... . . .
...

1 ω−(n−1) ω−2(n−1) ω3(n−1) . . . ω−(n−1)2




(13)

As a result we get a formula for the coefficients c = F−1f , or

cj =
1

N

n−1∑

k=0

fke
−2πikj/n , j = 0, . . . , n − 1

which also shows that they are indeed periodic (check that cj+n = cj).

The process of computing the Fourier coefficients from given values of fk is called the Fourier
transform and consists of evaluating a sum of the given form. The process of computing
the values fk from the coefficients ck is called the inverse Fourier transform and consists
of evaluating a very similar sum, where the negative sign in the exponent is replaced by a
plus.

5.4.3 Using MATLABs fft and ifft

MATLABs functions fft and ifft compute these sums in a fast way using the Fast Fourier
Transform, which evaluates the sums in O(n log n) instead of O(n2) operations. We read the
online documentation to check this. In particular, fft(f,n) returns the vector of length n
with entries

∑n−1
k=0 fke

−2πijk/n , j = 0, . . . , n− 1. That is, it returns the Fourier coefficients
up to a factor of 1/n.

To illustrate: Let f(x) = sin 3x =
ei3x − e−i3x

2i
. It has

c3 =
1

2i
, c−3 = cN−3 = − 1

2i
, cj = 0 for j 6= ±3

The following matlab script computes the Fourier coefficients using N = 64 points. It then
plots both the function (sampled at the 64 points) and the absolute value of the Fourier
coefficients. You may want to print c(4) and c(62) to make sure they are the correct
values. (Why 4 and 62 instead of 3 and -3 or 61?)

clear;clf % clear all data and the figure

n=64; % set n

x=[0:n-1]*2*pi/n; y=sin(3*x); % set x and y at gridpoints

c=fft(y,n)/n; % remember, need to divide by N
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axis([0,2*pi,-2,2]); ylabel(’ f_j’)

plot(0:n-1,abs(c))

axis([0,n-1,-0.1,0.6]); ylabel(’abs(c_j)’)

We did this for various examples in class.

Examples: Look at ck and plot |ck| for: f(x) = 1, sin x, cos 8x, cos2 x, 1/(1 + sin2 x), x using
N = 64.

What happens when data is not periodic? Answer: decay rate of coefficients says something
about the smoothness of the periodic extension of the function f .

To plot the trigonometric interpolant T (x) =
∑n/2−1

k=−n/2 cke
ikx (on a fine mesh in between grid-

points) we need to correlate the Fourier coefficients MATLAB returns with indeces 1, . . . , n
to the actual power in the exponential given by k = −n/2, . . . , n/2− 1. This can be done in
MATLAB by specifying the correct mode k corresponding to a given MATLAB coefficient.
For example, the coefficient indexed by 1 corresponds to mode k = 0, the coefficient indexed
by n/2 corresponds to mode k = n/2 − 1, the coefficient indexed by n/2+1 corresponds to
mode k = −n/2, the coefficient indexed by n corresponds to mode k = −1:

function trigplot(x,y,m)

%function trigplot(x,y,m)

%plots trigonometric interpolant of data x,y

%assumed to have period 2pi, on [-pi,3pi]

%using m points per interval [x_i,x_{i+1}]

n=length(x);

c=fft(y,n)/n;

k(1:n/2)=0:(n/2-1);

k(n/2+1:n)=-n/2:-1;

z=linspace(-pi,3*pi,2*m*n);

T=c(1)*ones(size(z));

for ind=2:n;

T = T+c(ind)*exp(j*k(ind)*z);

end

plot(x,y,’r*’,z,real(T),’-’)

Example: Plot |ck|, f and interpolant, for sin 4x, n = 6, 8, 10, 16. (See fig 5.4.3)

Example: Plot |ck|, f and interpolant, for f(x) = 1/(1 + sin2 x), n = 4, 8, 16, 32. (See fig
5.4.3)

Example: Plot |ck|, f and interpolant, for f(x) = x, n = 8, 16, 32, 64. (See fig 5.4.3)
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Figure 5: Coefficients |ck|, function f , data, and interpolant, for sin 4x, n = 16, 10, 8, 6. This
function has only one sine mode k = 8. Here we see, first that if n/2 > k the function is
identical to the trigonometric interpolant, since the interpolant captures all of the functions
nonzero modes. However, if n/2 ≤ k then the kth mode is undersampled and it shows
up as a lower order Fourier coefficients. This is called aliasing error and occurs when a
function has modes bigger than n/2 that are not resolved by the mesh of n points. These
modes show up as lower order Fourier coefficients!
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Figure 6: Coefficients |ck|, data, function f and interpolant, for f(x) = 1/(1 + sin2 x), n =
8, 16, 32, 64. In this example the function is not represented exactly by a finite trigonometric
polynomial since the exact function has infinitely many modes. However the trigonometric
interpolants are increasingly better approximations as the number of points n increases.
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Figure 7: Coefficients |ck|, data, function f and interpolant, for f(x) = x, n = 8, 16, 32, 64.
In this example the periodic extension of f is discontinuous. As a result the coefficient
decay very slowly and the trigonometric interpolant contains oscillations near the jump that
do not disappear as n increases. This phenomenon is called Gibbs phenomena. Gibbs
showed that the oscillations do not disappear as n → ∞ and found the precise size of the
oscillations in this limit. So if the function is discontinuous then the trig interpolant is not
a good approximation of the function near jump.

Example: (homework) Plot |ck| for f(x) = 1/(1 + sin2 x), N = 8, 64. Plot |ck| for hat
function. Plot |ck| for f(x) = x. Compare decay rates of coefficients. Note that the smoother
the funtion, the faster the decay rate as k increases.

Example: Plot polynomial interpolant and trig interpolant on uniform (periodic) data. (See
Figure 8
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Figure 8: Function f(x) = 1/(1 + 25 sin2 x) (red) sampled at n equally spaced points (blue
stars), and the polynomial interpolant (top row, in blue), and trigonometric interpolant
(bottom row, in blue). Note: if periodic extension of f smooth, then as n increases trig
interpolants are increasingly good approximations of f , whereas poly interpolant shows runge
phenomena.

Time permitting: Prove that F−1 is as listed.

Summary:

• Isolated modes k < n/2 are recovered exactly by trig interpolant.

• Modes k > n/2 show up as lower order modes in trig interpolant and contaminate low
modes, ⇒ aliasing error

• The smoothness of the periodic extension of f is reflected in the decay rate of the
Fourier modes.

• If the periodic extension of f is discontinuous, the coefficients decay slowly and the
interpolant is oscillatory near discontinuity.

• For large n, trig interpolants good for uniform points if periodic extension of f is
smooth.

• For large n, polynomial interpolants bad for uniform points (Runge phenomena), but
good for Tschebichef points.
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5.4.4 What if period τ 6= 2π?

Then need basis functions with period τ , such as

sin(k?x), cos(k?x), eik?x

So then find a trig interpolant of the form

T (x) =

n/2−1∑

k=−n/2

cke
ik?x

and xj =?, j = 0, . . . , n − 1 (they must be equally spaced in [0, τ ]) such that

T (xj) = yj

What do these equations look like? What is the resulting linear system for cj? What changes
between this case and the case τ = 2π we already discussed?

5.4.5 Music and Compression

Examples shown in class illustrate the following main points.

• We hear oscillatory pressure waves in the air hitting our ear. An oscillation of a given
frequency corresponds to a clean tone. Frequency of 440 Hz (number of oscillation per
second) corresponds to a pure A. An A an octave higher would be at 880 Hz.

• Usually what we hear is a sum of various frequencies. Compare pure tone A and tuning
fork, which is much richer with many frequencies accompanying the dominant one.

• The component at a certain frequency is captured by the Fourier coefficient for that
wavenumber. Its magnitude is typically measured in decibels, wich equals the logarithm
of the magnitude relative to some basemeasure.

• For compression, we want to capture the dominant frequency content in a small time
interval and represent it by as few coefficients as possible.

• How do we isolate a small time interval? Chopping it off (multiplying by hat function)
introduces large high mode frequencies corresponding to discontinuous functions that
cant be ignored (the reconstruction would not sound like the origingal if not ignored).
Thus not good compression.

• Sudden onset of sound (such in castanets) have similar problem. Exact fourier spec-
trum has many large modes, and simply ignoring them distorts reconstruction signif-
icantly. Again, we need to isolate a small time interval. (This is a classic testcase for
compression algorithms: if they reconstruct this signal well, then pretty good.)
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• Multiplying by a smooth function that goes from 0 to 1 and back to zero gives you a
relatively nice /compact fourier mode spectrum, but is not invertible (cannot recover
signal from these modes since basis not orthogonal)

• There is a “modified cosine transform” that does the trick. Wavelets are an alternative
but not used for sound, bur rather to compress images.
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6 Least Squares Solutions to Ax = b

Example: The systems




1 1
1 −1
1 1




[
x
y

]
=




2
1
3



 ,

[
1 1
1 1

] [
x
y

]
=

[
2
1

]
, (14)

obviously don’t have a solution. Yet Matlab gives a solution to the first. What is it? It does
not give solution to second. Why not?

6.1 Least squares solution to Ax = b

If An×mxm×1 = bn×1 has no solution, then the vector b is not in the set of all Ax, for any
x. What does the set of all possible Ax look like?

Note that
Ax = a1x1 + a2x2 + · · · + anxn ∈ ℜn

where aj are the columns of A. So the set of all possible Ax is the set of all linear combinations
of the columns of A. Called the Span of A.

Definition: span(A) = {Ax : all x ∈ ℜm} ⊆ ℜn Note:

• The span of A is a vector space (contains origin, and any linear combination of vectors
in this space is in the space).

• It is contained in ℜn, and may be equal to ℜn (if the columns contain a linearly
independent set of n vectors) or be a proper subspace of ℜn.

• If span(A) is a proper subspace of ℜn, span(A) ⊂ ℜn, then there are right hand sides
b ∈ ℜn which are not in the span(A) and for those right hand sides Ax = b has no
solution. (There are also right hand sides in the span for which the equation has a
solution.) This scenario (span is proper subset) is illustrated geometrically in figure 9.
For illustration, we depict the span as a 2-dimensional subspace (a plane) of the bigger
space ℜ3.

Definition: If b /∈ span(A), the least squares solution of Ax = b is defined to be the
vector x̂ ∈ ℜm such that ||Ax̂ − b||2 is minimal. Here ||y||2 =

√∑m
i=1 y2

i . The value of Ax̂
is illustrated in figure 10.
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Figure 9: Columns a1, a2 spanning a 2-dimensional subspace in ℜ3 and right hand side b
not contained in span(A).

Ax
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Figure 10: Figure describing least squares solution x̂ to Ax = b

Definition: The residual r = b − Ax̂ is the least squares error in the solution x̂. This
error can be measured by its

2-norm ||r||2 ,
or by the

squared error ||r||22 =
∑m

i=1 r2
i ,

or by the
root mean squared error (RMSE)

√∑m
i=1 r2

i /m .

From figure 10 it is apparent that x̂ has to be such that Ax̂ is orthogonal to the residual r.
This statement can be proven to be true for general dimension m.

Definition: Two vectors x,y ∈ ℜm are orthogonal if the inner product, generally
denoted by

〈x,y〉 = 0 .

The inner product of two vectors is a rule that has to satisfy certain properties, and is
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corresponds to an associated vector norm. We have already seen that there are many
norms. Since we are trying to minimize the 2-norm of the residual, this is the norm of
interest here, and the corresponding inner product is the one you already know well

〈x,y〉 = xTy =
m∑

i=1

xiyi

If two vectors x,y are orthogonal this is often denoted by x ⊥ y.

How do we find the least squares solution x̂? The solution x̂ for which ||b − Ax̂||2
is minimal satifies that the residual is normal to any vector in span(A). That is, for any
x ∈ ℜn

Ax ⊥ (b − Ax̂)

⇒ (Ax)T (b − Ax̂) = 0

⇒ xT AT (b − Ax̂) = 0

(Here we used the property that for any two commensurate matrices A,B, (AB)T = BT AT .)
Since this must hold for all x ∈ ℜn, it follows that the n × 1 vector

AT (b − Ax̂) = 0

This yields the normal equations

AT Ax̂ = ATb

Thus, the least squares solution x̂ solves the normal equations.

Do the normal equations always have a solution? Yes, by construction. However,
they can have multiple solutions. (In the latter case, we define the least squares solution to
be the one with smallest 2-norm ||x̂||2.)

Examples: Find the least squares solutions to the systems




1 1
1 −1
1 1




[
x
y

]
=




2
1
3



 ,

[
1 1
1 1

] [
x
y

]
=

[
2
1

]
, (15)

by setting up and solving the normal equations. (Solve them using Gauss Elimination and
back substitution.) What is the 2-norm of the residual? What is the RSME? Can we now
answer the questions we posed at the beginning of this chapter?

Problem with the normal equations: AT A usually has much larger condition number
than A. Therefore solving the normal equations is often ill-posed. This problem is remedied
if we use the QR factorization of a matrix, discussed in Section 4.xx.
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6.2 Approximating data by model functions

6.2.1 Linear least squares approximation

Problem statement: Given data {xi, yi}n
i=1, find the linear function f(x) = a + bx that

minimizes the least squares error
n∑

i=1

(yi − f(xi))
2

This function is called the linear least squares approximation to the data.

• Draw sketch showing points and least squares line (graph of y = f(x)). (See Figure
4.2 on page 198 of text.)

• Set up equations we’d like to solve a + bxi = yi, i = 1, . . . , n. Write them in matrix
form. Note: the unknowns are c = (a, b).

• Find the least squares solution to the resulting system Ac = y. Note that this is the
solution that we want since it minimizes ||y−Ac||2, and Ac is the vector with entries
f(xi).

Example: Find the linear least squares approximation to (−1, 1), (0, 0), (1, 0), (2,−2). Graph
in matlab. Find 2-norm of error.

Note: the approach described in this section works because the resulting system is linear
in the unknowns a, b. We can use the same approach for slightly different problems, three
examples of which will be given next. For another example, see bottom of page 214 - 215 in
Sauer.

6.2.2 Quadratic least squares approximation

Problem statement: Given data {xi, yi}n
i=1, find the quadratic function f(x) = a+bx+cx2

that minimizes the least squares error
∑n

i=1(yi−f(xi))
2 This function is called the quadratic

least squares approximation to the data.

• Draw sketch showing points and least squares parabola (graph of y = f(x)). (See
Figure 4.4 on page 201 of text.)

• Set up equations we’d like to solve a + bxi + cx2
i = yi, i = 1, . . . , n. Write them in

matrix form. Note: the unknowns are c = (a, b, c).
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• Find the least squares solution to the resulting system Ac = y. Note that this is the
solution that we want since it minimizes ||y−Ac||2, and Ac is the vector with entries
f(xi).

Example: Find the quadratic least squares approximation to (−1, 1), (0, 0), (1, 0), (2,−2).
Graph in matlab. Find 2-norm of error.

6.2.3 Approximating data by an exponential function

Problem statement: Given data {xi, yi}n
i=1, find an exponential function f(x) = aebx that

best approximates the data

• Problem: the equations we’d like to solve aebxi = yi, i = 1, . . . , n. are NOT linear in
the unknowns c = (a, b).

• Fix: instead, solve ln(a) + b ln(xi) = ln(yi), i = 1, . . . , n. This system is linear in the
unknowns ln(a), b. The least squares solution of this linear system minimizes the least
squares error

∑n
i=1(ln(yi) − ln(f(xi)))

2.

Example: The world automobile supply data between 1950 and 1980 is given in the following
table (Sauer, Ex 4.8, page 211). Find the exponential function that best approximates the
data. What is the error?

year cars(×106)
1950 53.05
1955 73.04
1960 98.31
1965 139.78
1970 193.48
1975 260.20
1980 320.39

6.2.4 Approximating data by an algebraic function

Problem statement: Given data {xi, yi}n
i=1, find an algebraic function f(x) = axp that

best approximates the data

• Problem: the equations we’d like to solve axp
i = yi, i = 1, . . . , n. are NOT linear in

the unknowns c = (a, p).
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• Fix: instead, solve ln(a) + p ln(xi) = yi, i = 1, . . . , n. This system is linear in the
unknowns ln(a), p.

Example: The mean height and weight of boys ages 2-11 collected in 2002 is given in the
following table. Find an exponential function that relates weight and height as W = aHp.
What is the error?

age(yrs) height(m) weight(kg)
2 0.9120 13.7
3 0.9860 15.9
4 1.0600 18.5
5 1.1300 21.3
6 1.1900 23.5
7 1.2600 27.2
8 1.3200 32.7
9 1.3800 36.0
10 1.4100 38.6
11 1.4900 43.7

6.2.5 Periodic approximations

Problem statement: Given data {xi, yi}n
i=1, find a trigonometric polynomials of degree d

that best approximates the data.

Solution: Find the trigonometric interpolant of degree n − 1 that we found in section
4.4, and truncate it, using only the lowest order d terms. (This turns out to be the best
approximation in the least squares sense. This fact follows from the orthogonality of the
basis functions eikx, which is discussed in §10.3 of the book.)

Example: Apply to solve example 4.6 (Sauer, page 207), and compare with their solution.

6.3 QR Factorization
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7 Numerical Integration (Quadrature)

7.1 Newton-Cotes Rules

This section: Given f(x), integrate interpolating polynomial using as many points as needed.

n=2 points: integrate linear interpolant using 2 points on an interval of size h. We derived
the error

∫ x0+h

x0
f(x) dx −

∫ x0+h

x0
p1(x) dx = O(h3) .

n=3 points: integrate quadrating interpolant using 3 points on an interval of size 2h. We
outlined the derivation of the error

∫ x0+2h

x0
f(x) dx −

∫ x0+2h

x0
p2(x) dx = O(h5) .

General results: integrate a polynomial interpolant of degree n using n+1 points on interval
of size nh. The error is

∫ x0+nh

x0

f(x) dx −
∫ x0+nh

x0

p2(x) dx =

{
O(hn+2) if n odd
O(hn+3) if n even

These formulas are exact for polynomials of degree n if n is odd, and n+1 if n is even. This
is called the degree of precision of the quadrature rule.

7.2 Composite Newton-Cotes Rules

Here we combine the Newton-Cotes Rules to integrate over a larger interval [a, b].

Using piecewise linear interpolants, linear on intervals of size h: get trapezoid rule with
error

∫ b

a
f(x) dx −

∫ b

a
p(x) dx = O(h2) .

Using piecewise quadratic interpolants, quadratic on consecutive intervals of size 2h: get
Simpson’s rule with error

∫ b

a
f(x) dx −

∫ b

a
p(x) dx = O(h4) .

Using piecewise polynomial interpolant, of degree n on consecutive intervals of size nh: get
composite Newton Cotes rule with error is

∫ b

a

f(x) dx −
∫ b

a

p2(x) dx =

{
O(hn+1) if n odd
O(hn+2) if n even

We implemented the trapezoid rule in MATLAB and tested it using

function z = trapez(f,a,b,n)
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% Computes trapezoid rule approximation of integral of f from a to b using n intervals

% sum_{k=0}^n w_k f(x_k) where w_k are the trapezoid weights and x_k are equally spaced

% Input: f (function name), a,b (interval of integration), n (number of subintervals)

% Output: z=sum_{k=0}^n w_k f(x_k) where w_k are the trapezoid weights

% and x_k are equally spaced points spanning [a,b]

h=(b-a)/n;

x=a+(0:n)*h; %x has n+1 elements

y=f(x);

z = (y(1)+y(n+1))/2;

for i=2:n

z = z + y(i);

end

z = z*h;

(Note: can replace loop by z=z+sum(y(2:n)).) The calling script we used to apply and test
this function is

clear

f=inline(’1./(1+x.^2)’); a=0; b=4; ex=atan(4); fpa=0; fpb=-8/17^2;

for i=1:7

n(i)=2^i;

approx=trapez(f,a,b,n(i));

err(i) = abs(approx-ex);

end

m=length(err);

ratio=err(1:m-1)./err(2:m); ratio’

h=(b-a)./n;

figure(1), set(gca,’FontSize’,20)

loglog(h,err,’*-’), xlabel(’h’), ylabel(’error’)

axis([10^(-2),10,10^(-12),1])

7.3 More on Trapezoid Rule

Euler-Mc Laurin Formula for error.

Consequence for periodic integrands. (Actually, trapezoid exact for trig polys of degree n.)

Corrected trapezoid rules.
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Richardson extrapolation to obtain a 4th order scheme (which happens to be Simpsons).

7.4 Gauss Quadrature

The Newton-Cotes formulas we have looked at so far are of the form

∫ x0+nh

x0

f(x) dx ≈
n∑

k=0

wkf(xk)

where the points xk, k = 0, . . . n are prescribed (they are equally spaced). We find n + 1
weights to integrate polynomials with n + 1 coefficients (of degree n) exactly.

Gauss quadrature refers to finding quadrature rules of the form

∫ xn

x0

f(x) dx ≈
n∑

k=0

wkf(xk)

where we choose the n + 1 weights wk and the n + 1 points xk to find formulas as accurate
as possible. These turn out to be exact for polynomials with 2(n + 1) coefficients (of degree
2n + 1). For details see section §5.5 in book.
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Figure 11: Slopefield x′ = f(t, x) (short line segments) and some integral curves (dashed)

8 Numerical Methods for ODEs

8.1 Problem statement

Find a numerical approximation for the solution to

dx

dt
= f(x, t) , x(t0) = x0 (16)

for t0 ≤ t ≤ T , where x(t) is a scalar function or a vector valued function. Notice that this
differential equation states the slope at any point t, x in the x-t plane. We can thus draw
a slopefield or direction field as shown in the figure. The solution x(t) is everywhere
tangent to the slopefield (it has the given slope) and the solution curves are also called
integral curves.

Two different solution curves dont touch, assuming f is sufficiently nice. This is the result
of a uniqueness theorem:

Theorem: If f is continuous and has continuous first derivatives ∂f/∂t,
∂f/∂x, then the initial value problem (16) has a unique solution.

In class we drew direction fields for three examples: x′ = t, x′ = x, x′ = x2, all of which can
be solved exactly. The difference between the third and the other two is that in that case f is
nonlinear. From exact solutions we see that slope grows so fast as x increases that solutions
blow up in finite time. This is an example why in general we cannot guarantee solutions for
more than just a little neighbourhood of t0. This is the statement of the following existence
theorem:

Theorem: If f is continuous and has continuous first derivatives, then a
solution to the initial value problem (16) exists in some neigh-
bourhood of t0.
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Figure 12: Advancing from tk to tk+1 with Euler’s method

Note however that finite time blowup can only occur if f is nonlinear. For linear f solutions
are guaranteed to exist for all times.

8.2 Euler’s Method

All the methods we’ll consider are step methods. They consist of discretizing time by
tk = t0 + k∆t, k = 0, . . . ,m where ∆t = (T − t)/m, and finding some rule for approximating
the solution at tk:

xk ≈ x(tk)

The left hand side is the numerical approximation, the right hand side is the exact solution
at tk.

Figure 12 indicates the basic idea of Euler’s Method. The slope at (tk, xk) is approximated
by the one sided difference (xk+1 − xk)/∆t, yielding the method

xk+1 − xk

∆t
= slope at (tk, xk) = f(tk, xk) , k = 0, . . . ,m − 1

that is
xk+1 = xk + ∆tf(tk, xk) , k = 0, . . . ,m − 1

Together with an initial condition x0 given, this rule determines a sequence of values xk, k =
0, . . . ,m which hopefully approximate x(tk). Here is the MATLAB function that implements
Euler’s method for scalar equations. In class we rewrote it for systems of equations.

function [t,x]=euler(f,t0,x0,T,delt)
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% Applies the Euler Method to solve x’=f(t,x), x(0)=x0 on (0,T)

% Input: f (name of function f(x)

% T (last time)

% delt (stepsize)

% x0 (initial condition)

% Output: t (vector, time)

% x (vector, solution x(t))

t=t0:delt:T;

n=length(t);

x=zeros(1,n);

x(1) = x0;

for k=1:n-1

x(k+1) = x(k) + delt*f(t(k),x(k));

end

To use this function, type

f=inline(’t^2+y’,’t’,’y’)

[t,y]=euler(f,0,1,2,0.5);

where f is a function defined using inline, as example shown, or a user defined function.

Does the sequence xk approximate the exact solution x(tk)? If so, how well? This is the
question of whether the method converges, and if so, at what rate. To answer it we need
to investigate the discretization error. For simplicity, we consider the case when x(t) is a
scalar.

Local Truncation Error (LTE): We define the Local Truncation Error (LTE) as the error
made in one step with exact input data. It is indicated in figure 12. At the kth step it is
defined by

LTEk = xloc(tk+1) − xk+1 (17)

where xloc(t) is the solution curve going through (tk, xk), ie it satisfies

dxloc/dt = f(t, xloc) , xloc(tk) = xk (18)

and xk+1 = xk + ∆t f(tk, xk). If the LTE vanishes as ∆t → 0, the approximation is called
consistent.

To compute the LTE for Euler’s method we need Taylor series expansions of xloc(tk+1) about
the base point tk. Using the Taylor Remainder Theorem it follows (let me drop the loc
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Figure 13: Local and global truncation errors

superscript for now) that:

xloc(tk+1) = x(tk + ∆t)

= x(tk) + ∆tx′(tk) + ∆t2x′′(η)/2

= xk + ∆tf(tk, xk) + ∆t2x′′(η)/2

= xk+1 + ∆t2tx′′(η)/2

where η ∈ [tk, tk+1] and we used the differential equation 18 for the third equality. Thus the
local truncation error at the kth step is

LTEk = xloc(tk+1) − xk+1 = ∆t2x′′(η)/2

The value of η is not known, but IF x′′(t) is known to be bounded above, ie there exists
some M such that |x′′| ≤ M for all a ≤ t ≤ b, then

LTEk ≤ ∆t2M/2 = O(∆t2) (19)

Global Truncation Error (GTE): What we are really interested in is the Global trunca-
tion error

GTE = |x(tm) − xm|
that is the (absolute) difference between the exact and the numerical solution at the last
time. One may think that the global error is roughly the sum of the local truncation errors.
One has to beware however. It may be that the local truncation errors, ie the difference
between the solution curves through (tk, xk) and (tk+1, xk+1) increases in time (see sketch
13), so that

GTE >
∑

k

LTEk

As can be seen from the figure, this happens when the solution curves “feather out”, or
equivalently, when the slope of f increases as x increases, ie when ∂f/∂x > 0. Indeed, it is
fairly easy to show that
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Theorem: If
∂f

∂x
≤ 0 then GTE ≤

m∑

k=1

LTEk.

If we now use Equation 19 and the fact that m = (T − t0)/∆t then

GTE ≤
∑

k

LTEk ≤
m∑

k=1

∆t2M/2

= M∆t2m/2

= M(T − t0)∆t/2 = O(∆t)

If ∂f/∂x > 0 the result that GTE = O(∆t) also holds but the proof is more complex (see
Gear, Numerical IVPs in ODEs, 1971).

Order of convergence. A method with global error O(hp) is called a method of order
p. The Euler method is thus a first order method. That is, the method converges (the
discretization errors → 0 as ∆t → 0) but relatively slowly, namely to first order.

In summary, since there are of the order m = O(1/∆t) timesteps and the global error is
roughly the sum of the local errors, we loose one power of ∆t in the decay rate of the global
error. This is true in general: for a method of order p the LTE = O(hp+1). For example, if
we want to find a second order method then the LTE needs to be O(∆t3), etc.

8.3 Second order Method obtained by Richardson Extrapolation

For the Euler method it can be shown specifically that

e∆t = x(tk) − x∆t
k = ∆tg(t) + O(∆t2) (20)

where t = k∆t. Richardson extrapolation consists of using the solution obtained with two
or more values of ∆t to eliminate the highest order term in the error. For example using a
time step of 2∆t one obtains

e2∆t = x(tk) − x2∆t
k = 2∆tg(t) + O(∆t2) (21)

and taking the two times Equation (20) minus Equation (21) we obtain

2e∆t − e2∆t = x(tk) − (2x∆t
k − x2∆t

k ) = O(∆t2)

So get second order approximation of solution. This is a way of using a coarse mesh and a
fine mesh solution to obtain a higher order approximation at a fixed time.

One can now imagine a method which consists of applying Euler’s method and Richardson
extrapolation at every timestep. That is, at each time tk we obtain the solution at tk+1

from a linear combination of a coarse mesh and a fine mesh result. The fine mesh result is
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obtained by doing two steps of Euler of size ∆t/2. The coarse mesh result is obtained by
doing one step of Euler of size ∆t.

x
∆t/2
k+1/2 = xk +

∆t

2
f(tk, xk)

x
∆t/2
k+1 = x

∆t/2
k+1/2 +

∆t

2
f(tk+1/2, x

∆t/2
k+1/2)

x∆t
k+1 = xk + ∆tf(tk, xk)

We now take the appropriate linear combination

xk+1 = 2x
∆t/2
k+1 − x∆t

k+1 (22)

This can be summarized as
k1 = ∆tf(tk, xk)

k2 = ∆tf(tk +
∆t

2
, xk +

k1

2
)

xk+1 = xk + k2

This is called the Midpoint method, since it is an approximation to xk+1−xk

∆t
= x′

k+1/2, which is
a second order approximation to the derivative, as opposed to the first order approximation
we used to derive the Euler method. The method can be shown to be of second order (this
will also follow from next section).

8.4 Second order Method obtained using Taylor Series

In general, can look for scheme of the form

k1 = ∆tf(tk, xk)

k2 = ∆tf(tk + αh, xk + βk1)

xk+1 = xn + ak1 + bk2

Choose α, β, a, b such that LTE as small as possible. Write Taylor expansion for actual
solution x(tk+1) of the PDE x′ = f(x, t).

x(tk+1) = x(tk) + ∆tx′(tk) +
∆t2

2
x′′(tk) + O(∆t3)

= x(tk) + ∆tf(tk, xk) +
∆t2

2

[∂f

∂t
(tk, xk) +

∂f

∂x
(tk, xk)f(tk, xk)

]
+ O(∆t3)

Write Taylor expansion for a solution xk+1 of the difference scheme.

xk+1 = xk + a∆tf(tk, xk) + b∆t
[
f(tk, xk) +

∂f

∂t
(tk, xk)α∆t +

∂f

∂x
(tk, xk)β∆tf(tk, xk) + O(∆t2)

]

= xk + (a + b)∆tf(tk, xk) + ∆t2
[
bα

∂f

∂t
(tk, xk) + bβ

∂f

∂x
(tk, xk)f(tk, xk)

]
+ O(∆t3)
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Choose the parameters α, β, a, b so that they match to third order. This gives a LTE =
O(∆t3), and thereby a second order method.

a + b = 1, α = β =
1

2b

For b = 1, a = 0, α = β = 1/2, get midpoint method. For b = a = 1/2, α = β = 1, get

the Heun method, or modified trapezoidal method, since it approximates xk+1−xk

∆t
=

x′
k
+x′

k+1

2

(convince yourself of this by writing the method out).

8.5 4th order Runge Kutta Method

By similar approach, one can derive 4th oder methods. One starts with an Ansatz of the
form (3.1), but with 4 intermediate steps k1, k2, k3, k4. The condition that the LTE be O(h5)
yields a set of equations for the unknowns αi, βi, ai, bi which has infinitely many solutions.
The most common 4th order scheme derived this way is the 4th order Runge Kutta scheme
(RK4):

k1 = ∆tf(tk, xk)

k2 = ∆tf(tk + ∆t/2, xk + k1/2)

k3 = ∆tf(tk + ∆t/2, xk + k2/2)

k4 = ∆tf(tk + ∆t, xk + k3)

xk+1 = xk + (k1 + 2k2 + 2k3 + k4)/6

The MATLAB code to implement RK4 for scalar equations is

function [t,x]=rk4(f,t0,x0,T,h)

% applies RK4 to solve x’=f, x(0)=x0 on (0,T)

t=t0:h:T;

n=length(t);

x=zeros(1,n);

x(1) = x0;

for j=1:n-1

k1 = h*f(t(j),x(j));

k2 = h*f(t(j)+h/2,x(j)+k1/2);

k3 = h*f(t(j)+h/2,x(j)+k2/2);

k4 = h*f(t(j)+h,x(j)+k3);

x(j+1) = x(j) + (k1+2*k2+2*k3+k4)/6;

end
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