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We present a mathematical analysis of planar motion of energetic electrons moving through a planar
dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the x-ray free electron
laser (FEL) regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we
examine this dynamical system as the wavelength A of the traveling wave varies. By scalings and
transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous
asymptotic analysis using the method of averaging (MoA), a long-time perturbation theory. The two
dependent variables are a scaled energy deviation and a generalization of the so-called ponderomotive
phase. As A varies the system passes through resonant and nonresonant (NonR) intervals and we develop
NonR and near-to-resonant (NearR) MoA normal form approximations to the exact equations. The NearR
normal forms contain a parameter which measures the distance from a resonance. For the planar motion,
with the special initial condition that matches into the undulator design trajectory, and on resonance, the
NearR normal form reduces to the well-known FEL pendulum system. We then state and prove NonR and
NearR first-order averaging theorems which give explicit error bounds for the normal form approxima-
tions. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically
rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in
that they do not use a near-identity transformation and they use a system of differential inequalities. The
NonR case is an example of quasiperiodic averaging where the small divisor problem enters in the
simplest possible way. To our knowledge the planar problem has not been analyzed with the generality we
aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we
do here. We briefly discuss the low gain theory in light of our NearR normal form. Our mathematical
treatment of the noncollective FEL beam dynamics problem in the framework of dynamical systems

theory sets the stage for our mathematical investigation of the collective high gain regime.
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I. INTRODUCTION

A. Basic ideas and parameters

We present a normal form analysis of the three-degree-
of-freedom Lorentz force system of six ODEs (ordinary
differential equations) governing the planar (x, y = 0, 2)
motion of relativistic electrons moving through a planar
dipole undulator along the z axis perturbed by a horizon-
tally polarized plane wave traveling in the z direction. We
are interested in the parameter range for an x-ray FEL.

Our normal form analysis is based on the method of
averaging (MoA) at first order. The method has four steps.
The first step is to put ODEs into a standard form. The
second step is to identify the normal form approximations.
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The third step is the derivation of error bounds relating the
exact and normal form solutions. The final step is the trans-
formation back to the original variables. In the first step new
variables are typically introduced using scalings and trans-
formations. In this process we discover that the exact prob-
lem can be formulated, without approximation, in terms of
two ODEs for the normalized energy deviation and a gen-
eralized ponderomotive phase. Important in this process is
the identification of an appropriate small dimensionless
parameter, often denoted by &, so that the system can be
written as 2 = &f(u, 1) + O(g?). In the present context this
is the most complicated step. The normal form approxima-
tion is obtained by dropping the O(e?) term and replacing f
by its ¢ average. The third step is often the most difficult,
however here the system in standard form is fairly simple
and we use this opportunity to give very detailed proofs of
two averaging theorems, partly as a tutorial on the methods
of proof, rather than applying general theorems from the
literature. The latter allows us to obtain quite explicit error
bounds which are likely near optimal.
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An electron, as a member of an electron bunch, will
enter the undulator with a given angle in the y = 0 plane
and a given Lorentz factor. Here the normalized angle will
be given by AP, and the Lorentz factor will be written
v = vy.(1 + n), where v, is a characteristic value of y for
the electron bunch, e.g., the mean, and 7 is the so-called
normalized energy deviation. We will replace n by y via
the relation n = ey, where a posteriori € will be a mea-
sure of the spread of 7 values which lead to an FEL
pendulum-type behavior. We let B, k, denote the undu-
lator field strength and wave number and let E,, vk, denote
the Maxwell field strength and wave number of the fixed
traveling wave radiation field. Thus, our basic parameters
are eight, namely AP,q, y., &, By, k,, E,, k,, v, and all
will be assumed positive except AP,,. We will study the
electron response to the radiation field as v varies.

For an x-ray FEL, & is small, vy, is large, and the
dimensionless undulator parameter,

eB,

K= = 0.934
mck,

A’H BM
lecm 1T

(1.1)

is O(1). Also k, = O(k,y2) and we define the O(1)
constant K, by
k,

K, = .
" kv

(1.2)

In Sec. III B it will be clear that it is convenient to fix K, by
setting
1 -1
K, = 2[1 + 5K2 + K2(APx0)2] ) (1.3)
For AP,, = 0 we obtain k, = 4k,y2/(2 + K?) which is
the usual so-called resonant wave number (see, e.g., [1]).
The dependence of K, on AP,, will be a consequence of
our analysis. Typical parameters for the Linac Coherent
Light Source (LCLS) are A, = 3 cm, mc?y, = 15 GeV,
and B, =132T so that K =370 (see [2]) and for
FLASH (Free-Electron Laser in Hamburg) are A, =
2.73 cm, mc?y, = 0.7 GeV and B, = 0.48 T so that
K = 1.23 (see [3]).

Mathematically then, we are interested in an asymptotic
analysis of the electron motion for & small and vy, large as
v varies. In particular we are interested in the (e, y,.)
regime that gives rise to the pendulum-type behavior im-
portant for the functioning of an x-ray FEL. We find that in
order to obtain this behavior, in the MoA at first order,
there must be a relation between € and 7y,.. Introducing the
normalized field strength,

E,

£ = ,
cB,

(1.4)

we show a pendulum-type behavior emerges when
e = O(/E/vy,) for & small. Without loss of generality
we will take the order constant to be 1, and choose

e—vEL. (1.5)
Ye

We also show that, for £ small, the system associated with
(1.5) has a resonant structure, such that, as v varies, the
system goes through a sequence of nonresonant (NonR)
and near-to-resonant (NearR) intervals. The associated
NearR approximating normal forms while being nonauton-
omous have an underlying pendulum structure and reduce
to the standard FEL pendulum system for AP,, = 0 and v
an odd integer. This behavior is not present for ¢ < 1/,
or ¢ > 1/v, and so we refer to (1.5) as a distinguished
case. This turns out to be a very simple example of the
concept of a “distinguished limit” in the singular pertur-
bation literature. This can be seen in action in the context
of our equations (2.49) and (2.50).

When it comes to our main results in Sec. III we
have the following situation. We have the eight basic
parameters AP, v., €, B,, k,, E,, k., v and the two
constraints (1.3) and (1.5), leaving us with six basic pa-
rameters out of which we construct the five nondimen-
sional parameters K, APy, &, &, v (see also [4]). The
NearR normal forms can be understood in terms of the
simple pendulum system and reduce to the usual FEL
pendulum equations for AP, = 0 and » an odd integer
(see Secs. IIID2 and IIID3). The NearR normal form
allows us to study the effect of v being slightly off reso-
nance. This completes the first two steps in the MoA. In the
third step we state two theorems which give error bounds,
relating the exact and normal form solutions, which go to
zero as € — 0 +. The theorems are then proved. Our goal
is to present a mathematically rigorous analysis that is self-
contained. However, the reader can understand the results
of the paper without understanding the proofs of the the-
orems. With this in mind the proofs are isolated in a
separate section.

B. Comment on normalized field strength

For the results of this paper the normalized field strength
£ cannot be too big (or & will not be small) and it cannot be
too small or another distinguished case will come into play.
Of course for a seeded FEL, £ will be set by the seeding
field. In Appendix G we present two very crude bounds that
have some relevance to the beginning stages of a high gain
FEL. Here we simply note that for £ = 1000, ¢ is approxi-
mately 0.001 for the 15 GeV (e.g., LCLS) and 0.025 for the
700 MeV (e.g., FLASH). In an early approach to this
problem we built a normal form analysis assuming £ small,
so that the radiation field was a small perturbation of the
undulator motion. We thus considered £ as a small parame-
ter in addition to 1/7,. This led to another distinguished
case, which also had resonant and NonR intervals but with
a different underlying pendulum structure. Later we real-
ized that £ is not necessarily small for cases of interest and
we were led to the current case of (1.5). In fact, since £
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does not have to be small our results may have some
relevance to the high gain saturation regime [5].

C. General comment on method of averaging

For ODEs, the MoA is the most robust of the long-time
perturbation theories which include, e.g., Lindstedt series
[6], multiple scales [6], renormalization group methods
[7], and Hamiltonian perturbation theory [8]. For example,
Hamiltonian perturbation theory has the advantage that
one is transforming a scalar function, however the MoA
is more robust in that transformations and scalings are not
restricted to canonical transformations. Central to the
MoA, and in contrast to those just mentioned, is the
derivation of error bounds. We emphasize these are true
bounds and not just estimates. The MoA is a mature subject
and there are several good books; see [6,9,10] for example
as well as the Scholarpedia articles [11,12]. We refer to the
MoA approximation as a normal form. Generally, a normal
form of a mathematical object is a simplified form of the
object obtained with the aid of, for example, scalings and
transformations such that the essential features of the
object are preserved. Here we not only preserve the essen-
tial features of the exact ODEs but bound the errors in the
approximation with a bound proportional to the small
parameter . See [11] for the use of normal form in a
similar context.

D. Paper outline

In Sec. II we start with the three-degree-of-freedom
Lorentz equations with the horizontally polarized plane
wave of (2.9) and then introduce z as the independent
variable. The system has planar solutions where 0 = y =
py and using a conservation law we arrive at a system of
two ODE:s (2.30) and (2.31) for the energy and a precursor
to a generalization of the so-called ponderomotive phase.
By scalings and transformations we discover the distin-
guished case of (1.5) which then leads to a standard form
for the method of averaging in (2.52) and (2.53). The two
dependent variables are now a scaled energy deviation and
a generalization of the so-called ponderomotive phase.

In Sec. III we present our main results. We begin by
introducing the monochromatic plane wave, the case of
main physical interest. The system is carefully defined in
Sec. IIT A. In Sec. III B we discuss the topic of resonance in
the MoA context. We emphasize that as v varies the system
passes through resonant and NonR intervals. In particular
we introduce the resonant, NonR, A-nonresonant
(A-NonR), and NearR cases. The NonR case, its first-order
averaging normal form, and associated solutions are pre-
sented in Sec. III C as well as an appropriate domain for the
associated vector field. The NearR case is discussed in
Sec. III D. The system is carefully defined in Sec. IIID 1
and an appropriate domain for the associated vector field is
found. The first-order averaging normal form is derived in
Sec. III D 2 and the normal form system is transformed into

the simple pendulum system in Sec. III D 3. The structure
of the NearR normal form solutions are then discussed in
detail. For the special initial condition, AP,, = 0, which
matches into the design trajectory of the undulator, we
recover the result of standard approaches which focus on
the energy transfer equations alone and do not consider the
phase space variables. This completes the first two steps in
the MoA.

Some readers may only care about the exact equations in
the form for averaging, the associated normal form approx-
imations and the rough statement that the approximation
errors are O(g) on O(1/¢) “time” intervals. They will find
these in (3.18), (3.19), (3.46), (3.47), (3.39), (3.40), (3.61),
and (3.62) and in the beginning of Sec. IIIE. The state-
ments of our first-order averaging theorems, which give an
order € bound on the error for long times, i.e., intervals of
O(1/¢), are presented in Sec. III E and applied to the six
variables in Sec. III F. This completes the third and fourth
steps of the MoA. We emphasize that the averaging theo-
rems can be understood independently of the proofs in
Sec. IV. Finally in Sec. Il G we use our results in a low
gain calculation and compare the result with [13].

While the paper is aimed at the FEL community we
believe that newcomers to the field and mathematically
inclined readers will find Secs. II and III a good introduc-
tion to the noncollective case of an FEL.

The proofs of the two averaging theorems, stated in
Secs. IIIE 1 and I E 2, are presented in Sec. IV and this
section can be skipped if the reader only wants to know the
results as given in Sec. III. However, Sec. IV has a peda-
gogical aspect, giving the reader, who may not be familiar
with modern long-time perturbation theory, an introduction
in a context where the proofs are easily understood. The
proofs are given in detail so the reader needs no prior
knowledge of the MoA. They are based on an idea of
Besjes (see [14—16]) which leads to proofs without using
a so-called near-identity transformation, as in usual treat-
ments of, e.g., [6,9,10]. The A-NonR case is an example of
quasiperiodic averaging with a rigorous treatment of a
small divisor problem in what is surely the simplest setting.
Here we keep v a distance A away from a resonance, where
A turns out to be the small divisor. The NearR case is an
example of periodic averaging. A novelty of our approach
in Sec. IV is that we use a system of differential inequal-
ities, rather than the usual Gronwall inequality, to obtain
better error bounds. Furthermore we obtain better results as
our theorems are tuned to the problem at hand. In addition,
to our knowledge, the treatment of the undulator problem
in the mathematically rigorous and self-contained way that
we do here has not been done before. Our mathematical
analysis is straightforward, using only undergraduate
mathematics as commonly taught in advanced calculus
courses, however the proofs are somewhat intricate in
spots. The reader who studies Sec. IV will be rewarded
with an understanding of the computation of error bounds
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in the quasiperiodic method of averaging in what is likely
the most elementary context. The general quasiperiodic
case [14] is more difficult and for contrast the proofs of
the KAM and Nekhoroshev theorems are much more dif-
ficult [8]. Finally, for us, the work on the noncollective case
sets the stage for our more serious goal of obtaining a deep
mathematical understanding of the collective high gain
FEL theory.

Following the summary of Sec. V the Appendices con-
tain calculations needed in the main text. Appendix A
provides properties of the Bessel expansion of the function
jj which is introduced in Sec. III B. In Appendices B and C
we study the next-to-leading order terms g;, g, used in
Theorem 1 and in Appendices D and E we study the next-
to-leading order terms g¥, g® used in Theorem 2.
Appendix F provides some formulas used in Sec. III G.
In Appendix G we discuss & = E,/cB, in the high gain
regime and obtain a crude upper bound estimate of it.
Finally, in Appendix H we derive some properties of the
system of differential inequalities that are used in the proof
of both averaging theorems.

E. Putting our work in context

Standard derivations of the FEL pendulum equations can
be found in, e.g., [13,17-19]. They differ from our ap-
proach in that they start from the ODE for the normalized
energy deviation, 7, and use physical reasoning to intro-
duce approximations leading to the FEL pendulum normal
form for AP,y = 0. They do not derive the pendulum
equation using perturbation theory as we do nor do they
obtain error bounds on their approximations.

In contrast, we start with the full 6D noncollective
system of Lorentz equations of motion for our undulator
with a planar polarized traveling wave in the z direction
and show that it contains planar y = 0 motion. Writing y
as y = vy.(1 + ey), where vy, is a characteristic value of
v for the electron bunch and 7 = gy is the so-called
normalized energy deviation, we find a distinguished
relation in (g, y,) given by & = V&/y,. that leads to a
pair of exact equations for a scaled energy deviation and a
generalized ponderomotive phase (which depends on
AP,y in a form for the application of the MoA, with
small parameter . These equations are exact in the sense
that there are no approximations in deriving them from
the full 6D Lorentz system. We note that € is small even
if the traveling wave is not a small perturbation to the
undulator motion. When we specialize to the single fre-
quency, vk,, monochromatic case we see there is a reso-
nant structure depending on v. Using the MoA formalism
we find resonant and NonR normal forms as » varies. We
then ask the question, “When are these good approxima-
tions to the exact problem?” We show that the NonR
normal form gives a good approximation sufficiently far
from resonance, on O(1/¢) time intervals. We then con-
sider neighborhoods of the resonances and construct

NearR normal form approximations which reduce to the
resonant normal form for resonant v. We show that they
give an O(e) approximation to the exact problem, on
O(1/g) time intervals, in O(e) neighborhoods of the
resonances. On resonance and for AP, = 0 our general-
ized ponderomotive phase reduces to the well-known
ponderomotive phase and in addition we obtain the usual
FEL pendulum system. Thus, we have a new view of the
ponderomotive phase and a new derivation of the FEL
pendulum equation.

Our approach gives a clear picture of the system re-
sponse, for small ¢ as v varies through resonant and NonR
intervals with the associated NonR and NearR normal form
approximations to the generalized ponderomotive phase
and scaled energy deviation. To our knowledge this is
new. Our explicit error bounds, covered by our averaging
theorems, are nearly optimal and can be used to examine
parameter ranges for validity of the low gain regime. The
fact that £ does not have to be small led to the suggestion
that our results may be relevant in the high gain saturation
regime. Finally, we have discovered that a planar polarized
traveling wave with a continuous distribution of wave
numbers near resonance (e.g., a narrow Gaussian centered
on the resonance) may wash out the resonant effect and
thus the FEL pendulum behavior, at least in first-order
averaging. We discuss this briefly in Sec. V.

Our definition of resonance is intimately linked to the
derivation of our averaging normal forms, whereas in the
standard derivations resonance is introduced in the context
of maximizing energy exchange. We emphasize that we
obtain more than the pendulum normal form; we also
obtain the more general NearR normal forms as well as
the NonR normal forms.

We do not intend to minimize the importance of the
standard derivations; the physical derivations are certainly
important and as is often the case show great physical
insight. Here we want to show what can be done in a
mathematically rigorous way in the context of dynamical
systems theory, but in that we have been guided by and are
indebted to previous works.

II. GENERAL PLANAR UNDULATOR MODEL
In this section we state the basic problem and put the

equations of motion in a standard form for the MoA.

A. Lorentz force equations

Using SI units, the Lorentz equations for motion of a
relativistic electron in an electromagnetic field, (E, B), are

I = v(p), (2.1)

p = —¢[E + v(p) X B], (2.2)

with = d/dt and where
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vip) = =, 2.3)
my
is the velocity, 7y is the Lorentz factor defined by
y2=1+p-p/m?c? (2.4)

and m and —e are the electron mass and charge, respec-
tively. We denote the undulator magnetic field by B, and
the radiation field by ((E,, B,) whence

E=E, B=B,+B, (2.5)

We introduce Cartesian coordinates by
r = xe, + ye, + ze, (2.6)
p = p.e, t pye, +pe, 2.7

where e,, e,, e, are the standard unit vectors. A simple
planar undulator model magnetic field which satisfies the
Maxwell equations, V-B, =0 and VX B, =0, as in
[17], is

B, = —B,[cosh(k,y) sin(k,z)e, + sinh(k,y) cos(k,z)e.],
(2.8)

where B, > 0. Since V X B, = 0 there is a scalar potential
¢ such that B, = V¢. To satisfy V- B, =0, ¢ must
satisfy Laplace’s equation. The field (2.8) is easily con-
structed by separation of variables and requiring periodic-
ity in z with period A, and then taking the first eigenmode
(see, e.g., page 145 of [20]). The scalar field is ¢ =
—(B,/k,) sinh(k,y) sin(k,z). The traveling wave radiation
field we choose is also a Maxwell field and is given by
1 E. .

E,=Eh(d)e,, B,= E(eZ XE,) = ?h(a)ey, (2.9)
where E, is a positive constant, 4 is a real valued function
on R,

d(z, 1) = k.(z — ct), (2.10)

and k, is the positive parameter mentioned in the
Introduction. In the present Sec. II we will put the equa-
tions of motions in a standard form for the MoA staying
with a general A. It is easy to carry through this part of the
analysis without restricting # and we do want to make a
comment on this general case.

However, our primary emphasis is on the standard
monochromatic example and from Sec. III onward we
will take the monochromatic case, i.e.,

H(a) = (1/v)sin(va), h(a) = H'(&) = cos(var),
@.11)

and v = 1/2 thus h[&(z, 1)] = cos[vk,(z — ct)]. Note that
the prime / always indicates a derivative of a function with
respect to its only argument. In this monochromatic case k,

will be fixed by (1.2) and (1.3) and the » will allow for a
variable wave number for the traveling wave. With the
choice of K, mentioned in the Introduction, it will be
seen that » = 1 gives the primary resonance with the
concomitant pendulum normal form.

The Lorentz system can now be written in Cartesian
coordinates as

Px . Py . P

x=-— =— 1=—,

2.12)

Pe = —e[& B, cosh(k,y) sin(k,z) — &Bu sinh(k,y)
my my

X cos(k,z) + Er<1 _ P )h[d(z, ;)]], 2.13)
myc
py = —eLE B, sinh(k,y) cos(k,2),  (2.14)
my

p.= —e[ - &Bu cosh(k,y)sin(k,z) + E, P hla(z, t)]]
my myc

(2.15)

It is easy to check that (2.12)—(2.15) is a Hamiltonian
system with Hamiltonian 7 :

H = c\/[PL. + eA(r, )P + m?c? = mc?y,  (2.16)

where the canonical momentum vector P, is related to p by
p = P, + €A and the vector potential A is given by

Ay, z1) = I:% cosh(k,y) cos(k,z) + frc Hla(z, t)]]ex.
2.17)

u r

Since A is independent of x the x component, P, ,, of the
canonical momentum vector P, is conserved, i.e.,

Py — €Ay, ), (2.18)

is constant along solutions of (2.12)—(2.15) as is easily
confirmed directly. We will not make explicit use of the
Hamiltonian structure in the following. The MoA does not
require a Hamiltonian structure and this frees us from
having to deal only with canonical transformations as we
proceed to put (2.12)—(2.15) in an averaging standard form.

B. Motion in the y = 0 plane with z as the
independent variable

It is common to take the distance z along the undulator
as the independent variable, rather than the time ¢. With the
usual abuse of notation, and from now on, we write x(z),
¥(2), p(2), py(2), p.(z) instead of x[#(2)], y[#(z)], p.[1(z)],
py[1(2)], p.[t(z)] whence the ODEs (2.12)—(2.15) become

dy _ Py
dz p,’ dz p.’

dt _ my
dz p.’

(2.19)
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d
Pr_¢ I:cBu cosh(k,y) sin(k,z) — Py ¢B,, sinh(k,y)
dz C P
X cos(k,z) + E,(myc - 1)h[d(z, t)]], (2.20)
Z
dp,
Py _ _Ehs ¢B, sinh(k,y) cos(k,z),  (2.21)
dz cp,
d
dp. _ —f[ _Px.B cosh(k,y)sin(k,2) + E,PEh[a(z, z)]].
dz cL p, z

(2.22)

The initial conditions at z = 0 will be denoted by a sub-
script 0, e.g., 1(0) = ¢,. Clearly ¢ is the arrival time of an
electron at the entrance, z = 0, of the undulator.

Here and in the rest of the paper we consider the initial
value problem (IVP) with y, = p,o = 0. It follows, with
no approximation, that y(z) = p,(z) = 0 for all z and the
six ODEs (2.19)—(2.22) reduce to four. The right-hand
sides (rhs’s) of (2.19)—(2.22) are independent of x and so
we do not need to consider the x equation until Sec. III F. It
is standard, and also quite convenient, to replace p, by the
energy variable y. With y(z) defined in terms of p,(z) and
p.(z) by (2.4) and using (2.20) and (2.22), we obtain y' =
(Pl + popl)/mPcdy = —(eE,/mc?)(p,/pIh[a(z, 1]
Finally, we take ¢ as a dependent variable in place of ¢ and
we define

a(z) = dlz, 1(z)] = k. [z — ct(z)].

Later it will be seen that « is a precursor to a generalization
of the so-called ponderomotive phase which emerges natu-
rally as we put the ODE:s in a standard form for averaging.

With the above four changes the ODE:s for ¢, p,, p, in
(2.19), (2.20), and (2.22) become

o1
dz P:

(2.23)

(2.24)

d
Pr_ _ f[cBu sin(k,z) + E(’"—W - l)h(a)], (2.25)
dz C P
d E
EY L8 Pay g, (2.26)
dz mc- p,
where the initial conditions are a(0) = ag 1= —k,cf,

p(0) =: p,o, y(0) =: y,. Here p, must be replaced by

p. = \/m262(72 - 1) - p3

and it is easy to see that (2.24)—(2.26) are then self-
contained. From now on, we restrict p, to be positive:

(2.28)

(2.27)

p,. > 0.

Thus, the argument of the square root in (2.27) is positive
and this entails y > 1, as it should be. Note that, by (2.24),

« is a strictly decreasing function whence, as one expects,
7z < c[t(z) — tu]. It is also easy to check that
E, k,

Dy
— k,z) — —H
mcK cos(ky2) cB, k, (a)

(2.29)

is conserved along solutions of (2.24)—(2.26). This conser-
vation law is identical to (2.18) with y = 0. Recall that K
was defined by (1.1).

To complete the solution of (2.19)—(2.22) it suffices to
note that #(z) is determined from (2.23) in terms of a(z) and
x(z) is determined from (2.19) by integration.

We can now state a first formulation of the basic 2D
system which we study in the rest of the paper. We have
replaced the Lorentz system defined at the beginning of
Sec. IT A by the IVP for (2.19)—(2.22) with y, = pyy = 0,
which entails y = p, = 0. The solutions of the IVP are
given in terms of solutions of (2.24) and (2.26). We now
write our basic system as the complete IVP for (2.24) and
(2.26), namely,

d
e _ ,(1 —m”c), a(0) = @y, (2.30)
dz p:
d eE, p,
T=-2 P, v =n @3
Z mc- p,
with p, and p, replaced by
Er kLl
po=pao-t mek(costh,2) — 1+ TH(a) ~ H{a)]),
cB, k,
(2.32)
_ 22002 1) — 2
p: «/m cA(y* = 1) - pr. (2.33)

C. Standard form for method of averaging

We begin by introducing the normalized energy
deviation 1 and its O(1) counterpart y via

y=v.1+n)=y(+¢ey), (2.34)

as mentioned in the Introduction. Here 7, is a character-
istic value of vy, e.g., its mean over the bunch, and ¢ is a
characteristic spread of 5 so that y becomes the new O(1)
dependent variable replacing vy in (2.30) and (2.31). We are
interested in an asymptotic analysis for . large and 7
small as in an x-ray FEL. Here we determine a relation
between & and 7y, which leads to a standard form for the
MoA and which will contain the FEL pendulum system at
first order in the monochromatic case of (2.11).
A natural scaling for z is

2= {/k, (2.35)
so that the undulator period is 27 in {. Introducing
Oun () := a({/k,), (2.36)
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and considering y = y({) in (2.34), we obtain

1+
Ol — Kry%(l _ J) 237)
PZ
E P
Xl = _K2—2 _xh(aaux)r (238)
ey: P,

where/ = d/d{, K, and £ are given in (1.2) and (1.4), and
where

&
Px = COSé’ + APXO + F[H(eaux) - H(e())]» (239)
Pxo
AP, = -1 2.4

0=, (2:40)

1 1/2
P, = [(1 +ex)?— =1+ KzPﬁ)] . (2.41)

Ye

Since we require p, > 0 and since P? = (p,/mcy.)?, as is
easily checked, the argument of the square root in (2.41)
must be positive and thus equals p./mc7y.. This along with
the fact that vy is positive leads to the maximal domain in
the extended phase space (0,,, x, ¢) for (2.37) and (2.38),
as defined by y.(1 + ex) > [1 + K2P2]'/2. We note that
most derivations of the FEL pendulum take AP,, = 0, see
[13,17-19], which is only necessary for perfect matching
of the incoming bunch.
It is easy to show that

Po_ cos{ + AP,y + O(e) + 0(%) (2.42)
P, Ye
1+ey q(0) 1 g2
P =1+ 2y (1—-2ex)+ 0<%> + 0<%>, (2.43)
where
q(0) == 1+ K?*(cos{ + AP,)%. (2.44)
Thus (2.37) and (2.38) become
0= =5 1 K gDy + 007D+ 06, (245
, € 2
/\// =—-K > (COS§ + APxO)h(aaux) + O(I/YL)
+ 0(1/ev?). (2.46)

To transform (2.45) and (2.46) into a standard form for
the MoA we need to introduce dependent variables that are
slowly varying. We anticipate that y will be slowly vary-
ing, i.e., £/&y? will be small. To remove the O(1) term in
(2.45) we define

0 1= Oaux + (L), (2.47)

where

00 =g, 00)=0

(see [21] for comment). Thus, the system (2.45) and (2.46)
becomes

(2.48)

0' = eK,.q(Ox + O(1/y2) + O(),  (249)
X' = K eosl + AP)HO — Q(0)]
+ 0(1/%2) + 0(1/ey}). (2.50)

To obtain a system where 6§ and y interact with each
other in first-order averaging we must balance the O(g)
term in (2.49) with the O(E/&72) in (2.50). In this spirit we
relate € and 7y, by choosing

e = iz (2.51)
eY¢
and so we obtain (1.5). It is this balance that will lead to
the FEL pendulum equations in Sec. III and this is the
distinguished case mentioned in the Introduction.

In summary, the basic 2D system at the end of Sec. I[I B

has been transformed to

0 =eK,q(Ox +€’¢1(0, x. Lev), (252
X' = —eK?*(cos{ + AP )h[0 — Q({)]
+£2g,(0, x, (. &, V), (2.53)

which is now in standard form and is the basic 2D system
for our averaging study. However, the O(g?) terms are not
explicit. To make them explicit we first rewrite (2.37) and
(2.38) in terms of ¢, K, and £ and use (2.47) to obtain

g = %(1 1l ;‘”‘) + K’g(@, (2.54)
/] — ZPX
X = —¢ekK P—h[¢9 - 0] (2.55)

2
P, = cos¢ + AP+ ——{H[0 ~ Q(&)] ~ H(6p)} (2.56)

=|a Zaven | es
P, (1+ey) 5(+KP“‘) , (2.57)

replacing (2.30)-(2.33). Here K, K, &, € are given in (1.1),
(1.2), (1.4), and (1.5), AP,y is given in (2.40), g, Q are
given in (2.44) and (2.48), and the independent variables 6,
X are defined in (2.34), (2.36), and (2.47).
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The O(g?) terms in (2.52) and (2.53) can now be deter-
mined by comparison with (2.54) and (2.55). However, we
have not proven that these terms are actually bounded by
an e-independent constant times 2. We will do this in the
monochromatic case of Sec. III where we will show
that the two O(g?) terms are truly bounded by Ce? on
an appropriate domain for appropriate & independent con-
stants C. This is to be expected because of the analysis
leading to (2.52) and (2.53).

The 6 defined by (2.47) is essentially the so-called
ponderomotive phase. Here it arises naturally in the pro-
cess of finding the distinguished relation between ¢ and vy,
and transforming to slowly varying coordinates. In stan-
dard treatments it is introduced heuristically to maximize
energy transfer.

III. MONOCHROMATIC PLANE WAVES
AND AVERAGING THEOREMS

We have the planar undulator in a standard form for the
MoA in (2.52) and (2.53) where the O(g?) terms can be
determined from (2.54) and (2.55). We now specialize to a
monochromatic traveling wave, write the system in Fourier
form, discuss resonance as a normal form phenomenon,
develop the NonR and NearR normal forms, and state one
proposition and two theorems giving precise bounds on the
normal form approximations. Thus, from now on the ra-
diation field in (2.9) is monochromatic, i.e., 4, H have the
form (2.11).

A. The basic ODEs for the monochromatic
radiation field

In this section we introduce the notation which will
allow us to state and prove our proposition and two
theorems.

In the monochromatic case of (2.11) the basic system in
averaging form, (2.54) and (2.55), becomes

_KE(_ Lrex K.q({)
6/ - 82 ( HZ(H, X, {, e, V)) + 2 ) (31)
e L0
X ek .60, x.¢ 67 cos{r[0 — Q(O)]}, (3.2)

with the initial conditions 6(0, &) = 6y, x(0, &) = xo.
Recall that ¢ and Q are defined in (2.44) and (2.48) and
these can be rewritten

2

q(&) = G + 2K?AP ycos{ + Kj cos2/,  (3.3)

1
gi=1+ EK2 + K*(AP)% (3.4)

0() = Kzrq {4 Yosing + Y, sin2g,  (3.5)
K,K?
YO = K,KZAPX(), Yl = T (36)

Clearly g is the average of g(¢) over {. To make the
arguments of P, and P, in (2.56) and (2.57) explicit, we
have replaced them by II, and II., where

I1.(6,¢, ¢ v)
&2
K,v

i=cos{ + AP+ (sin{z[0 — Q(O)]} — sin(v0,)),

(3.7

I1,(6, x. {, &, v)

2
= \/(1 +ex)? — %[1 + K120, 4,8, v)]. (3.8)

Note that because of the singularity for » = 0 in (3.7) we
take » = 1/2 in the following. Equations (3.1) and (3.2) are
the basic ODEs for the monochromatic case. They will
lead us to the exact and approximate ODEs of both
theorems [in fact (3.1) and (3.2) are the exact ODEs for
Theorem 1].

From now on, we restrict & to a finite interval (0, g¢].
We are of course interested in € small, i.e., 0 < & << 1, and
so, without loss of generality, we take

0<e =g, 0<egy=1 (3.9)
Consider the open set
1
D(s, v) 1= {(a, VO ER: y> -1
€
+i\/1 + K2T12(0, ¢, & u)} (3.10)
\/E X

for 0<e =gy v=1/2, which was discussed after
(2.41). The ODEs (3.1) and (3.2) are well defined on this
domain as we now argue. We take the domain of II, to be
{0,¢,e,v) ER*: 0< e = gy, v =1/2} and the domain
of TI, to be {8, x, ¢ & v) €E[D(e,v) XR*]: 0< e =
g9, v = 1/2}. Tt is easy to check that on the domain of
II, the argument of the square root in (3.8) is positive and,
for (6, x, ¢) € D(e, v), we have
0<II,O, x.{ e v)<1+ ey (3.11)
The two singularities in (3.1) and (3.2) fore = Oand II, =
0 are excluded by (3.9) and (3.11). Thus, it is easy to check
that the vector field associated with the ODEs (3.1) and
(3.2) is well defined and C® on D(e, v) for0 < e < g5 =
1, v=1/2 [i.e., the vector field has partial derivatives in 6,
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X, £ of all orders on D(e, v)]. Note that a function defined
on an open set is said to be C* if it has continuous partial
derivatives of arbitrary order.

Since D(e, v) is dependent on ¢ it is inconvenient to
use it in our averaging theorems. Thus, we now restrict
(0, x,{) to an & independent subdomain Dy(g,) of
D(e, v), where

Do(So) = R X [le(SO), 00] X R (- D(S, V), (312)
1
le(SO) = —— 4+ —4/1 + Kzﬂi,ub(so), (313)
I1, . (g0) :== 1+ |AP | + 2&34. (3.14)
The subset condition in (3.12) and the fact that
|Hx(0! é/! g, V)l = Hx,ub(g) = Hx,ub(EO) (315)

are easily checked. The domains D and D, are illustrated
in Fig. 1, where we show the “quasiperiodic” type surface

x=xp0 lev)=—-1+ 713\/1 + K’T12(0, £, &, v) of
the lower boundary for D (labeled by yp) and the planar
lower boundary y = x;,(g¢) for D, (labeled by yx;;). Here
X is given by the lower bound for y in (3.10).

From (2.42) and (2.43) we have

1 +ex q({) 4
I 1 2y (1 —2eyx) +0(e*), (3.16)
IT,
o= cos{ + AP,y + O(e). (3.17)

e

Thus, the basic 2D system of (3.1) and (3.2) can be written

0'=cefilx. )+ el x.dev), (3.18)
X/ = 8f2(9’ g’ V) + 82g2(6r X’ gr g, V), (319)

where f|, f, are given by
filx, ) = K.q(Dx, (3.20)

FIG. 1.

A sketch of the domains D and D,

f2(0, £, v) 1= —K*(cos{ + AP ) cos{r[8 — Q()]},
(3.21)

so that the functions g;: Dy(ep) X (0, g] X [1/2, ) — R
are given by

82g1(01 X> g} g, V)

_KE( 1+ey K.q(d) .
=5 .0, x. .o, §) s =20,
(3.22)
e28:(0, x. £, &, v) = eK*cos{r[0 — Q())]}
_ Hx(ey é/x 8’ V)
X [cos{ +AP, —HZ(B, lev) :|
(3.23)

The ODEs (3.18) and (3.19) will be the subject of
Theorem 1, i.e., the averaging theorem for the NonR
case. In fact (3.18) and (3.19) are the exact ODEs
for Theorem 1 and, unlike (3.1) and (3.2), they are
written in a form which will allow us to derive the
normal form system, i.e., the approximate ODEs for
Theorem 1 (see also Sec. IIIC). The &€ = 0 singularity
in the definitions of g; and g, is removable. This is
discussed at the end of Sec. IIIC and is proven in
Appendix B. The ODEs (3.18) and (3.19) will also be
used to obtain the exact and approximate ODEs for
Theorem 2 (see Sec. III C).

B. Resonant, nonresonant, A-nonresonant,
near-to-resonant

Here we discuss the resonant structure of the f; defined
in (3.20) and (3.21) needed for determining the normal
form approximations. Most importantly the resonant
structure of f, will lead us to the notions of resonant,
nonresonant, A-nonresonant, and near-to-resonant normal
form. The g; play no role in the normal forms but are a
central piece of the error bounds.

Clearly f; is 27 periodic in . The periodic structure of
f> can be made explicit using (3.5) which gives

f2(0’ é’r V) = _KZ(COSZ + AIJ){O)
X COS(VH - V%{- vYysind —vY, sin2§’)

(3.24)

and shows the two base periodicities, 27 and 27/ V%.
We now choose

2
K, =-, (3.25)
q
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so the base frequencies are 1 and v, which is consistent
with the FEL literature and with (1.3). As mentioned in
Sec. TA, with (3.25) we have gone from seven to six
parameters. Note also that f, is quasiperiodic [22].

To make the resonant structure explicit we write f, as

2
116,49 = =7 explin(0 = OTi(E: 1 APg) + 6

(3.26)
where cc denotes complex conjugate and
ii(&s v, AP,)
= (cos{ + AP exp(—iv[Yysing + Y sin2/]),
(3.27)

is 277 periodic in . The Fourier series of jj is

Ji(&s v, AP) ~ D Jiln v, AP)e™,

nez

(3.28)

with

~ 1 .. _

JJ(n; v, AP)cO) = 2_ [ déu.].](g, v, APxO)e mgf’ (329)
T J[0,27]

and Z being the set of integers. Since jj(-; v, AP,) is a
2r-periodic C* function its Fourier series (3.28) is abso-
lutely convergent, i.e., Y ,e71jj(n; v, AP,)| < oo whence
~ in (3.28) can replaced by = . The f, in Eq. (3.19) can
now be written

f2(0,v) = Tlgrolc[% /(;sz(ﬁ, Z V)d{] _ {O

where N denotes the set of positive integers and where we
have used the fact that jj is real. The integration in (3.34)
can be done term by term since the series in (3.30) con-
verges uniformly in £. The fact that f, vanishes for v & N
is due to the choice of K, in (1.3) and (3.25). Without this
choice f, would vanish for (vK,g/2) & N.

An averaging normal form system for (3.18) and (3.19)
is obtained by dropping the O(&?) terms and averaging
the O(e) terms over /. Thus, if v & N the normal form
system is

0 =e2y, X =0, (3.35)

and if » € N the normal form system for v = k is

0 =2y,  x' = —eKjlk; k AP.) cos(kf).  (3.36)

From Appendix A we have, for AP, = 0,
{%(_l)n[']n(xn) - Jn+1(xn)] if k=2n+1
0 if keven,

(3.37)

jilk; &, 0) =

—Kzﬁ(k; k, AP,y)cos(kf) if v =k €N resonant case,

f2(‘9’ v)=— 76”/0 Z ]](n, v, APxo)et(n—V)§ + cc,
ne”z

(3.30)

which shows the resonant structure in that the  average of
f> is zero for v # integer. In Appendix A we find

~ 1
JJ(”§ v, APx()) = Ej(n’ 1, v, Y()’ Yl)

1
+ Ej(n, _1, v, Yo, Yl)
+ APxoj(n) 0» v, YO) Y]); (331)
where

j(l’l, m, v, YU’ Yl) = ZJmfnfﬂ(VYO)JZ(VYl)J
ez

(3.32)

and J; is the kth order Bessel function of the first kind.
Note that jj(—¢;», AP,) is the complex conjugate of
ji(&; v, AP ) which implies _ﬁ(l’l, v, AP,,) is real. This is
confirmed in the explicit form of (3.31) and (3.32) since the
Jy are real valued.

The time average of f in (3.20) is

o= jim[5 [noodc] =2 6

Since expli(n — v){] = §,,,, the time average of the qua-
siperiodic f, is

if v€N NonR
(3.34)

[

where x,, == (2n + 1)Y,andn =0, 1, ... with Y, defined
in (3.6). Thus, for AP,, = 0, (3.36) gives the standard FEL
pendulum system (see also [13,18,19,23]:

0 =2y,  x' = —eKilk;k 0)cos(k0), (3.38)
where k is an odd integer.

The basic question we consider in this paper is, when do
normal form systems give good approximations to the
exact ODEs (3.18) and (3.19)? In the following we consider
two cases.

In the first case of (3.37), the “nonresonant” (NonR)
case, we consider the situation when the dynamics is well
approximated in terms of the system (3.35), which we call
the NonR normal form system. However, because of a
small divisor issue, we are forced to keep v away from
resonance. More precisely, we obtain results for v €
[k+ A k+1—A] with A€ (0,1/2) and k € N. We
call this subcase of the NonR case the “A-NonR” case.
We begin the discussion of the A-NonR case in Sec. IIIC,
state the associated Theorem 1 in Sec. IIIE 1 and prove
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Theorem 1 in Sec. IVA. We show that the error is O(g/A).
Thus, the error bound increases as A — 0.

In the second case of (3.37) we consider, in part, the
situation when the dynamics is well approximated by the
normal form system of (3.36), which we call the “‘resonant
normal form system.” However, we will do better in that
we will explore the dynamics near the resonance. More
precisely we explore O(e) neighborhoods of the v = k
resonances and parametrize v by v = k + ega, where
keEN, a€[—1/2,1/2]. Recall that 0 <e =gy, = 1.
The ‘‘near-to-resonant” (NearR) normal form system
will be introduced in Sec. III D and in the subcase where
v = k we obtain the above resonant normal form system.
The associated Theorem 2 will be stated in Sec. IITE 2 and
its proof will be given in Sec. IV B. We note that » = 1 is
the primary resonance as discussed in the Introduction,
further justifying the choice of K, in (1.3) and (3.25). We
call this case the NearR case. Note that as in the NonR case
the exact ODEs are (3.18) and (3.19) where of course in the
NearR case one takes v = k + ea.

C. The nonresonant case and its normal form

The exact ODEs for (6, y) in the NonR case are (3.18)
and (3.19). The vector field in (3.18) and (3.19) as well as
the dependence of g, g, on (6, x, {) are C* on Dy(gg).

As introduced in Sec. III B, the NonR normal form
system is obtained from (3.18) and (3.19) by dropping
the O(g?) terms and averaging the rhs over £ holding the
slowly varying quantities €, y fixed. Using (3.33) and
(3.34), we obtain as before

vl = ef(vy) = €2v,, (3.39)

UIQ = sz(vly V) = Or (340)
with the same initial conditions as in the exact ODEs, i.e.,
v,(0, &) = 6, v,(0, &) = xo. Here we have introduced
new dependent variables in order to distinguish normal
form solutions from the exact solutions.

The solution of the IVP is
(3.41)

vi({, 8) = 2xpel + 6, vy(4, &) = xo.

This means that in the NonR case the normal form ap-
proximation to the energy deviation is constant while the
normal form approximation to the ponderomotive phase
advances linearly with /. Clearly the associated phase
plane portrait is simply a family of horizontal lines.

The solutions of (3.39) and (3.40) with € = 1 play an
important role in the statement and proof of Theorem 1 and
we refer to

V('r 1) = [Ul(': ])7 UZ(': 1)])

as the guiding solution at (6, x). Note that the v in (3.42)
should not be confused with the velocity vector v in (2.3).

(3.42)

Our basic result in the NonR case will be Theorem 1 by
which [6() — v1(, )| and | x({) — v,(¢, &)] are O(e/A)
in the A-NonR subcase, where v € [k + A, k+ 1 — A].
Note that Theorem 1 can be applied to every v = 1/2 with
v & N. However, for fixed €,as v — k € N, A — 0" and
the error bound becomes large and thus useless. We can
also consider A to be a function of & as discussed in item
(1) of Sec. III E 3. For example if A = O(¢) then the error
is O(1) and thus not very interesting.

The precise statement of Theorem 1 is given in
Sec. IIIE1 and its proof is given in Sec. IVA. It will
become clear that the error bounds require g; and g, to
be bounded independent of & in a neighborhood of the
normal form solutions, and while f; and f, were chosen
with this in mind a proof of boundedness will be an
important part of our proof of Theorem 1. We show in
Appendix B that

El_igl+[g1(0’ X ¢ & v)]
__4q©) (361@) 412 2)
X

4q

&

2
=2 Gin{s10 = Q) — sin(09)(cosg + AP.y),
(3.43)

Jim [0, x. £, 2, )]
= K2xcos{s10 — Q()coss + APy,

Thus, the € = 0 singularity for g; and g, in (3.22) and
(3.23) is removable [in fact, g; and g, are rewritten in (B6)
and (B13) of Appendix B so that the singularity is
removed]. This makes second-order averaging possible
and the normal form equations would be augmented
by averages of these limits. Second-order averaging is
discussed briefly in Sec. V.

(3.44)

D. The near-to-resonant case and its normal form
1. The near-to-resonant system

According to Sec. III B we have, in the NearR case,

v=k+ ea,

(3.45)

where k€N and a €[—1/2,1/2] is a measure of
the distance of » from k. The O(e) neighborhood of k is
natural in first-order averaging, since if |v — k| is too small
[e.g., O(¢?)] then the normal form will be the resonant
normal form of (3.36) and if |» — k| is too big then » will
be in the A-NonR regime. Equation (3.45) clearly includes
the resonant case for a = 0.

To derive the NearR normal form system, we start from
(3.18) and (3.19), use (3.45) and obtain

0/ = Sfl(/\/’ {) + ezgl(er X> {, g, k + Sa)) (346)
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X =¢f2(0,,k+¢ea)+e°g,(0,x,l, e, k+ea), (3.47)

with initial conditions 6(0, &) = 6, x(0, &) = x,. Note
that (3.46) and (3.47) are the exact ODEs for the NearR
case.

Since f; in (3.46) is independent of & the normal
form associated with it will be the same as in the NonR
case. We now need to study the & dependence of f, in
(3.47). From (3.26),

1200,k + €a)
= —K72 explilk + ea)(0 — O)]jj(;k + ga, AP,y) + cc

2
=— % exp(i[kf — ea{l))
X exp(—ik{)ji({3 k AP )

X exp(iea[@ — Yosind — Y;sin2/]) +cc,  (3.48)

where we have used from (3.27) that
il k+ ea, APy)
= (cos{ + AP,y) exp{—i(k + a)[Ysin{ + Y, sin2{}
=ji(&; k, AP) exp(—iga[ Yy sind + Y| sin2)).
(3.49)

For a = 0 the resonant normal form of (3.36) can be
obtained from (3.48). For a # 0 (3.48) displays two &
dependencies. The first is the €a{ one which cannot be
expanded since it is O(1) for { = O(1/¢) the upper range
of our averaging theorem. The second is the ea factor in
the final exponential which can be expanded and makes an
O(1) contribution to g, in (3.47) for all {. Therefore we
rewrite f, as

f200. 4k + ea) = f5(0, 8, {, k. a) + O(e),

where

f§(07 7, g’ k’ a)
K2
= — - exp(i[k6 — at]) exp(—ik{)jj({; k, AP,g) + cc

(3.50)

K? ~ .
=~ explilkt —arD 3 ji(n k AP)e"™H + cc.
n€ez

(3.51)

We can now write the exact NearR ODEs (3.46) and
(3.47) in a form appropriate for the MoA. From (3.46)—
(3.51) we obtain

0 = efR(x, O) + 2%¢R(6, x, &, &, k,a),  (3.52)

X =ef0, ¢, ( ka)+ 2886, x, £, &,k a),

where

(3.53)

29(x

0= == (3.54)

and where the functions gf: Dy(ey) X (0, g9] X N X
[—1/2,1/2] — R are given by

g0, x. ¢ e ka)i=g0,x (e k+ea), (3.55)

85(0’ X g’ g, k’ Cl)
=20, x.{ & k+ ea)

+ é[fz(ﬂ, L k+ea)— X6, e, L ka)l  (3.56)
By (3.24) we have
f2(0, ¢ k + ea)
= —K?*(cos{ + AP cos{(k + ea)[60 — ¢ — Yy sind
=Y, sin2{]}, (3.57)
and, by (3.27) and (3.51),

f§(0r 85’ g’ k? a)
2
= — K7 exp(i[k0 — eal]) exp(—ik{)(cos{ + AP,g)
X exp(—ik[ Yg sind + Y sin2{]) + cc
= —K?*(cos{ + AP ) cos(k[@ — & — Y sin

— Y, sin2¢] — ead). (3.58)

Note that the rhs of (3.46), (3.47), (3.52), and (3.53)

are equal. Thus, by the remarks at the beginning of

Sec. III C the vector field in (3.52) and (3.53) as well as

the dependence of g&, g& on (6, x, ¢) are C* on Dy(gy).
We show in Appendix D that

11%1+[gf(9, X & ek a)l

_ _%@q@) + 12X2)

2
~ 2 (sinfkl0 — 0(0)]

— sin(k6y))(cosl + AP,), (3.59)
lim [3(6, x. £, & k, a)]
= xK?cos{k[6 — Q({)THcos{ + AP.)
+ K?a(f — Yysin — Y, sin2¢)
X sin(k[@ — ¢ — Yysind — Y sin2{])
X (cosd + AP.y). (3.60)

Thus, the & = 0 singularity for g& and g% in (3.55) and
(3.56) is removable. This makes second-order averaging
possible and the normal form equations would be
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augmented by averages of these limits. This will be
discussed briefly in Sec. V.

2. The near-to-resonant normal form

The NearR normal form system is obtained from (3.52)
and (3.53) by dropping the O(g?) terms and averaging the
rhs over { holding the slowly varying quantities 6, y, eal
fixed.

We thus obtain from (3.51)—(3.54) that

v = sff(v2) = 2gv,, (3.61)

vh = eff(v, e, k) = —e A(k, AP,) cos(kv, — eal),
(3.62)

where

Ak, APyg) = K2j(k; k, APy), (3.63)
and the same initial conditions as in the exact ODEs, i.e.,
v1(0, &) = 6, v,(0, &) = xo.

For AP, = a =0, (3.61) and (3.62) are the standard
FEL pendulum equations, given by (3.37) and (3.38). In the
special case when A(k, AP,;) = 0 the ODEs (3.61) and
(3.62) are the same as the NonR equations (3.39) and
(3.40). We note that A =0 occurs when AP, =10
and k even [see the remark after (A11)] and thus the
well-known fact that even harmonics vanish on axis
emerges quite naturally.

The ultimate justification for the normal form (3.61) and
(3.62) comes from the averaging theorem itself.
However, if we replace £ in (3.53) by 7 and add the
equation 7/ = ¢ then this, together with (3.52) and (3.53),
is in a standard form for “‘periodic averaging”
(= averaging over a periodic function) and the normal
form (3.61) and (3.62) is obtained by averaging over {
holding 6, y, 7 fixed. In this 8, y, 7 formulation standard
periodic averaging theorems apply for the 3D system of 6,
X, T, see, e.g., [6,14] and Sec. 3.3 in [10]. We will however
prove an averaging theorem directly tuned to (3.52) and
(3.53) both to show the reader a proof in a simple context
and in addition we obtain nearly optimal error bounds
which are stronger than in those standard theorems.

Before discussing the NearR normal form solutions in
detail in the next subsection we discuss them briefly here.
Replacing €{ by 7 in the normal form system we obtain

(3.64)

I
v = 2v,,

vh = — Ak, AP) cos(kv, — ar). (3.65)
For a = 0, (3.64) and (3.65) become the resonant normal
form of (3.36) with ¢ = 1. The phase plane portrait (PPP)
for this autonomous case with k = 1, /A = 2 is shown by
the solid magenta, blue, and red lines in Fig. 2 and is seen

to have the pendulum phase plane structure with libration
(magenta), separatrix motion (blue), and rotation (red).
There is a special solution given by v, = (a1 + 7/2 +
27n)/k, v, = a/2k. To help understand the NearR behav-
ior we have superposed orbits for the nonautonomous case
of a=1/2 for four initial conditions with v;(0) =
—51/2. For v,(0) = a/2 we see the special solution just
mentioned given by the green horizontal line, for v,(0)
starting on top of the libration curve we see a spiral motion
given by the dotted magenta curve, for v,(0) starting on the
lower rotation curve we see the orbit moving to the left,
given by the red dotted curve, so the rotation dominates
over the a7 [this can be seen in (3.75) where in this case the
evolution of X moving to the left dominates over the ae(
which moves to the right] and finally for v,(0) starting on
the upper rotation curve we see a modification of the
rotation curve moving to the right given by the red dotted
curve [in (3.75) the evolution of X and ae{ both move to
the right]. The time behavior of these orbits is shown in
Figs. 3 and 4. In Fig. 3 we show v, as a function of 7 and in
Fig. 4 we show v, as a function of 7 for the initial
conditions in Fig. 2 and the same 7 intervals as given in
Fig. 2.

3. Structure of the near-to-resonant
normal form solutions

Here we transform the nonautonomous normal form
system (3.61) and (3.62) to an autonomous system which
has a pendulum-type phase plane structure. We then trans-
form the autonomous system to a simple pendulum system
allowing us to write the solutions of (3.61) and (3.62) in
terms of solutions of the simple pendulum system. We then
discuss the normal form solutions in detail in terms of the
simple pendulum solutions at the level necessary for the
averaging theorems [24].

Vs

vi/T

FIG. 2. Phase plane orbits on resonance (a = 0: solid magenta,
blue, red curves, and five black fixed points) and NearR
(a = 1/2: green solid and dotted magenta and red curves).
k=1 A=2.
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FIG. 3. v(7) versus 7 fora = 1/2,k = 0, /A = 2 as in Fig. 2.
3
b A
L WA S A S AN AN A N A S
=0 L Y
Y Y " L VA VA V)
-1
_2/\
-3 L
0 5 10 15 20 25
T
FIG. 4. wv,(7) versus 7 fora = 1/2,k = 0, /A = 2 as in Fig. 2.

Let v = (v}, v,), then it is easy to see that

v({, &) = v(ed, 1). (3.66)
The transformation v(7, 1) — ¥(7) via
U k 1) —
W(r) = (TI(T)> = ( vitn 1) aT) (3.67)
,(7) v,(7, 1)
gives
di
D okt —a,  9,(0) = kO, (3.68)
dr
dv, R N
d— = _ﬂ(k, APX()) COSv,, 'UQ(O) = Xo- (369)
u

Thus, we have scaled away the £ and made the transformed
system autonomous. Solution properties of (3.68) and
(3.69) are easily understood in terms of its phase plane
portrait (PPP). However, it is more convenient to transform
it to the simple pendulum system,

X' =Y, Y' = —sinX, (3.70)

X
X(0;Zy) =: X, Y(0;Zy) =: Yy, Z = (YO )
0
(3.71)
The required transformation is
01(r) = X(Qr:Zy) — sen(A) S, (72)
i Zy) +
B,(7) = M’ (3.73)
2k
where
Q= Q) = ‘[2k|ﬂl(k, AP,)l. (3.74)

From (3.66), (3.67), (3.72), and (3.73), the solutions of
(3.61) and (3.62) are represented by

X(Qel:Zy) — sgn(A) 5 + eal

vi({, &) = . . (3.75)
(¢ 8) = QY(QSS(Z”) ta (3.76)
where
Xo(0o, k) )
Zy(00, x0, k, a) =
0( o Xo» k. @) (Yo(Xo, k a)
_ (k@o + sgn( A (k, APXU))%)‘ 377
(2kxo — a)/Q(k)

We now discuss the solution properties of (3.61) and
(3.62) in terms of the simple pendulum PPP, [25], for (3.70)
using (3.75) and (3.76). The equilibria of (3.70) are at
(X, Y) = (#rl, 0) with integer I. The systems obtained by
linearizing about these equilibria are centers for / even and
saddle points for / odd. From the theory of almost linear
systems (see, e.g., [26]), it follows that the equilibria are
centers and saddle points for the nonlinear system. A
conservation law for the simple pendulum system is easily
derived by first noting that the direction field is given by

dy sinX

X v (3.78)
This equation is separable and has solutions given implic-
itly by 1¥? + 1 — cosX = const. Thus Epe,, defined by

1
Epen(X,Y) :=§Y2 +UX), UX)=1-—cosX, (3.79)

is a constant of the motion which is easily checked directly.
Incidentally Ep,, is also a Hamiltonian for the ODEs (3.61)
and (3.62) but this plays no role here. The PPP is easily
constructed from the so-called potential plane which is
simply a plot of the potential U(X) vs X, see [27]. The
PPP shows that the solutions of the simple pendulum
system have four types of behavior, the equilibria men-
tioned above, libration, rotation, and separatrix motion.
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These can be characterized in terms of Ep.,. Clearly, Epe,, is
non-negative, the centers correspond to Epe, (X, ¥) = 0 and
the saddle points and separatrices to Epe,(X, Y) = 2. The
motion is libration for 0 < Ep,,(X, Y) <2, rotation for
Epen(X, Y) > 2, and separatrix motion for Epe,(X, Y) = 2
with Y # 0. In the libration case the solutions are periodic,
which is easy to show, and the period as a function of
amplitude [28] is given by

r(4)=2v2 [* di

e — 0<A<m),
0 [cost — cosA]'/2 ( )

(3.80)
where T(A) is the period associated with the initial
conditions Xy = A, Yy =0. It is easy to show that
limy_oT(A) = 277.

We denote by B, the nth pendulum bucket which is
defined by

B, :=1{(X,Y) € R Epen(X, Y) <2, |X — 27n| < 7},

(3.81)
with n € Z. Note that, by (3.77) and (3.79),
SPen[ZO(BO’ X0 k} a)]
_ o 1 2kxo — a]Z
ER(QO’ XO’ k’ a) N 2[ Q(k)
+ 1 + sgn(A) sin(k6,). (3.82)
Note also that, by (3.75)—(3.77),
X(Qel;Zy) — Xy + €a
g, ) — o] — | KT Z T T ol
2 7o) — Xol +
- 1X(Qel; Zy) — Xl 8|a|§, (3.83)
k
Q
lv2(4, &) — xol =ﬂ|Y(QSZ;ZO)_ Yol, (3.84)
:Zo)| +
lua(¢, )] = WYL Z) Hlal 5 )

2k

We can now discuss the four cases of equilibria,
libration, rotation, and separatrix motion. In each case,
using (3.83)~(3.85), we will find d", d3", y,, = 0 such
that, for all { = 0,

lv1(Z, &) — Byl = dP™(B, xo, €4, k, a),

) (3.86)
lva(Z, €) — xol = d5™ (6, xo. k. @),

IUZ(g’ 8)' = Xoo(e()’ X0 k’ Cl), (387)

and we will at the same time observe that
dflni“(ﬁo, Xo» 7> k, @) is increasing with respect to (wrt) 7.
These quantities will be used in our statement and proofs of
the averaging theorems.

(I) Equilibria regime.—Y,=0 and either Ep.,(Xo, Yo) =
0 or 2. Clearly X, = 7l where [ € Z and, by (3.77),

(kHO + sgn[ A (k, APm)]%)
(2kxo — a)/Q(k)

X 7l
= Zo(eo, X0 k, Cl) = (Y) = ( 0 ), (388)

so that 6, = {@l — sgn[ A (k, AP,y)]5}/k and xo = a/2k.
Thus, by (3.75) and (3.76),

vi({,8) =6, + %,

. (3.89)

v12(4, €) = Xo- (3.90)

Clearly, by direct substitution, these are solutions of (3.61)
and (3.62). Incidentally these solutions are stable for / even
and unstable for / odd.

Clearly, due to (3.86), (3.87), (3.89), and (3.90), we can
choose

elal
k (3.91)

drlnm(g()r X()y 8§; k) a) =
dl2nln(60y X()y k; a) = O)

Xoo(00, X0, k, @) = | xo. (3.92)

(II) Libration regime.—0 < Epey(Xo, Yy) <2. In this
case Z(6o, xo, k. @) € By, 1) Where the integer n =
n(6y, k) is determined by the condition |X,(6, k) —
27n(0,, k)| < 7r. From (3.75) and (3.76) we see that

V(f? 8) = Vper(g’ 8) + Vlin(8§): (393)

and it is easy to show that the periodic part has amplitude
determined by the max and min values of X and Y and the
linear growth term is

(3.94)

eallk
Viin(£4) :< ¢/ )

0

The maximum values X,,, and Y., of X and Y satisfy, by
(3.79),

1 1
Epen(Zy) = Y2 + 1 — cosX, = EYﬁm =1 — cosX a0

2
(3.95)

whence

1
Xiax (00, X0, k, a) =27n(6, k) + arccos(cosXO - §Y§>

=21n(0y, k) + arccos[ 1 — Ex (0, xo, k a)],
Yimax (B0, X0,k @V =4/2Epen Zo(00, x0, k. )]

=42&x(00, X0k, a),

and the minimum values X;, and Y,;, of X and Y are
given by

Xmin =

(3.96)

47n — Xpaxo Yiin '= —Yoax 3.97)
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Here arccos is the principle branch of the inverse cos
mapping [—1, 1] — [0, 77].

‘We now determine drf‘i“, d‘z’“", and Y. It follows from
(3.83)—(3.87), (3.96), and (3.97) that

X(Qel;Zy) — Xl + elall

012, 8) — 6] = -
= 2Xmax(00’ X0 k» a)

—4mn(0y, k) + elall
k

_ 2arccos[1 — Ex(6, xo, k, a)] + €lal

- k
=:dT(0y, xo, £, k, a),

(3.98)

Q
lv2(4, &) — xol = ﬂW(QSZ;Zo) — Yol

Q
= ? Ymax(a()’ X0 k! a)

Q k
( ) 2Ex(00, X0, k, a)

=: d5"™ (0o, X0, k. a), (3.99)

QlY(Qel:
lva (g, e)l = |Y( 8250” + |a|

- QYmax(GO’ X0 k: a) + |a|
o 2k

_ Q(k)\2Ex 0y, xo, &, a) + |al
2k

= Xeo(00, X0, k, @). (3.100)

(II1) Separatrix regime.—Y, # 0 and Epe,(Xp, ¥o) = 2.
In this case (X,Y) € B,q,r Where the integer n =

n(6y, k) is determined such that | Xy (6, k) — 27n(6,, k)| <
7. Clearly
|X - Xol = 27T, |Y - Yol = VZEPCH(XO, Yo) = 2,

Y| <2 (3.101)

For Yy, >0, [X(#), Y(1)] — [(2n + 1)7, 0] as t — oo and,
for Y, <0, [X(1), Y(©)] — [(2n — 1)71, 0] as t — oo. Thus
for large ¢

(50) ~ _((Zn * D) —sgn[ Ak, AP)]5 + sa{)

a/2
(3.102)
which is the odd [ solution in case (I).

‘We now determine d‘l“i“, dg‘i“, and Y- By (3.83)—(3.87)
and (3.101)

|X(Qel: Zy) —
k
21 + glall
k
: drlnln(001 X0 8{1 k’ a)y

lvy (¢ &) — 6ol = Xol + elal{

(3.103)

(k)

lva(g, €) — xol = —|Y(98§ Zy) — Yol = ——

=:d3™ (0o, X0, k, a), (3.104)

QlY(Qel; Zy)| + lal
lvy(£, &)] = ik 0
_ 2Q0(k) + |al
2k
= Xeo (00, X0, K, @) (3.105)

(IV) Rotation regime.—Epg,(Xo, Yo) > 2. For Y, >0, X
is increasing and Y is periodic such that

V2 Epen(Xo, Yo) — 2 = ¥ = vV24/Epun(Xo, Yo), (3.106)

and for Y, <0, X is decreasing and Y is periodic such that
V24 Epen(Xo, Yo) = Y = _\/Engen(X(): Yp) — 2.
(3.107)

Clearly v,(-, &) is periodic. We now determine d™", dyin,
and Y. It follows from (3.106) and (3.107) that for any
choice of Y

Y — Yol = V2yEr (B0, X0, &, a)
- \/EJ‘C;R(GO» Xo k a) =2, (3.108)
Y] = y2Ex(80. x0. k. a). (3.109)

It follows from (3.84), (3.85), (3.108), and (3.109) that
[0a(Z. ©) = xol = 57 1¥(Qe¢:20) — ¥
= ;I:\/5 Er(0o, X0, k, a)
- \/E’JER(QO’ Xo Kk a) — 2]

=: d?in(ao» X0 k) a)’

(3.110)

QY (Qed; Zy)| + lal
2k
Q(k) 251((90, X0 k, a) + |a|

lva(d, el =

= Xw(0o, X0, k, a). (3.111)

It follows from (3.70) and (3.109) that
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|X(Qel;Zy) — Xl
[QS{X’(s)dsl = | [QS{ Y(s)ds
0 0

- ﬂ) el X(5), Y(5)ds

= ﬁQS{ gPen(XO! YO)

ds

= [ " v(s)

0

=2Qe4/Ex (B0, x0. k. a),
whence, by (3.83),

lvy(£, &) — 6y
_ IX(Qel; Zy) — Xo| + elall

(3.112)

_ V2Q(k)el/Ex (B0, X0, k. a) + €lald

= d"™ (00, X0, 8¢, k, a). (3.113)

Clearly the simple pendulum system is central to our
NearR normal form approximation. Every student who has
taken a course in ODEs or classical mechanics has studied
the pendulum equation at some level. However, not every
reader of this paper may know the general settings of the
equation. So, as an aside, we thought some might be
interested in knowing how it fits in a broader context.
First, the pendulum equation is a special case of the non-
linear oscillator ¥ + g(x) = 0, where g(x) = sinx. Second,
the nonlinear oscillator is an important subclass of the class
of second-order autonomous systems x = f(x,y), y =
g(x, ¥). The nonlinear oscillator is discussed in many texts,
and here we mention [26,29]. Its PPP is easily constructed
from the potential plane as mentioned above and in [27].
After the class of linear systems, the class of second-order
autonomous systems has the most well developed theory
[30]. Here the qualitative behavior is completely captured
in the PPP’s. What is missing from a PPP is the time it takes
to go from one point on an orbit to another, but this is
easily determined using a good ODE solver. Note that in
Figs. 2-4 we use the ode45 solver of MATLAB.

The limiting behavior of all solutions bounded in for-
ward time is given by the celebrated Poincaré-Bendixson
theorem and as a consequence existence of periodic solu-
tions can be inferred and the possibility of chaotic behavior
is eliminated. It also follows that a closed orbit in the phase
plane corresponds to a periodic solution. In the pendulum
case it is easy to show that orbits starting inside the
separatrix correspond to periodic solutions, however this
fact also follows from the Poincare-Bendixson theorem.

E. Averaging theorems

Recall that we have gone from our basic Lorentz system,
(2.19)—(2.22), to (3.18) and (3.19) with no approximations.
We have also derived two related normal forms for
v = 1/2 in the NonR (Sec. IIIC) and NearR (Sec. IIID)

cases. Here we state theorems which conclude that the solu-
tions of these normal form systems yield good approximations
to the solutions of (2.19)—(2.22) in the appropriate v domains.

Our NonR theorem in Sec. III E 1 will cover the A-NonR
case, i.e., closed subintervals [k + A, k + 1 — A] of (%,
k+1), where k=0,1,...,0 <A <0.5, and we will ob-
tain error bounds of O(s/A) (Here A can be small as
mentioned in Secs. IIIB and III C). Our NearR theorem
in Sec. III E 2 will cover the case where v = k + ea which
includes the resonant ¥ = k case and we will obtain error
bounds of O(e). In both cases the bounds will be valid on
O(1/e) ¢ intervals with one restriction on &.

1. A-nonresonant case: v € [k + A,k +1— A]
(quasiperiodic averaging)

The exact ODEs to be analyzed are (3.18) and (3.19)
with the initial conditions 6(0, &) = 6y, x(0, &) = xo.
These are well defined on Dy(ey) and f,, f, are defined
by (3.20) and (3.21) where ﬁ(n; v, AP,) is given by (3.29)
and g, g, are defined by (3.22) and (3.23) (see also the
end of Sec. IIIC and Appendix B). The normal form
system is (3.39) and (3.40) with initial conditions
v,(0, &) = 6y, v,(0, &) = xo and solution (3.41). Note
that v,({, €) = v;(el, 1).

We are now ready to state the NonR theorem
which roughly concludes that [6(f, &) — 2xpel — 0yl =
O(e/A) and |x({, &) — xol = O(e/A) for 0=¢=
O(1/&) with & sufficiently small. To make the statement
of the theorem concise, we now set up the theorem in nine
steps.

(1) Basic parameters and initial data—Let 0 < g =
gg=1fix0<A<O05andlet v E[k+ A k+1—A]
where k is a nonnegative integer. Choose 6, xo € R.

(2) Guiding solution.—Choose T >0 and define the
compact (closed and bounded) subset S of R? by

S:={v(r,1):7€[0,T]}

={Q2xo7 + 00, x0): TE [0, T]}. (3.114)

Recall that v(£, &) = v(e{, 1).
(3) Rectangle around S (the basic domain for averaging
theorem).—Let

W(eo, X0 dl’ dz) = (00 - dl’ 00 + dl)

X (xo = dy xo +dy),  (3.115)
where d;, d, are chosen such that

Clearly (6, xo) € S C W(6y, xo, d1, d,) and for conve-
nience the open rectangle W(6y, xo, d;, d,) is big enough
to allow for both signs of y,.
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We denote the closure of W by W thus

W(6y, xo. d1, dy) = [0y — dy, 6y + d,]

X [XO - d2, X0 + dz] (3117)
(4) Restrictions on gy.—We want y, negative to be
admissible and so we choose g so small that

le(SO) <0. (3118)
We want the closure W of W to be such that
W(6o, xo, d1, d2) X R C Dy(gy) and so we further restrict
gq so that

dy < xo — xu(&o)- (3.119)

These two restrictions can be satisfied since, by
(3.13), xu(gp) is monotonically increasing in g, and

lim, o+ [ x1(£9)] = —o0. Thus we have three restrictions
on g,
gog=1 and x;(g9) <min(0, xo — d>).  (3.120)

By (3.119) and the remarks at the beginning of
Sec. III C, the vector field of the ODEs (3.18) and (3.19)
is C* on W(8y, xo, d;, d3) X R C Dy(ey).

(5) Exact solution in rectangle W.—Since the vector
fields in (3.18) and (3.19) are C*, solutions in
W(60o, xo, d1, d,) with initial condition 6(0, &) = 6,
x(0, €) = x, exist uniquely in W(6,, xo, d,, d,) on a maxi-
mum forward interval of existence [0, B(g)). Either
B(g) = oo or the solution approaches the boundary of W
as { — B(g)”. See Chapter 1 of [31] for a discussion of
existence, uniqueness, and continuation to a maximum
forward interval of existence.

For convenience we define I(e, T):=[0,T/e]N
[0, B(&)).

(6) Lipschitz constants for f1, f, on rectangle W.—Let
L, L, be defined by

2 2K? K?
Lii== max ]|q<z>|=z[1+—|APxo|+

— |, (3.121
q (€02 q 2@] ( )

L, := vK2(1 + |AP)). (3.122)

It follows by (3.20), (3.21), (3.121), and (3.122) and for 6,
05, X1, X2, { € R, that

2
i O — F1n Ol = 'qqf‘"" e — il
=Lilx: — xil, (3.123)

1f2(02, £, v) — f2(0y, £, v)l
= K?|cos{ + APyl cos{[6, — Q(O)]}
— cos{r[6, — Q()]}
= K*(1 + [APoDI#[6, — Q)] — #[6, — QD]
= vK*(1 + [APDI0, — 6,1 = Ly]6, — 6,1, (3.124)

where we have also used the fact that | cosx — cosy| =
|x — y|. Thus L,, L, are Lipschitz constants for f, f, on
W (8o, xo, d,, d») respectively (in fact even on R?).

(7) Bounds for g,, g, on rectangle W.—Since
21(-, &, v), g,(-, &, v) are continuous on W(6y, xo, d;, d>) X
R it is easy to show they are bounded. However
Appendix C gives a very detailed derivation of quite
explicit minimal bounds for g; and g,. There we show,
for (6, x, {) in W(6o, xo, d1, d2) X R,

180, x. £, &, V)| = Ci(xo, €0, ¥, dp),  (3.125)
where i = 1, 2 and where the finite C; and C, are defined
by (C26) and (C29).

(8) Besjes terms.—Let B, B, be defined by

510 = | [[Filvats. o slas | = | [£Fitxo s,
B0 = | [ Falvits o). s wids

= L{f2(2X08S+00,S, v)ds |, (3.126)
where

Fi(va, s) := fi(vy, 5) = fi(vy) = 2(61(:?) - 1)1}2,
q
fZ(vl’ S, V) = fQ(Ul) S, V) - fZ(vl’ V) = fZ(Ul’S’ V)-
3.127)

In (3.126) we have used (3.41). We will also need B o,
B,  defined by

B;«({) == sup B(s),
s€[0,0)

(3.128)

fori=1,2.

We refer to By, B, as “Besjes terms” and their impor-
tance will be seen both in the bounds presented in
Theorem 1 and in the proof of the theorem where they
eliminate the need for a near-identity transformation
(for the latter, see [6,9—-12]).

With this setup we can now state the NonR approxima-
tion theorem.

Theorem 1 (averaging theorem in A-NonR case: v €
[k+Ak+1—A], k=01,...,0<A<0.5).—With
the setup given by items (1)—(8) of the above preamble,
we obtain, for € I(g, T), that
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16(Z, ) = 2x0ed — 6ol = O(=/A),
Ix(, &) = xol = O(e/A).

More precisely
16(Z, &) — 2x08{ — 6ol

< s([BLOO(T/s) 4 ¢, T]cosh(TYL.L;)

(3.129)

+ [Bz,oo(T/S) + CzT] %sinh(T\/Lle)), (3130)
2

IX(£, &) = xol

= 8<[BI’OO(T/8) + C,\T] %sinh(T\/Lle)
1

+ [By(T/6) + CoT] cosh(T,/_Lle)). 3.131)
Moreover,
B, (T/e) = B, B, o(T/€) = By(T, A), (3.132)

where i = 1,2 and the él, BZ(T, A) € [0, ) are finite,
¢ independent and are defined in terms of our basic

parameters and initial conditions by

. 2K2 1
B, = Ixol (ZIAPX()I + —), (3.133)
q 4
3 1. 3
Bz(T, A) = Kle(T) + B22(T), (3134)
Boy(T) 1= 2K2[1 + (k + D)l xol Tk v, AP,)]
+ [k + 150, AP, (3.135)

Bon(T):=2KY1+(k+ DlxolT] Y im0, AP ).

n€(@Z\{k, k+1})
(3.136)

Furthermore, with possibly another restriction on g,
[6(¢, €), x(£, €)] can be made to stay away from the
boundary of the rectangle W(6o, xo, di, d,) for (€
I(e, T). Thus the ODE continuation theorem (see Sec. 1.2
in [31]) gives B(e) > T/e, and the error bounds hold on
I(e,T) =[0,T/e].

The proof of Theorem 1 is presented in Sec. IVA. Note
that the symbol O(g/A) conveys that the error contains the
factor 1/A.

2. Near-to-resonant case: v =k + €a
(periodic averaging)

The NearR case was defined in Sec. III B. The exact
ODE:s to be analyzed in this case were derived in Sec. [II D

and are given by (3.52) and (3.53) with initial conditions
0(0, &) = 6y, x(0,&) = xo. These are well defined on
Dy(ey) while fX, K are defined by (3.51) and (3.54) and
gR, g& are defined by (3.55) and (3.56). The normal form
system (3.61) and (3.62) with initial conditions v, (0, &) =
0y, v2(0, ) = x, is solved by (3.75) and (3.76) where X, Y
satisfy the standard pendulum equations (3.70) with the
initial conditions (3.77).

We are now ready to state the NonR theorem which
roughly concludes that |0(Z, ) — v,(Z, )] = O(e) and
[x(£, ) —vy(L, &)l = O(e) for 0 = ¢ = 0O(1/e) with &
sufficiently small. The setup for the theorem is as follows.

(1) Basic parameters and initial data—Let 0 <g =
gg=1, a€[—-1/2,1/2] and k be a positive integer.
Choose 6y, xo € R.

(2) Guiding solution.—Choose T >0 and define the
compact subset Sg :={v(7,1): 7 €[0, T]} of R> where
v = (v, v,) with v, v, given by (3.75) and (3.76).
Recall that v(Z, &) = v(e/, 1).

(3) Rectangle around Sg: the basic domain for averag-
ing theorem.—Define an open rectangle W (6o, xo, di, d)
around Sy by

Wg(6o, X0, dy, da) = (6 — dy, 0y + d)

X ()(() - dz, X0 + dz), (3137)

where d, d, satisfy
0 = dM(0y, xo, T, k, a) < d,, (3.138)
0 = d3"™(6y, X0, k, @) < d5, (3.139)

with @™, d" defined in Sec. III D 3. Clearly (6, xo) €
Sg C Wr(8g, xo, dy, d>). Note that, by (3.86), (3.138), and
(3.139),

lvi(7, 1) = Bol = dM™(6y, x0, 7, k, a)
= dllnin(e(), X0 T, k, a) < dl’

lva(7, 1) = xol = d5" (00, X0 k. @) < dy, (3.140)

where we also used that drlni“(ﬁo, Xo» T, k, @) is increasing
wrt 7.
We denote the closure of Wy by Wy; thus,

Wr(6o, xo. dy, dy) := [0 — dy, 0y + d,]
X [xo — da xo + dr]

(4) Restrictions on g;.—Choose g, so small that
x(e0) <0 and dy < xo — xn(€p), i.e., such that (3.118)
and (3.119) hold. This can be done since y;;,(g() is mono-
tonically increasing in &y and lim, o[ x(g0)] = —o0.
Thus we have three restrictions on g as in (3.120).

Note that Wg(6o, X0, d1, d2) X R C Dy(ey) and by
(3.119) and the remarks after (3.58), the vector field of
the ODEs (3.52) and (3.53) is C® on Wg(6g, xo, d, d2) X
R C Do({-}o).

(3.141)
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(5) Exact solution in rectangle Wr.—Since the vector
fields in (3.52) and (3.53) are C*, solutions in
Wx(60, X0, d1, d») with initial condition 6(0, ) = 6,
x(0, &) = x, exist uniquely on a maximum forward inter-
val of existence [0, B(g)). Here d,, d, satisfy (3.119),
(3.138), and (3.139). Either B(g) = co or the solution
approaches the boundary of Wy as ¢ — B(g)”. See
Chapter 1 of [31] for a discussion of existence, uniqueness,
and continuation to a maximum forward interval of
existence.

It is convenient to introduce I(g, T):=[0,T/e]N
[0, B(&)).

(6) Lipschitz constants for fX, fX on rectangle Wi.—Let
LR, L% be defined by

2K? K?
q 2g
LY := K2k(1 + |APl), (3.143)

where we have also used (3.121) and where d,, d, satisfy
(3.119), (3.138), and (3.139). It follows by (3.54), (3.58),
(3.123), (3.142), and (3.143) and, for 64, 0, x1, X2, { € R,

|ff()(2, {) — f{e(){p Ol =1f1x2 O = f1lx1, I
=Lilx; — xil = Lflx2 — xil,
(3.144)

|fX(02, €4, &, k, a) — f5(6,, €4, {, k, a)l
= K?|cos{ + AP |
X cos(k[0, — & — Yysind — Y, sin2{] — eal)
—cos(k[8; — ¢ — Yysind — Y sin2{] — gal)|
= kK*(1 + |API6, — 6,1 = LR, — 6,1, (3.145)
where we have also used the fact that | cosx — cosy| =
|x — yl. Thus, LX, L% are Lipschitz constants for /¥, fX on
Wr(6o, X0, dy, d>) (in fact even on R?). )
(7) Bounds for gf, g§¥ on rectangle Wy —Since
gR(-, e k a), g’(-, e, k,a) are continuous on Wg(6,,
X0 d1, d>) X R they are bounded. However, Appendix E

gives a very detailed derivation of quite explicit minimal
bounds for g¥ and gX. There we show that, for

(0’ X> 5) S WR(HOy X0, dl! dZ) X R’
|glf(0) X: é’; g, k’ a)l = CIF(X()J 8()) k’ dz);
|g§(0, x. ¢ ek a)l = C§(90’ X0 €0s K, a, dy, dy),

(3.146)

where i = 1, 2 and where the finite C® and C¥ are defined
by (ES) and (E14).

(8) Besjes terms.—Let BX, BX be defined by

BR({):

>

ﬁ) $ Filuas, e, s1ds

(3.147)

5

B(¢) = | /jfg[vl(s, ), es, s,k alds

where

TR0 ) = R 9) = Ff(x),
R(0, &s, 5,k a) == fR(0, es, 5, k, a) — f5(8, &s, k).

(3.148)
We will also need Bf,,, B, defined by
Bf(¢) := sup BF(s), (3.149)
s€[0,0)

where i = 1, 2.

We refer to B, BR as “Besjes terms” and their impor-
tance will be seen both in the bounds presented in
Theorem 2 and in the proof of the theorem where they
eliminate the need for a near-identity transformation.

With this setup we can now state the NearR approxima-
tion theorem.

Theorem 2 (averaging theorem in NearR case: v = k +
€a,0<e = gy, k €N, |a] = 0.5)—With the setup given
by items (1)—(8) of the above preamble we obtain, for { €
I(e, T), that

16(Z, &) —vi(Z, &) = O(e),
Ix(£, &) = va(d, &) = Oe).

More precisely
16(£) = v1 (L, )l

= s([B{{w(T/s) + CRTJcosh(Ty/LRLE)

LR
+[BS(T/ ) + CST] | Tsinh(T L'ng)), (3.150)
2
|x($) — va(¢, &)l
LR
= 3([Bfm(T/8) + CRT] L—isinh(T LRLE)
1
+ [Bf (T/&) + C¥T]cosh(T L’ng)). (3.151)
Moreover,
Bf(T/e) = BX(D), (3.152)

where and BX(T) € [0, ) are independent of & and
defined by
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. 2K? 1
BT = 2 218P.al + 5 [oxelt0 xork @)

+ K2T[jj(k; k, AP,)l], (3.153)
BR(T) := K¥2 + T(lal + 2kx«(60, X0, k @)1}
y ljj(n; k, APl _ (3.154)
nEZNK} In — k|

Furthermore, with possibly another restriction on g,
[6(¢, €), x(£, €)] can be made to stay away from the
boundary of the rectangle Wx(6y, xo, d;, d») for { €
I(e, T). Thus the ODE continuation theorem (see Sec. 1.2
of [31]) gives B(g) > T/&, and the error bounds hold on
I(e,T) =[0,T/¢g].

The proof of Theorem 2 is presented in Sec. IV B.

3. Remarks on the averaging theorems

(1) We have now explored the 6, y dynamics as a
function of » in the A-NonR case and v = k + ea in the
NearR case. However asymptotically there are gaps for
v € (k+ ga, k+ A) when ¢ is small. For A = O(g) the
accuracy of the NonR normal form breaks down because
the error is O(1), however we can come close to the NearR
neighborhood by letting A = O(&#) with B near 1 how-
ever the error in the NonR normal form does deteriorate to
O(g'~#). It could be interesting to explore the dynamics in
these gaps.

(2) Important for the functioning of the FEL is knowl-
edge of the fraction of the bunch that occupies a bucket.
From the analysis in Sec. IIID 3 this occurs for initial
conditions in the libration case, i.e., 0 <Epe,(Zy) <2
where Z; is given in (3.71). One can thus determine the
set of (6, xo) for which Z; occupies the pendulum buck-
ets. For more details on the pendulum motion and its
impact on the low gain theory see Sec. III G.

(3) Mathematically we want to make sure the buckets
are covered by our domain D, (e,) for physically reason-
able y,. From (3.76) the range of the v, values in the

buckets for the NearR normal form is the interval (— % +

2 % + ﬁ) Now a = —1/2 so, for every k, the smallest v,

2k’
in a bucket is —% — 4—1,{ whence, since k = 1, the very
smallest v, in a bucket is —{) — 1/4. Thus requiring

1
=-0--<0
Xb 4

(3.155)
entails that y, is smaller than any Y value inside the
buckets and smaller than any y value on the separatrix. It
is plausible to restrict the physically interesting y values to
be greater than, say 3 y,,. The condition that (6, 3x,, {) €
Dy (&) entails that the buckets are taken care of by Dy ()
and that g satisfies the constraint 3y, > x;,(&g)- This can
be done since y;,(&g) is monotonically increasing in &y and

lim, o+ [xs»(£9)] = —o0. The following proposition is a
simple application of Dy(g).

Proposition 1 —Let 0 < e = gj, where 0 < gy = 1 and
v € [1/2, o). Let also Ay be a positive constant and let

g0 < \/E[Ay + m]_l. (3.156)
If y € R satisfies the condition
I<y.—Ay=y(l+ex) =y . +Ay, (3157
then
X > xi(&o)- (3.158)

In other words if g, satisfies (3.156) then the y values in
[v. — Av, y. + Avy] are taken care of by Dy(g).

The proposition guarantees, by choosing a sufficiently
small &, that the domain Dy (&) is large enough to contain
the physical relevant values of 6, y, .

Proof of Proposition 1.—Let y € R satisfy (3.157).
Then, by (1.5), y € [— ﬁ Avy, #Ay] whence, by (3.14),

(3.13), and (3.156),

1 1
€ =——+—w/1+K2H2 €
le( O) &0 \/E x,ub( O)
1 1
= —— + . J1+ K12,
€0 \/E x,ub( )

1
—AS,
N

which entails (3.158). O

Note that the condition 1 <7y, — Ay in (3.157) is
not used in the proof of Proposition 1 but serves to guar-
antee that y satisfies the physical condition: y > 1, i.e.,
1<vy.(1+ey).

(4) In applications of Theorems 1 and 2, T should be
chosen so that z € [0, T/ek,] is the domain of interest,
e.g., so that T/(ek,) is the length of the undulator.

(5) We note there are only four restrictions on the size of
g and thus €. The first is that we require g, = 1. But this is
only a matter of convenience and is really no restriction at
all since the averaging theorems are only useful for &
small. The second and third restrictions are in item (4) of
the preambles to the two theorems. The second one allows
us to use negative x,. The third restriction gives us
W(0o, X0, di, d>) X R C Dy(go) and Wg(8y, xo. di, da) X
R C Dy(ey). The fourth restriction on g, is given at the
end of the two theorems in order for the error to be valid on
I(e,T) = [0, T/&]. The third and fourth restrictions on &,
pose an optimization problem; by changing the size of W,
Wk, the size of g varies as do the Lipschitz constants and
the bounds on g, g, g%, gX.

Nonetheless, the situation is quite good in comparison to
the KAM and Nekhoroshev theorems (see, e.g., [8]), where
the restrictions on g are quite severe and it is with great

<_
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effort that the restrictions on g, have been improved in
some applications, e.g., solar system problems.

(6) In many discussions of application of the MoA,
researchers often just assert the existence of bounds, for
example by using the well-known fact that a continuous
function on a compact set is bounded, or bounds are ob-
tained which are crude. Here we wanted to do more. By
using, in the proofs of Theorems 1 and 2, a system of
differential inequalities instead of the Gronwall inequality
we have been able to use two Lipschitz constants in each
proof instead of their maximum and in a similar manner can
treat the two Besjes’ terms independently as well as the
components of g and g®. Furthermore, we believe the Besjes
bounds and the bounds on g1, g», g¥, g& are nearly optimal.

(7) We here clarify the contributions of jj to the error
bounds of Theorems 1 and 2 by finding simple upper
bounds for B, (T), BR(T), By (T) and BX(T). First of all
we note from (3.27) and (3.29) that

§i(n: v, AP = 1+ |AP, (3.159)

where v = 1/2. Clearly (3.159) gives upper bounds for
B,y (T), BR(T) in (3.135) and (3.153). Second, we obtain
from the Cauchy-Schwarz inequality that

S 15 v, AP

0#n€”Z

1 ~
= Z —lnllJJ(na v, Af)xo)l

0¢n€Z|n|
~ 1/2 1\1/2
=( 3 wlimraror) (3 )
0%£neZ 0#nez
B 7T< Z e 5\1/2
T = n?jj(n; v, AP )| > , (3.160)
vg 0#ne”Z

where the finiteness of the rhs follows from the fact that the
function jj(-; v, AP,) is C®. Since jj(+; v, AP,y) is also 27
periodic we can apply Parseval’s theorem to get

1 d§| d (v AP.) 2
- - ;V, .
27 Jio2m d{” 0
= S 2iin; v, AP (3.161)
0#neZ

It also follows from (3.27) that
d ..
d—gJJ(f; v, AP)
= —exp(—iv[Yysind + Y sin2{])
X {sin{ + iv(cos{ + AP,)[ Y, cosd + 2Y, cos2( ]},

2x07 T 6y
One(7) :={ :

whence

2

d ..
|d_§JJ(§’V’APXO) S1+I/2(1+|APX0|)2[|Y0|+2Y1]2,

so that, by (3.160) and (3.161),

3 liin: v, AP )|

0#n€”Z

S%[l + 1/2(1 + |Apx0|)2[|yo| + 2Y1]2]1/2, (3.162)

which entails, by (3.159),

[ij(n; v, AP )l
n€(Z\{k,k+1})

=1+]APl+ D lij(n:v,AP,)|
0#n€”Z

=1+|AP,| +l3{1 21+ AP 21 Y| +2Y, 212

7
(3.163)

Clearly (3.163) gives an upper bound for B,,(T) in (3.136).
Moreover, by (3.159) and (3.162),

3 lii(n: k, AP )|

nEZNK} ln — Kl

=[Ok AP+ S [k APl
0#n€e”Z

T+ 0231 + AP )2

V3
X [1Yol +2Y, P}/,

=1+ |AP,| +

which gives an upper bound for B5(T) in (3.154).

F. Approximation for the phase space variables
in (2.19)-(2.22)

Here we discuss the approximate solutions of (2.19)—
(2.22) and (2.26) in terms of the normal form approxima-
tions given in (3.41), (3.75), and (3.76), namely,

NonR case
(3.164)

{X(Q7;Zy) — sgn[ Ak, AP,y)]7w/2 + a7}/k NearR case,
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and
Xo NonR case
[QY(Q7;Zy) + a]/2k NearR case,

where A is given in (3.63) and () in (3.74). Recall from
Theorems 1 and 2 that

0(¢, &) = Onp(ed) + O(e),

XNE(T) = { (3.165)

(3.166)

X({, &) = xnp(ed) + O(e), (3.167)
for { € I(e, T). From (1.2), (1.5), (2.23), (2.36), (2.47), and
(3.25) it follows that

2&

and from (2.34)

Y({/ky) = y[1+ ex(( )l (3.169)

Now we can determine the approximate solution of
(2.19)—(2.22). From (3.166) and (3.168) the arrival time,
t(z), of a particle at z is given by

(3.168)

2_
10 = £ = 5o [One(ekid) = Q) + 0L (3.170)

Furthermore from (1.5), (3.167), and (3.169)

y(z) = x/?(é + xnplek,z) + 0(8)), (3.171)

and is clearly slowly varying. From (1.2), (1.4), (1.5),
(2.32), (2.39), and (2.40) we have p, = mcKP, and
p.(2) = mcK[cos(k,z) + AP, + O(e?)].  (3.172)

It is tedious but straightforward to derive from (1.5), (2.33),
(2.34), (3.167), and (3.172)

p.(2) = mcﬁ(é + xne(ek,z) + 0(8)). (3.173)

Finally we can now determine x(z). From (2.19), (3.172),
and (3.173)

dizx(z) _pdd) {mcK[cos(k,z) + AP, + 0(82)]}/[771C\/E<é + xne(ek,z) + 0(8))]

p.(2)

_  (K/NB)cos(k,2) + APy + ()]

1 + exne(ek,z) + O(g?)

= f/g[cos(kuz) + APy + O(e)][1 — exnplek,z) + O(e?)]
= f/—g[cos(kuz) + AP ][l — exnplek,2)] + O(&3). (3.174)
Integrating (3.174) gives
x(z) = x(0) + f/_lé(sinl((/;ﬂ) + AP, — ¢ j;)z[cos(kus) + APXO]XNF(SkuS)dS) + 0(£37). (3.175)

For & sufficiently small, I(s,T) =[0,7/e] and then
(3.170)—(3.173) and (3.175) hold for 0 =< k,z = T/e.

G. Low gain calculation in the NearR regime

Low gain theories in [13,17,18] are done in the context
of the pendulum equations, i.e., (3.61) and (3.62) with
a=0,AP, = 0,and k = 1. Here we will not make those
assumptions and we define the gain by

G(¢ &) = e[va({, &) — xolo, = elva(ed, 1) — xola,
(3.176)

where v, is given in (3.76) and ( )y, denotes the average
over 6. This is consistent with [13,17,18].

The gain G could be calculated numerically using a
quadrature formula and an ODE solver for vy, v,, however
standard treatments calculate it perturbatively using a regu-
lar (and thus short time) perturbation expansion. We could

|

do a regular perturbation expansion in (3.61) and (3.62) by
letting v; = Y'+_, e*A; + O(&”) and using Gronwall tech-
niques to make the O(e) error rigorous (see page 594 in
[32] for an example of a regular perturbation theorem at
first order and its proof). However, at the fourth order
needed here this would be quite cumbersome. Because of
the special scaling structure in (3.61) and (3.62) as given in
(3.66) we can use a Taylor expansion. For ¢ = 1 we get
from (3.61) and (3.62)

Ull(.l 1) = 2U2(', 1): vl(O) 1) = 00’
vh(,, 1) = — A(k, AP) cos[kv,(-, 1) — aT],
v5(0, 1) = xo

(3.177)

and we expand v,(+, 1) about 7 = 0 so that
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v(7, 1) = 00, 1)7

X0+Z

+%[(1—t)4v§5)(t7, Ddt.  (3.178)
'"Jo

From (F6) in Appendix F we have

v5(0,1) = —A(k, AP,) cos(kfy),

v4(0, 1) = Ak, AP,)(2kxo — a) sin(k6y),

vy'(0,1) = Ak, AP o) (—kA(k, AP,) sin(2k6,)
+ [2kxo — al? cos(ky)),

v)"(0, 1) = Ak, AP,o)2k A(k, AP ) (2kxo — a)
X [sin?(k6,) — 3cos?(k6)]
— [2kxo — al®sin(k6y)).

It follows from (3.178) and (3.179) that the average over 6
leads to

(3.179)

4
[va(7, 1) = Xxols, —*v””(O 1), +0(7)

= —Ekﬂz(k, AP )[2kxo—al+ O(7),
(3.180)
Thus by (3.176),
G(¢ 8) = s[vy(s4, 1) — xo]

)(0]90
&5 74

0)[2kxo — al + O0(e°).
(3.181)

This shows the effect of a and k on the gain.

We now compare our gain formula in (3.181) with the
corresponding calculation in [13], wherea = 0, AP, = 0
and k = 1. From our NearR normal form system (3.61) and
(3.62) and letting § = v and n = gv, we obtain the IVP

0'=2n  600) =6, (3.182)

7(0) = exo =: Mo, (3.183)

where € = &2 A(1, AP,,). The procedure in [13] is a
regular perturbation expansion in € that does not assume
that 7, is small. Proceeding as they do, we write

n' = —€cosh,

0(, €) = 0°(0) + €0'(0) + €20%(0) + O(€?), (3.184)
(¢, €) = 1°(0) + en'(O) + €n*() + O(}).  (3.185)
We find

n°(¢) = 7o, (3.186)
HO(Z) =2nol + 6, (3.187)

1
7'(¢) = 3, [sindy = sin@m0¢ + 0L (.18)

0'(0) = i{{ sinf, + L[cos(2770§ + 6,) — COSQO]},
Mo 279

(3.189)

1 14
() = — f disin(2mot + 65)
Mo JO

1
X {t sinfy + ——[cos(2nyt + 0y) — 00500]}.
2mo
(3.190)

It follows that 1'({)y, = 0 and

— 1 ¢ 1
n*({)g, = 57— [ (tcos27]0t - sin2n0t)dt. (3.191)
2m0 Jo 279

We can rewrite (3.191) as

P =5 —(“%)2,

17 (3.192)

7= 104,

and the gain becomes

G, &) = €Dy, = &' AL AP 10 ()2

T

(3.193)

consistent with [13]. For 7 small, which is required by
our averaging approximation [since ny = €Y}, and
Yo = O(1)], we obtain from (3.191) that

1
o
67705-

(3.194)

S 1 [ 4
2 = —— 928 4+0 t4i|dt%
7°(g, 2770[()[ 3 Mot (mot)

It follows from (3.193) and (3.194) that

5§4
ﬂZ(] APxO)/\/O:

1
G({ e) = —62677054 =

(3.195)

asin (3.181) witha = 0 and k = 1.

Thus, we see that (3.181) is consistent with the standard
gain formula for 7 = 7, small. The O(&®) error in (3.181)
can be made precise by estimating the remainder term in
(3.178). However, we cannot justify the gain formula either
in (3.181) or in (3.193) in the context of our Lorentz system
in (2.19)—(2.22), because our NearR normal form approxi-
mation only gives an approximation to O(g). Thus, a
justification of the gain formulas, based on our Lorentz
system, would need to come from elsewhere, e.g., a nu-
merical or higher order perturbation calculation based on
(3.1) and (3.2).
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IV. PROOF OF AVERAGING THEOREMS £2(0, ¢, v) = —K?*(cos{ + AP,) cos{r[0 — Q()]}
In Sec. IVA we prove the NonR theorem, Theorem 1 of K2 ivo A -
Sec. IIIE 1, and in Sec. IV B we prove the NearR theorem, == o € Z jin; v, APg)e + cc,
Theorem 2 of Sec. IITE 2. nels
4.4)
A. Proof of Theorem 1
(averaging theorem in A-NonR case) with the normal form IVP of (3.39) and (3.40):
Here we compare solutions of the exact IVP (3.18) and _
(3.19): vy = &f(va), v1(0, ) = 6, 4.5)
0 =cf(x.{) + €10, x. {, &, v), 0(0, ) = 0,
(4.1) vy =sfr(v,v),  vy(0,8) = xo (4.6)
XI = 8f2(9, g: V) + 82g2(0r X) é’: &, V), X(Or 8) = X()y Where
4.2) f1(vy) =2v,, falv, v) =0, 4.7)
where
forve[k+Ak+1—A]
filx, &) = M (4.3) Subtracting and integrating, we obtain from (3.127),
q 4.1), (4.2), (4.5), and (4.6) that

67 e)— v(lie) — e fo Uiles. e), 51— filvals, £, 51+ filva(s. €), 51— Falwals, )] + e1[60s, ). x(s. &), 5. &, v]ids

=€ [0 g{fl[)((s, &), 51— filva(s &), s1+ Fi(xo, 5) + £81[6(s, &), x(s, &), 5, &, v]ids, (4.8)
and

X(g, 8) - UZ(g’ 8) =& ’/;{{.fZ[e(s’ 8)’ S, V] - fZ[vl(S’ 8): S, V] + fZ[Ul(sr 8)) S, V] + 8g2[9(s) 8)! X(S’ 8)! S, &, V]}ds

=g ﬁj{fﬂ@(s, g), s, vl — folvi(s, €), s, v] + folvi(s, €), 5, v] + g,[0(s, €), x(s, €), 5, &, v]}ds,

(4.9)

for € 1(e, T) =[0,T/e]N[0, B(e)). Important for our analysis below is that the points [6(Z, &), x(s, €)] and
[v,(s, €), v1(s, €)] belong to the rectangle W(6y, xo, di, d,) for € I(e, T). Note that we have added and subtracted
filva(s, €), s]in (4.8) and f,[v,(s, &), s, ] in (4.9), an idea introduced by Besjes [16] (see also [14]).

Taking absolute values, applying the Lipschitz condition on W(6,, x, d,, d;) and defining

e (s) == 16(s, g) — vy(s, &)|, (4.10)
62(5‘) = |X(S’ 8) - UZ(S’ 8)') (411)
gives, by (3.121), (3.122), (3.125), (3.126), (3.128), (4.8), and (4.9) for { € I(e, T),

0= @)= ef 1 [ extras + | [ 710 91as

+e f; lg.[0(s, &), x(s, &), 5, &, V]|]

= S[Ll jj ex(s)ds + B, ({) + TCI] < S[Ll [j ex(s)ds + By o(T/) + TCI:I — R0, (4.12)

0=e()) = s[L2 L{el(s)ds + | f;fz(Z,\/Oss + 6, 5, v)ds | +& .[0{ lg,[00(s, &), x(s, €), 5, &, V]I]
= 8[L2 fO “er(s)ds + By(0) + TCZ] = 8[L2 fo Cer(s)ds + Byoo(T/) + TCQ] — R0, (413)
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where we also used that I(g, T) C [0, T//e] and where we
have introduced the R; as in the proof of the Gronwall
inequality for a single integral inequality (the Gronwall
inequality is discussed in many ODE books, see, e.g., page
36 in [31] and pages 310 and 317 in [33]). £ € I(g, T).

Recall that L, L,, C;, C,, By, B, are defined in items
(6), (7), and (8) of the preamble to the theorem. For
convenience we have suppressed the & dependence of e
and e,.

Before we proceed with the proof, several comments are
in order.

1. We refer to the terms B (), B,(¢) in (3.126) as Besjes
terms since they were introduced by him in order to
prove an averaging theorem without using a near-identity
transformation; a simplification. Standard proofs use the
near-identity transformation (see, e.g., [6,9,10]).

One may fear that the Besjes terms could grow as large
as O(1/g) for { € [0, T/e], i.e., that B, (T /) = O(1/¢).
However this does not happen here since, by (3.132), B,
B,(T, A) are upper bounds for B; (T /) and are & inde-
pendent. Two facts are mainly responsible for this: (a) the
fact that for fixed v and v, the integrands have zero mean,
i.e., the quantities in (3.127) have zero mean in s, and
(b) the fact that v,(s, ) and v,(s, €) are slowly varying.

2. We maintain the system form in (4.12) and (4.13).
We could add these two inequalities and obtain an
error estimate using a Gronwall inequality. That is, let
Loo = maX(Ll’ LZ)» Boo = Bl,oo + B2,oo’ Coo = Cl + Cz,
then adding gives

0=en(l) = S[Lm ﬁ) ©en(s)ds + Bo(T/e) + cwr],

(4.14)

where e, = e; + e;. The Gronwall inequality gives
ew({) = &[By(T/e) + CoT]exp(eLo{). However, our
system approach gives better bounds.

3. We have a draft of a general paper on quasiperiodic
averaging which uses the Besjes idea and deals with the
small divisor problem (see [15]). However, the proof we
are presenting here is simple, the small divisor problem is
trivial and the error bounds are quite explicit. Thus, we feel
it is good to give complete proofs here rather than appeal-
ing to a more general theory. Also it serves the pedagogical
purpose of showing how an averaging theorem is proved in
a simple context; here the context of (3.18), (3.19), (3.52),
and (3.53). We have incorporated the Besjes idea in much
of our previous averaging work, see [14,32,34-36].

We now proceed with the proof. It follows from (4.12)
and (4.13) that

R = eLey)({) = &L R,({),
R,(0) = &[B; «(T/e) + C,T],

(4.15)

R, = eLye ({) = eL,R({),

(4.16)
R>(0) = €[B, «(T/€) + C,T],
whence, by Appendix H for ¢ € I(g, T),
R(({) = ew (&), Ry({) = ewy(ed), 4.17)
where
Wi =Liws,  w(0) = B o(T/e) + C\T, (4.18)
wh=Low;,  wy(0) = Byo(T/e) + C,T.  (4.19)

Note that in Appendix H we use the fact that R, R, are
continuously differentiable.
Solving (4.18) and (4.19) we find

( wi(s) ) B cosh(sy/LL,) \/g sinh(s+/L,L5)
wo(s) a

\/-% sinh(s/L{L,)  cosh(s\/L|L,)

y (B,,w(T/s) + C,T)y

By (T/e) + C,T (4.20)

whence, by (4.12), (4.13), and (4.17),
e1({) = ew(ed) = ew(T)

- s([Bm(T/s) + €, T]cosh(TVT, L)

+ [Byoo(T/2) + C,T] i—;smh(r,/_Lle)),

4.21)
e2(0) = ewy(ed) = ewy(T)
= o([B1x(1/0) + O\ TY P sinn(TVEIT)

+ [Byoo(T /) + CoT] cosh(T\/Lle)), 4.22)

for ¢ € 1(e, T), where, at the second inequalities,
we have used the fact that w; and w, are increasing
[the latter follows from (4.18)-(4.20)]. We thus have
proven (3.130) and (3.131) in Theorem 1.

We note that B, and B, ;(T) are finite. Also, since the
Fourier series of jj(+; v, AP,) is absolutely convergent, we
conclude from (3.136) that By, (T) is finite whence, by
(3.134), B,(T, A) is finite.

By restricting &, and thus € in (4.21) and (4.22), we can
keep [0((, ¢), x({, €)] away from the boundary of
W(6y, xo, dy, dy) Tor { € I(e, T). In this case T/e must
be less than B(e) thus I(e, T) = [0, T/&].

To complete the proof we have to show (3.132) which is
the heart of the proof. Thus we have to estimate B, B,.
From (2.44), (3.41), and (3.127) we obtain
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2

2K 1
Q(S) z(s, g) = T[ZAP,CO coss + > cos(2s)]X0,
q

[ilva(s, ), s]=2———

and thus, by (3.126) and (3.133),

2
B,(¢) = 2K° [ |:2APX0 coss + % COS(ZS)])(od I
qa 1Jo

= B, (4.23)
so that, by (3.128), By (T/e) = B,. From (3.41), (3.127), and (4.4) we obtain

2K2 1 2K? 1
|X°| 2APgsing + 7 sin(2¢) | = ﬂ(ZIAPmI + Z)
q

K
fz[vl(S g), s, v] = w[2s)(os+00]z J(I’l v, AP O)EI(n V5 4 e,
n€z

whence, by (3.126) and for { € R,

K*| (¢ . A .
By({) = > | jo eiV[2ex05+6,] Z ji(n; v, AP)e'" =) ds + cc

ne”z

KZ

. = K23 [fin: v, AP)]

ne”z

{ . )
Z jj(n; v, AP O)f e"2exos 00l piln=v)s g + o0
nez 0

fg ei2av,\/oxei(n—v)sds ,
0

(4.24)

where in the second equality we used the fact that the Fourier series of jj(+; v, AP,y) is uniformly convergent. Integrating by
parts gives, for 0 = { = T/e,

'/.g eiz.su)(osei(n—v)sds ei(niwrzsy)m){ —1- i28VX0 fg ei(”7V+ZSVXU)SdS
0

whence, by (4.24), for0 = = T/,

2 + 28V|X0|§ 2+ 2(k + DlxolT
ln—»| ln — vl

’

i(n—v)

jj(l’l; v, APxO)
4

By(0) = 2K[1 + (k + DlxolT1D. (4.25)
n€Z
The n — v in the denominator is the so-called small divisor problem in this context. It is easily resolved in this A-NonR

case. In fact, for v A-NonR, ie, k+ A=v=k+1— A, we have

> li(ns v, APy) | Liiks v, AP lijk + 1w, APl ljj(n; v, APy)l
= n—v |k — v lk+1— v

nE@\kk+1Y) In =l

lii(n; v, AP ),

A A n€(Z\{k,k+1})

whence, by (3.134)—(3.136) and (4.25),

B¢) = 2621 + (k + Dl A

e APxo>|}
nE@\{kk+1Y)

| 9 .
= KBZI(T) + By (T) = By(T, A), (4.26)

so that, by (3.128), B, o(T/€) = B,(T, A).
This completes the proof.

B. Proof of Theorem 2 (averaging theorem in NearR case where v = k + €a)

The proof goes analogously to the proof of Theorem 1 in Sec. IVA and so we omit some details.
Thus, we begin by comparing solutions of the exact IVP (3.52) and (3.53),

0 = eff(x, {) + %2R0, x, £, & k a), 0(0, ) = 6, 4.27)

X =eff0, e, L ka)+ %50, x. L e ka),  x0e) = xo (4.28)
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where, by (3.51), (3.54), and (3.58),

24({)
0= —q; X (4.29)
K? A .
R0, el { ka) = — > exp(ilkd — ael]) Y jj(n: k, APg)e™ln K + cc, (4.30)
nez
with the normal form IVP of (3.61) and (3.62),
v =effwy),  vi(0.6) = 6, 4.31)
UIZ = ng(vl’ 8{, k)’ UZ(O’ 8) = Xo (432)
where
R(w,) =20, (4.33)
_ K? ~
Ry, el k)= — 5 exp(ilkv, — ael)jj(k; k, AP,) + cc. (4.34)

Subtracting and integrating, we obtain from (3.148), (4.27), (4.28), (4.31), and (4.32) that
¢ _
0() —vi({ ) = ¢ /O {Fflx(s), s1 = fRlva(s, €), s] + flvals, &), s]1 = filvals, €)] + eg0(s), x(5), 5, &, k, alkds

=g /:{ff[)((s), s]— fRLu(s, &), s1+ fR[va(s, ), s+ egRO(s), x(s), 5, &, k, al}ds, (4.35)

and

x()— vyl e)=¢ '[;{fg[ﬂ(s), es, s,k al — f8[vi(s, &), es, 5,k al + fX[v,(s, &), es, 5, k, a]
— filvis, &), es, k] + 2g5L0(s), x(s), 5, & k, alids
=g ’[j{fg[ﬁ(s), es, s,k al — fR[v(s, &), &s, 5, k, a] + fR[v(s, &), es, 5, k, a]
+ eg8[0(s), x(s), s, & k, al}ds, (4.36)
for € I(g, T) = [0, T/e] N[0, B(g)). Taking absolute values, applying the Lipschitz condition and defining
ei(s) 1= 10(s) — vi(s, &)l, (4.37)

ex(s) 1= |x(s) = vals, £)l, (4.38)
gives, by (3.144)~(3.147), (3.149), (4.35), and (4.36) for { € I(e, T),

0=e¢e(0) = s[L’f ﬁ){ e,(s)ds + Ijsz[vz(s, €), slds

+e [; |gR[6(s), x(s), s, &, k, a]Ids]

4 4
= S[Lffo ey(s)ds + BR({) + TCf] = sl:Lffo es(s)ds + BR (T/e) + TCf], (4.39)

0=e() = s[L§ [gel(s)ds + | [gfg[vl(s, €), es, 8k, alds
0 0

e
+e j; |g8[6(s), x(s), s, &, k, a]lds]
= sI:L§ fj e (s)ds + BX() + TC§] =< sI:Lée [0{ ei(s)ds + B (T/e) + TC§:|, (4.40)

where we also used that I(e, T) C [0, T/e]. Recall that LR, CR, BR are defined in items (6), (7), and (8) of the preamble to
the theorem.

090702-28



PLANAR UNDULATOR MOTION EXCITED BY A FIXED ... Phys. Rev. ST Accel. Beams 16, 090702 (2013)

We are now in the same situation as in the proof of Theorem 1 since replacing L;, C;, B; in (4.12) and (4.13) by LX, CE,

Bf results in (4.39) and (4.40). Since, as shown in the proof of Theorem 1, (4.12) and (4.13) entail (4.21) and (4.22) we thus
conclude here that (4.39) and (4.40) entail:

R
e(¢) = s<[B§m(T/s) +C,T] cosh(T L’ng) +[BE (T/s) + CZT]\/i—zsinh<T LfL§)>, (4.41)
2
L§ . RTR R RTR
e)(¢) = 8([Bfoo(T/s) +C\T] Fsmh(T Lle) +[BE(T/¢) + C,T] cosh(T LRLE )) (4.42)
1

for ¢ € I(g, T). We thus have proven (3.150) and (3.151).

Clearly, by (3.153), BR(T) is finite. Also, since jj(-; », AP,) is a C* function, the series on the rhs of (3.154) converges
whence BX(T) is also finite.

By restricting &y, and thus & in (4.41) and (4.42), we can keep [0(¢, &), x({, €)] away from the boundary of
W(6y, xo, dy, d») for { € I(g, T). In this case T/e must be less than B(e) thus I(e, T) = [0, T/&].

To complete the proof we have to show (3.152). Thus, we have to estimate B¥, BY and beginning with Bf we conclude
from (2.44), (3.148), (4.29), and (4.33) that, for { € R,

~ —q 2K? 1
v (s, ), s1=2 Q(S)E] 4 vy(s, €) = T[ZAPXO coss + > cos(2s)]v2(s, g),

whence, by (3.87), (3.147), (3.153), (4.32), and (4.34) for 0 = ¢ = T/e,

2
BR()= 2% [{[2AP)CO coss + % cos(ZS)]vz(s, €)ds
0

2K> 1 ¢ 1

=2 [2APX0 sing + sin(2§)]v2(§, £) — / [2APX0 sins + sin(zs)]@(s, &)ds
q 4 0 4 ds

2K?

q

2K? 1 L )
7([2|Apxo| +Z]|v2(§, e)| + eK?|jjk; k, APx0)||:2|APx0| +Zj|§)

1 A 1
|:2APX0 sinf + 2 sin(2§)]v2(§, ) + eK%j(k;k, AP ) [£[2AP)C0 sins + 1 sin(2s)]cos[kv1(s, €) — easlds
0

IA

2K? 1 ~
=2 28Pal + g Jllvate o)1+ Kelfiiak AP

2K? 1 A .
= 7|:2|AP)CO| + Z][,\/oo(ﬁo, Xo k,a) + K>Tjj(k; k, AP.o)|]1= BR(T), (4.43)

so that, by (3.149), Bf (T /¢) = BR(T) which proves (3.152) for i = 1. The key step here is the integration by parts at the
second equality which makes explicit the slowly varying nature of v, by pulling out the explicit € after the third equality.
To prove (3.152) for i = 2 we conclude from (3.148), (4.30), and (4.34) that, for { € R,

2 PN
FElvi(s, &), 85,5,k a] = —K?e"["”‘(“)_s“ﬂ D lilnk AP)e P + cc,
nEZN{K}

whence, by (3.147) for { € R,

K*| (¢ . A ,
Blze(g) - If et[kvl(s,s)*sas] Z jj(n;k, Apxo)et(n*k)sds + cc
2 1Jo nEZ\{k}

=k S [k ary)
n€Z\{k}

]{ ei[kv](s,s)*sas]ei(nfk)sds
0

: (4.44)
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where in the inequality we used the fact that the Fourier series of jj(-; k, AP ) is uniformly convergent. Integrating by parts

gives, by (3.87), (4.31), and (4.33) for0 = ¢ = T/e,

[Z ei[kul(s,s)—aas]ei(n—k)sds
0

1
i(n —k)

1 5 d‘Ul
2+ k| — s,
e RN Ids ()
1

=
ln — K
whence, by (3.154) and (4.44) for 0 = { = T/s,

=

BY() = K*{2 + T(lal + 2kxw(6o, xo. ks )1} D

so that, by (3.149), B (T /e) = BX(T). This completes
the proof.

V. SUMMARY AND FUTURE WORK

We started with the 6D Lorentz equations for a planar
undulator in (2.12)—(2.15) with time as the independent
variable. In Sec. II B we introduced z as the independent
variable and considered the IVP at z = 0 with yo= p,,=0.
Solutions of this system are completely determined by the
solutions of our basic 2D system (2.30) and (2.31) for «
and . This basic 2D system is the starting point for the rest
of the paper and the first step is to transform it into a form
for first-order averaging; the subject of Sec. IIC. We
introduce ¢ = k,z as the new independent variable, and
x as a new dependent variable by y = y.(1 + ey). Here
we are thinking of electrons as part of an electron bunch
with 7y, as a characteristic value of v and & as a measure of
the energy spread so that y is an O(1) variable. We thus
arrive at the system for (6,,, x) given in (2.37) and (2.38)
and we are interested, in this FEL application, in an
asymptotic analysis for & and 1/, small. Expanding the
vector field for (2.37) and (2.38) gives (2.45) and (2.46).
Here 6,,, is not slowly varying and we thus introduce the
generalized ponderomotive phase, 6, in (2.47) which leads
to the slowly varying form of (2.49) and (2.50). Most
importantly, we discover that in order for 6 and y to
interact at first order we must have & = O(1/v,) and
without loss of generality we take (1.5) as a result of
(2.51). Finally we obtain (2.52) and (2.53) which is in a
standard form for the MoA. Consequently, this will lead to
a pendulum-type behavior which is central to FEL theory.

The MoA can be applied to (2.52) and (2.53) after an
appropriate & is defined and the rest of the paper, in Secs. 111
and IV, focuses on the monochromatic case of (2.11).

Before continuing with the summary we note that in the
collective case there is a continuous range of frequencies
and so it is natural to ask, “What happens in the

[ei[kvl({,s)fsa{]ei(n*k){ _ eikﬁo _ f
0

+s|a|)ds] =

4 l(k%(s, 8) _ Sa)ei[kvl(s,s)*aas]ei(n*k)sds:l
S

1
|n — k|

[2 te fj[zsz(s, &)l + Ial)r]ds]

1
2+ edllal + 2B, xo k) = {2+ Tllal + 2Kl ok @),

lii(n; & APl

= BX(T
_kl 2( ):

(4.45)
n€Z\{k} l

noncollective case considered in this paper if there is a
continuous range of frequencies?”’ In this situation 4 can
be modeled as

h(a) = f_ h(€)exp(—ifa)dé. (5.1)
For h(¢) =[8(& — v) + 8(£ + v)]/2, where & is the
delta distribution, (5.1) gives h(a) = cos(va) as in the
monochromatic case of (2.11), and, as we have discussed
in Sec. III, there are resonances for integer v. However,

we have found that for continuous / the average of
(cosg + AP)h[0 — Q({)] is zero, ie.,

1
lim [? fo " (cosz + AP g)[6 — Q(g)]dg] =0. (5.2)

T—o0

Thus the averaging normal form for (2.52) and (2.53) is
just the NonR normal form of Sec. IIIC and thus a
continuous ﬁ(f), localized for example near the v = 1
(monochromatic) resonance, washes out the effect of that
resonance in the first-order averaging normal form.
This does not mean that there is no resonant behavior
near ¥ = 1 because we have not yet proved that the normal
form (in this case the NonR normal form of Sec. III C)
gives a good approximation, i.e., it may not be possible to
prove an averaging theorem. We are pursuing this.
However, even if an averaging theorem can be proven there
might still be an effect in second-order averaging.

In Sec. III we begin by determining the O(&?) terms of
(2.52) and (2.53), using (2.54) and (2.55), which enter the
error bounds. Thus we obtain (3.18)—(3.23) as our basic
system for 6, y. In Sec. Il A we define a domain,
Dy(gy) C R3 such that g,, g, are well defined and con-
tinuous on Dy(gy) X (0, g9] X [1/2, ). Moreover, the
vector field in (3.18) and (3.19) is well defined and C*
on Dy(eg). Equations (3.18) and (3.19) are in a standard
form for the MoA and for each v a normal form is obtained
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by dropping the O(g?) terms and averaging f,, f, over {.
However, the average of f, is not clear from (3.21) and it
is convenient to expand it in a Fourier series which is
given in (3.30)—(3.32). The average is then easily obtained
in (3.34) and leads to the definition of the NonR,
A-NonR, resonant and NearR cases. The NonR normal
form equations are ' = £2y and y’ = 0 in (3.35) and the
resonant normal form equations are given by (3.36). The
NonR case is stated precisely in Sec. IIIC. Instead of
focusing on the resonant case of (3.36) we consider in
Sec. III D the more general NearR case where we study
the dynamics in neighborhoods of the v = k resonances.
If the neighborhood is too small then the resonant normal
form of (3.36) will be dominant thus the natural neighbor-
hood to study with first-order averaging is O(g) and this is
the content of Sec. IIID. Replacing v by k + €a, our
basic equations (3.18) and (3.19) are rewritten in (3.46)
and (3.47). The function f, in (3.47) has two & depen-
dencies one of which contributes to the O(&?) term and
we are led to the basic NearR system (3.52)—(3.56). In
Sec. IID 1 we observe that the gX are well defined on
Dy(gg) X (0, 89] X N X [—=1/2,1/2] and that gR(- k, -)
are continuous for every k € N. Moreover, the vector
field in (3.52) and (3.53) is well defined and C* on
Dy(ep). In Sec. IIID2 the NearR normal form is pre-
sented in (3.61) and (3.62) and the solution behavior is
illustrated for @ =0 and a = 1/2 in Figs. 2-4. The
solution structure is conveniently illuminated, in terms
of the simple pendulum system, in Sec. IIID3. The
simple pendulum exhibits four types of behavior and
these are exploited to discuss the structure of solutions
of (3.61) and (3.62) in these four cases.

In Sec. IITE we state the two averaging theorems which
relate the A-NonR and NearR normal form approximations
to the corresponding exact systems. Each theorem has a
detailed preamble which sets up a compact statement of the
theorem. The theorems establish the main results of the
paper, namely, that the normal form solutions give an O(g)
approximation to the exact solutions on long-time, O(1/¢),
intervals. In the A-NonR case, the v interval can be made
larger by making A smaller but this is at the expense of
increasing the error as discussed in remark (1) of
Sec. IITE3. As a result of the theorems we have good
normal form approximations for » € [k + A, k + 1 — A]
and v € [k — /2, k + &/2]. However, we point out there
may be gaps between these two intervals where neither
normal form applies.

The results of the theorems are applied in Sec. IIIF,
where the normal form approximations are used to derive
the approximate solutions of the Lorentz equations with z
as the independent variable. In Sec. I G we discuss the
small gain theory for v = k + ga based on our NearR
normal form and compare it with the standard theory for
k =1, a = 0. However, we emphasize that we have not
justified the low gain theory in the context of our NearR
averaging theorem, as we mention at the end of Sec. III G.

Finally the proofs are given in Sec. IV. It can be seen that
the proofs themselves are quite simple. The proofs are
somewhat novel in that they do not use a near-identity
transformation, due to the Besjes approach, and they use a
system of differential inequalities in the calculation of the
error bounds, rather than a Gronwall-type inequality, which
leads to better error bounds. Therefore a solution of the
system of differential inequalities is presented and verified
in Appendix H. The first theorem, which is stated for the
A-NonR case, is an example of a quasiperiodic averaging
theorem with its concomitant small divisor problem. It is
inherently interesting in that the small divisor problem arises
in what must be the simplest possible way. We develop the
general theory of quasiperiodic averaging in [15]. The sec-
ond theorem, which is stated for the NearR case, is an
example of periodic averaging which has a vast literature,
however as mentioned above our approach here is novel.

While the proofs of Theorems 1 and 2 are simple the
whole application of the MoA is not. There was consider-
able work to put the problem into the standard form and
considerable effort to calculate the bounds on g, g, in
Appendix C and g%, ¢& in Appendix E as well as their
& = 0 limits in Appendixes B and D. Since the € =0
singularities in the definitions (3.22), (3.23), (3.55), and
(3.56) are removable, these functions could be extended
to continuous functions on Dy(gy) X [0, g9] X [1/2, o)
and Dy(eg) X [0, g9] X N X [—1/2,1/2] respectively,
but we chose not to do this. However, we note that g; and
g, are rewritten without the singularity in (B6) and (B13)
and gf and g% are rewritten without the singularity in
Appendix D [see Egs. (D1) and (D6)].

‘We now comment on future work. First of all it would be
interesting to include the y dynamics using (2.8) as we do,
but not assuming the zero initial conditions in y, thus
treating the full 3D dynamics.

Second, it would be interesting to study the helical
undulator as we have done here for the planar undulator,
i.e., via first-order averaging.

Third, the work here sets the stage for a second-order
averaging study of the NonR case in (3.18) and (3.19) using
(3.43) and (3.44) and the NearR case in (3.52) and (3.53)
using (3.59) and (3.60). In both cases we have systems of
the form

dUu
= eF(U, 1)+ €2G(U, 1) + O(&3), (5.3)
with approximating normal form given by
dv _ A
= eF(V) + 2G(V), (5.4)

where F is the ¢ average of F and G is a linear combination
of the r average of G and terms depending on F (see [32],
Sec. 5, p. 610] for a construction of the normal form, i.e., é,
and an associated theorem and proof). Such a study would
include a computation of the averages from (3.43), (3.44),
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(3.59), and (3.60) and then a phase plane analysis of this
second-order normal form system including a comparison
with our first-order normal form system. In addition aver-
aging theorems could be proven which we anticipate will
give an O(g?) error on [0, T/&] as in [32]. Furthermore, it
would be interesting to see what happens in the NonR case,
e.g., is the energy deviation Yy still conserved. We note that
generically second-order averaging gives a better error
estimate but the interval of validity remains the same (see
[32] for situations where the time interval can be extended).
Finally it would be interesting to know if, in the NearR case,
there is a breakdown in the integrability of the NearR
normal form due to separatrix splitting [37] with the con-
comitant chaotic behavior. This is a delicate issue, which
cannot be studied with second-order averaging, since (5.4)
is a second-order autonomous system and as such it
cannot exhibit chaos as pointed out at the end of
Sec. III D 3. This work could be a possible future project,
however it does not appear to be interesting from the
application point of view since collective effects are surely
more important than noncollective effects at second order.

Fourth, we are therefore eager to move on to the collec-
tive case based in part on our understanding here. As a first
step we are studying the consequence of (G1)—(G5). We
have not seen this form of the solution of the 1D wave
equation in the FEL literature although the first equality in
(G3) is derived in many elementary partial differential
equation books. In addition, we are pursuing the issue
raised in the paragraph containing Eq. (5.1), concerning a
continuous /.

VII. TABLE OF NOTATION

a (3.45)

By, B, (3.126)

BR, B} (3.147)

Dee, v), Dy(eg) (3.10) and (3.12)

£ (1.4)

S f2 (3.20) and (3.21)
R (3.54) and (3.51)

81> &2 (3.22) and (3.23)

gk, gk (3.55) and (3.56)

h, H 2.11)

iis i (3.27) and (3.29)

K (1.1)

K, (1.3)

A (3.63)

MoA Method of Averaging
NonR (nonresonant) Sec. IlIIB
NearR (near-to-resonant) Sec. IIIB

N Set of positive integers
Px> Py, P, (dependent variables) 2.7)

P, P, (2.39) and (2.41)

q, q, O (2.44), (3.4), and (2.48)

t (dependent and Sec. ITA
independent variable)

vy, v, (dependent variables) (3.39), (3.40), (3.61), and (3.62)

Dy, Uy (3.67)
W, Wg (3.115) and (3.137)
X, y (dependent variables) (2.6)
X, Y (3.70)
Z (dependent and (2.6)

independent variable)

Zz Set of integers
&, a (2.10) and (2.23)
v (dependent variable) 24)

Ve (2.34)

A 1B

A — NonR (A — NonResonant) 1B

AP, (2.40)

€ (1.5)

{ (independent variables) (2.35)

n (2.34)

6 ,.x» 0 (dependent variables)
Hxs Hu Hx,ub’ Hz,lb

(2.36) and (2.47)

(3.7), (3.8), (3.14), and (C22)

Yo, Y (3.6)
X (dependent variable) (2.34)
Xip(€) (3.13)
O (3.74)
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APPENDIX A: THE BESSEL EXPANSION

Here we derive the Bessel expansion (3.31) of
Ji(s; v, AP,). In fact by (3.27),

Ji(& v, APg) = (cos + AP,g) exp(—ivYsind)
X exp(—ivY| sin2¢)

1 1
= Ejjl(f) + zjj—1(§) + AP ijo(0),  (AD)

where
Jim() i=exp(im)exp(—iv[Yosind + Y sin2]).  (A2)
Now
exp(ix sinf) = Z J,(x) exp(inb),
n€z (A3)

J_y(x) = (=1)"T,(x),
whence, by (A2),
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Jim(&) = eiméevYosind =iy sin2l — eim{[ ZJk(VY1)eii2kg:||:ZJI(VYo)eiil{:l

kez €7
= Y LY (v Y)eltn 17204 = Z(ZJmf,,fzk(vYo)Jk(le))el‘"f. (A4)
kIEZ nEZ \kEZ
Let
J(l’l, m, v, YO’ Yl) = Z‘]m—n—Zk(VYO)Jk(VYl)y (AS)
kez
then, by (A4),
im0 =D T(n,m, v, Yo, Yy)e™, (A6)
nez
and thus, by (A1),
.. 1 1 .
Jj(g, v, AP)c()) = z (5\7(”; 1: v, YO: Yl) + 5&7(”) _1, v, Y~(), Yl) + APXOJ(I’I, 0, v, Y(), Y]))éln{, (A7)
nez
whence, by (3.29),
JJ(I’[, v, APXO) = Ej(l’l, 1, v, Yo, Yl) + Ej(n, _1, v, Yo, Yl) + APxoj(l’l, 0, v, Yo, Yl)’ (AS)

so that indeed (3.31) holds.
It is useful for the discussion in Sec. III B to have the following special case. We have, by (A8),

A 1
JJ(k’ k’ O) = i[j(k: 1’ k’ 0: Yl) + j(k’ _1: k! O’ YI)]; (A9)
where
Jo— kY if kodd
Tk 1k 0,Y 1) = 3 i (O (kY)) = { o= () T ko (A10)
= if keven,
J_ kY if kodd
Tl =1,k0,Y) = 3 J 1 0 (Op(kY,) = { arpalkY0) - if ko (AL1)
0 if keven.

Kez

Thus from (A9) jj(k; k, 0) = 0 for k even and, for k = 2n + 1 with n € Z,

A 1 1
jj@Cn+ 1520+ 1,0) = E{J—n[@ﬂ + DY ]+ T pl@n+ DY ]} = 5(—1)"{%[(2" + DY ] = J,4[2n+ DY, ]}
(A12)
APPENDIX B: LIMIT OF g,, g,

In this Appendix we first rewrite the functions g; into the convenient form (B6) and (B13) and use this to compute their
limits as € — 0 +. Furthermore the properties (B6) and (B13) will be used in Appendices C and D. Let therefore ¢ €
(0, gg] with gy € (0, 1], let » € [1/2, 00) and let (6, x, ) € Dy(ey).

We first consider g;. Note that, by (2.44), (3.7), and (3.25),

1+ K?11%2(6, ¢, &, v)

22~ 2 -
= L sin{s10 = QW) = sin(wa)[2(eos + APg) + 5L (sin{410 = Q) — sin(w)].  (B1)

On the set {(6, x, £, &, v) € [D(e, v) X R?]: 0 < & < g, v = 1/2} we define the real valued function l:IZ by

=q({) +
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2
.0, x¢6v) = 1.6, x, ¢, &, v) = \/1 - %(1 + ex) 71 + K2I12(6, £, &, v)). (B2)

1+e
We obtain from (3.22), (3.25), and (B2) that

28 1 q({)
=——1—= 1—-2
e281(0, x. £, e.v) = Sq( HZ(G,X,f,S,V))+ 7 ( ex),
whence
ig ML, + 1)stg, = 112 —1+—5qH (T + 1eX(1 — 2ey)
1 ..
= (1"‘8/\/)2(_5@ + &%k)) + gqﬂz(l—[z + 1)e2(1 + ex)*(1 — 28)()), (B3)

where we used from (3.8), (B1), and (B2) the fact that

M0 xlev)—1= [q(g) + &2k, £, &, v)), (B4)

8(1
with
K%g, . . e%q, . .
€1(6,¢,5,9) 1= S (sinlol0 — QD)) ~ sinv8o)(2cosg + APy + T (sino0 — Q] ~ sin(v60)). (B

Clearly, by (B3) and (B4),
4

I _~ = g%q 1~ ek
— gl (1, + 1)&* =—4< 1—ZT,(TT, + 1)(1 — 3¢? —233)—7'
g%q 1 -~ ~ 1~ = gtk
= _—_ -1 [(_= _ + + = + 2,2 4 3.3)) _ 1
g(1+8)()2( 3 (0, = DT, +2) + ST, + D3ex 28)()) et
whence
1
25‘11_[ (I, + 1)%e%g,
4,
=7H2—1f{+2+2ﬁﬁ+12 2+23—8 I, +1
S 1 = DL+ 2) 4 ML+ 1260+ 2609~ g s (1 )
- $< (g + &2k))(T, +2) + 2T (M. + 12Gx% + 2631 + )) AR Y
26(1+ ey \e et ¢ X+ 2ex X ) T e+ ex? t
2 &2
- 2&%‘1’8”4( g(TL. +2) + 201 (T1, +1)2(3X2+28X)(1+8X)2)
g%q(I1, + 2)k, e, -
- - m, +1
28(1 +ex)* &£+ ey )2( D
&2
= ﬁ( (H +2)+82H (H + 1)2(3x? +28X%)(1+8)()2)
D¢
ek, s g2 .
so that
G (I, + 1)2g, = — %( (I, +2) + (I, + 1)23x% + 28y )(1+8,\/)2)
(1+ey)

K| s £2q -~
_ m(zu oM, + 1)+ 2T, + 2)),
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ie.,

q q .~ ..
0.x.0,ev)=——=—= LM, +2) + (I, + 1)2Gx2 + 28x3)(1 + 2)
8106, x. ¢, &, v) 2T (L + 1701 + 8)()4<5( ) ( )*Bx* +2ex’)(1 + ex)

_ Ki
gIL(T1. + (1 + ey)

. qu -
. (2(1 + oM, + 1)+ 2 (0T, + 2)). (B6)

Clearly, by (3.8) and (BY),

lim [T1.(0, . ¢, & v)] = 1, (B7)
2_
Tim [, (1 £ 2, 7)1 = =L Gin{o[0 = Q()1} — sin(v8y)(cosd + AP,p), (B8)
whence, by (B6),
3 2
i (216, £ 1] = = 42 (30(0) + 120°) = £ (sinfu{6 — (00} ~ sinoy)eost + AP (B)
e—0+ q v

We note that the formula for g; in (B6) does not have a singularity at ¢ = 0 as mentioned at the end of Sec. IIl A. This
could be used as the definition of g; including the point € = 0; we chose not to as the formula is a bit complex.
We now consider g, and we obtain from (3.23) and (B2) that

11,(6, ¢, &, v) )

2 = K2 - M0 v 7 )
e2g,(0, x, {, &, v) = eK? cos{v[0 Q(Z)]}(COS§ + APy .06, x. ¢, & v)

whence

I1,(1 + ex)eg, = K?cos{v[0 — Q(OT(1 + ex)II (cos¢ + AP,g) — 11, ]

= K2 cos{r[0 — Q(O)IH(cos{ + AP )[(1 + eI, — 1] = &%k}, (B10)
where we used from (3.7) the fact that
I1,(0, l, &, v) = cos{ + AP,y + €2k,(6, £, v), (B11)
with
k2(6, £, ) = A Gin{s10 = Q) — sin(v00) (B12)

Clearly, by (B10),
[.(1 + ex)eg, = K*cos{v[0 — Q(O)]H(cos¢ + AP, — 1+ exIl.] — &2},
whence, by (B4),
(IT, + DIL.(1 + ex)eg,

= K?cos{r[0 — Q()IH(cos¢ + APxo)[flg -1+ s,\/flz(ﬁz +1)] - 82K2(1:[Z + 1)}
2

= K?cos{v[0 — Q(f)ﬂ((cosf + APxo)l:_ S(l—tig)()z

(g + €’ky) + sxl:IZ(I:IZ + 1)] — 82K2(1:IZ + 1)),

so that

(I, + (1 + ex)eg,
= K% cos{v[0 — Q({)]}((cos{ + APxo)I:—%z(q + e2ky) + exI (I, + 1)1 + 8)()2] — e2io(I, + (1 + s/\/)z),

which entails that
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(I, + 1)1 + ex)g,

= K?cos{v[0 — Q({)]}((cos{ + APX())I:— g(q + &%k)) + ,\/flz(flZ + 1)1 + ex)?*] — 8/<2(ﬁZ + 1)1+ 8)()2),
i.e.,

g2(9’ X g’ g, V)

_ Keostul0— 0]}
(I, + 1)(1 + ex)?

((cosg + APxo)[—g[q(g) T e2iy]+ L + 1)(1 + 8)()2] N R 8,\/)2).
(B13)

Clearly, by (B7) and (B13),

81_i'1;1)1+[82(0’ X {, g, V)] = XKZ COS{D[H - Q({)]}(COS{ + APxO)' (B14)

We note that the formula for g, in (B13) does not have a singularity at ¢ = 0 as mentioned at the end of Sec. IIl A. This
could be used as the definition of g, including the point € = 0; we chose not to as the formula is a bit complex.

APPENDIX C: BOUNDS ON g4, g,

Let & € (0, gy] with gy € (0, 1], let ¥ € [1/2, 00) and let x, > x;»(gg). Let also (3.118) hold, i.e., y;,(g9) <O as in
Theorem 1 [see item (4) of the setup list for Theorem 1]. We also assume that

0, 3. ) ERX[xo — da, xo + 2] X R, (CD
where
0<d, < xo— xulep). (C2)
Note that, by (3.12), (C1), and (C2),
0, x, $) € R X [xo — da, xo + d2] X R) C Dy(gg) C De, »). (C3)

In this Appendix we derive the bounds (C26) and (C29) of g, and g,. We thus show in this Appendix that the properties
(C26) and (C29) hold in the situation of Theorem 1 [see item (7) of the setup of Theorem 1]. Moreover, the properties
(C26) and (C29) will be used in Appendix E. Note that our assumptions in this Appendix allow us to apply the results of
Appendix B.

We first consider g; and we obtain from (B6)

I q 9t T (T 2(2 .2 3 2)
= — =1, +2)+II,(II, + 1)*(Bx* + 2 1+
|g1| QHZ(HZ + 1)2(1 + 8/\/)4 (5( z ) z( z ) ( X ex )( 8/\/)

g (I, + D21 + ex)*

(2(1 +ex)X(I, + 1)+ 8;,‘I(ﬂZ - 2)) | (C4)

It follows from (2.44), (3.4), (3.11), (B2), and (C3) that
q>0, g >0, 14+ ex>0, 0<II, <1, 3 +H2ex’ = x> +2x*(1 +ex) =0, (C3)

whence, by (C4),
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- q 497 T (T 2(3,2 3 2
1= e L+ 2 UL+ D200 + 2001 + %)
st 2(T] 82_q ]

L T (2(1 oM, + 1)+ (T, + z))
_ g ( q(1l, +2)
g(1 + ex)* \eM (11, + 1)2(1 + ex)?

|K1|
g (I, + D2(1 + ex)?

+3x% + 28X3) + (2(11Z +1) +

Note also that, by (3.8), (3.15), and (B2),

- g2 1+ KzH%(@, &, ) 21+ KzH)Zcu ()
M6, x.lev)=1-— fo) g o 1t Kl
£ (1+ey) £ (1+e&y)

Moreover £2/(1 + ex)* and 1 + K*I12 (e, ») are increasing wrt & whence, by (C7),
~ 82 1+ K2H2 (80)
H2 0; » 65, © = 1 - 70 xub
z( X { & v) < 1+ 80X)2

Since 0 < ¢ = gy we have, by (C1),

1+ EX =1+ 8(/\/0 - dz) =1+ El(I(l)f ][S(XO - d2)] =1+ min[O, SO(XO - dz)] = K3(X0, €0, d2)
e€(0,8¢

Note that, by (3.13) and (C2),
1+ e9(xo = d2) > 1+ eoxi(eg) >0,
whence, by (C9),
K3(X0, €0, d2) > 0,

so that, for n € N and by (C9),

1 1
= .
(1+ex)"  «i(xo €0 da)

It follows from (C8) and (C12),
ﬁ%(ﬂ, X> {, g, V) = ﬁz,lb(SO)J
where

) 1+ K112 ()
i =] g2 Txub ™)
216(€) & Ex3(xo & da)

To show that ﬁz,lb(so) > 0 we compute, by using (3.13),

&2 1L+ K03, (20) _ (1 + 80)(1/)(80))2
0 5K§(Xo, €0, dz) K3()(0r €0, dz) '

If xo = 0 then, by (C9) and (C10),

k3(x0r €0, da) = 1 + £0(xo — d2) > 1 + gox1(g9) >0,

whence

1+ goxu(€o) <1

o< —272 ,
&3(Xxo, €0, d)

so that, by (C15),
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5 1 + Kzniub(&‘())

er————— 7 <. (C18)
O &3 (x0 &0 dn)

If xo > O then, by (3.13), (3.118), and (C9),
k3(Xo, €0, d2) = 1>1+ gox(89) >0, (C19)
whence again (C17) holds which entails (C18) by (C15). Having thus proven (C18) we conclude from (C14) that

I, (e9) > 0, (C20)
whence, by (C5) and (C13),
IL.(6, x, £, &, ) > I (&), (c21)
where
1. (e) = T (e) = \11 — &2 % (C22)
Of course since IT,, I1 .i» = 0 we conclude from (C21) that
1 1

~ < —= . (C23)
Hz(e) X> g: g, V) Hz,lb(SO)

Inserting (C5), (C12), and (C23) into (C6) yields to

q 3q |, | 3edq
lg)] == ( _ +3X2+28|X|3>+ _ (4+ )
U Gk (xo 0, d2) \ETT 1 (20) kR (X0, 80, do) ° gl 1 (80) k2 (x0 €0, o)\ ER3 (X0, &0, d)

(C24)
Furthermore, by (2.44), (B5), (C1), and (C5),
Xl =Ix = xo + xol = Ix = xol + Ixol <dz + |xol,
KZ— 2= KZ— 2=
|k,(0, ¢, e, v)| = _q(2 + 2|AP | + ﬂ) = —q<2 +2|AP,| + M)
v v v v (C25)
q()) =1+ K*(1 + [APl)? = g
Inserting (C25) into (C24) yields to
9ub 3qw7
1210, x, £, &, )] = - (55 +3(ds + Lxol)? + 2e0(d: + L))
1 33 (xo 80 d) \EML. 1 (e0) (X0 €0 da)  © " ore A
2 2= 2
+— K2 (2 +2|AP | + m)(4 + —238°q”b )
VHz,lb(eo)’Q()(Or &0, d) v 5K3()(o: &¢, dy)
=: Ci(xo, &0, ¥, d3). (C26)

We now consider g, and we obtain from (B13) and (C5)
KZ
(I, + 1)(1 + ey)?

921 = (14122 @ + el + DT + 101+ o7] + eolal(TL + 1)1+ o)

+ +
:Kz( _ 80~(1 |AP,ol) (q + &2l ) + [xI(1 + [APl) L ol kol ) ©27)
EM.(IT, + (1 + ey)? I+ex IL(1+ ex)
Note that, by (B12) and (C5),
20, ¢ )] = . (C28)

Inserting (C5), (C12), (C23), (C25), and (C28) into (C27) yields to
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1 + AP KQ— 2=
|20, x. £, & v)| = Kz( = i l ) [Qub + 8(2)—61(2 + 2|AP | + M)]
5Hz,1b(80)K3(X0, &0, dy) v v
dy + 1+|AP 7
+( >+ Ixol)( |AP) 4 g0q )2: Colxo, 0. 7. dy), (29)
x3(Xo, €0, d2) vll, ,(g0) k3 (X0, €0, d2)

where k3, 115, q,, are given by (C9), (C22), and (C25).

APPENDIX D: LIMIT OF gk, gk

In this Appendix we first rewrite the functions gf into the convenient form (D1), (D4), (D6), and (D8) and use this to
compute their limits as € — 0 + . Furthermore the properties (D1), (D4), (D6), and (DS8) will be used in Appendix E. Let
therefore ¢ € (0, g with gy € (0, 1]and k E N, a €[—1/2,1/2] and let (0, yx, {) € Dy(gy). Note that our assumptions
in this Appendix allow us to apply the results of Appendix B.

We first consider g; and we obtain from (3.55) and (B6) that

glf(e’ X> g: g, k, a) = gl(a’ X> g! g, k+ Sd)

_ _ q 97 (T 2(2,2 3 2
qf[z(l:[ZJr1)2(1+8)()4(5(HZ+2)+HZ(HZ+1) 3y? + 2ex )(1+8X))

g (11, + 1)2(1 + ex)*
where I, = I1,(6, x, £, &, k + ga) and k, = K,(0, {, &, k + sa) whence, by (B6) and (B9),
. R — .
81—1>I(§1+[gl (0: X} g: g, kr a)] 81—1’1(1)‘1+[g1(6) X’ g: g, k)]

. @(3 9@) + 120°) - K2 (Sinfk[6 — Q(O]} — sin(kbo)(cos¢ + APy).  (D2)
4g \& k

2
(2(1 e, + 1+ 22+ z)), (DI)

We now consider g§ and we first use (3.57) and (3.58) to write (3.56) as

2
RO, x. (e ka)=g,00,x,{, & k + ea) — K:(cosg’ + AP ) (cos{(k + ea)[§ — ¢ — Yysind — Y sin2/ ]}

—cos(k[@ — ¢ — Yysind — Y, sin2/] — ga?)). (D3)
It follows from (D3) that
R0, x. & o k@) = gk (6, x. £ o k@) + 860, x. £ & K a), (D4)
where
glze,](g) /\/’ g’ g, ky CZ) = 82(0, /\/’ g’ 8’k+ Sa), (DS)
R . K?
g2 2(0: /\/’ g) g, k7 a) = 7(0085 + AP)CO)[COS(K4 + KS) - COS(K4)]
' €
2K? 1
= ——(cos{ + AP,) sin(ks/2) sin(i [2k4 + KS])
)
K? . (1
= —(cos{ + AP,y)kssinc(ks/2) sm(z [2k, + KS])
)
1
= K?a(6 — Yysin{ — Y sin2{)(cos{ + AP, )sinc(ks/2) sin(i [2k, + K5]), (D6)
with

k(0,0 8k a) '=k(0 — ¢ — Yysing — Y, sin2l) — eal, ks5(0,¢, e, a) := ca(f — Yysin{ — Y, sin2l). (D7)

We obtain from (B13) and (D5)
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8510, x. &, 8.k a) = g0, x. {, &, k + ga)
K2
ST, + D+ ex)

x ((cost + AP = Flg + o) + LA + D01+ 7 | = el + D1 + 220), ©B)

S cos{r[6 — QD]

where f[z = l:IZ(H, X, (e k+ ea) and ky, = k,(60, £, k + ea) whence, by (B13) and (B14),

EE%]+[g§](0r X g» g, k’ a)] = EE%]+[g2(0» X> gr g, k)] = XK2 Cos{k[a - Q(g)]}(COS§ + AP)cO)' (D9)
Clearly, by (D7),

££%1+{sinc[x5(0, le a2 =1, 81ir(1)1+{sin(% 2K, + ks5))} = SEI(I)L[SiH(KO] = sin(k[0 — ¢ — Yy sind — Y, sin2{)),
(D10)

whence, by (D6),
sl_i.%l+[g§2(0’ x. Geka)l=Ka(@— Yysing — Y, sin20)sin(k[@ — ¢ — Y sind — Y, sin2{])(cos + AP,,),  (DI11)

so that, by (D4) and (D9),

elir(gl+[g§(0, X & &k a)] = xK* cos{k[6 — Q({)]}(cos{ + AP,)

+ K?a(6 — Yy sing — Y, sin2{) sin(k[6 — ¢ — Yysind — Y, sin2])(cos + AP,,). (D12)

APPENDIX E: BOUNDS ON g&, g&
Let ¢ € (0, 9] with g € (0, 1] and let k € N, a € [—1/2,1/2]. Let also 6y € R and x, > x;;,(0). Moreover let

(3.118) hold, i.e., x;,(g9) <0 [see also item (4) of the setup list for Theorem 2]. Furthermore we assume that
0, x.0) €[00 — dy, 00 + di] X [xo — dy, xo + L] X R, (E1)
where x, d;, d, satisfy
0<d,, 0 <d; < xo = x(eo)- (E2)

In this Appendix we derive the bounds (E6) and (E14) of g& and gX. We thus show in this Appendix that the properties (E6)
and (E14) hold in the situation of Theorem 2 [see item (7) of the setup of Theorem 2]. Since all assumptions of this
Appendix are also satisfied in Appendix C and D, we can apply the results of those Appendices. Note that our assumptions
in this Appendix allow us to apply the results of Appendices C and D.

We first consider g® and we obtain from (3.55) that

180, x. &, &,k a)l = |g1(6, x, £, &, k + ga)], (E3)
whence, by (C26),
|gf(0; X’ g; g, k: a)l = CI(XO) 80; k + &da, dZ)J (E4)

where C; is given by (C26). Note that, by (C26), C;(xo, €9, ¥, d5) is decreasing wrt v whence

Ci(xo. 80, k + €a, dy) = C(x0, 80, k — 1/2,dy) =: CR(x0, &0, k. dy), (ES)
so that, by (E4),
1g%(0, x. &, & k, a)l = CR(x0, &0, k, da), (E6)

where CF is given by (E5).
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‘We now consider g§ and we obtain from (D4) that

|g§(0; /\/’ g; 8) ky a)l § |g§1(0; /\/) é/’ 8) ky a)l + |g§2(0, /\/’ g; 8) ky a)l- (E7)
Note that, by (C29) and (D5),

|g§1(9’ Xy g’ €, k’ a)l = |g2(9’ /\/) é/) &, k + Sa)l = CZ(X()) €0, k + ea, dz)) (ES)

where C, is given by (C29). Note that, by (C29), C,(x0, €0, ¥, d) is decreasing wrt ¥ whence

Co(xor €0, k + €a, dy) = Cy(x0, 80, k — 1/2,dy) =2 X (x0. &0, k. d2), (E9)
so that, by (ES),
18,6, x. &, &, k @)l = CF \(xo, 80, k ), (E10)
where C§1 is given by (E9). We also have, by (D6),

1
15,0, x. £, &,k a)l = K?a(6 — Ysing — Y, sin2{)(cos{ + AP g)sinc(ks/2) sin(E [2k, + KS])

= K?|al|0 — YysinZ — Y, sin2Z[(1 + [AP,)). (E11)

Of course, by (El),
|0 — Yysind — Yy sin2Z| = |0] + | Yol + 1Y, = 16p] + dy + 1Yol + 1Y), (E12)

whence, by (E11),
185,00, x. £, &, k a)l = K?lal(1 + |AP)(160] + dy + [Yol + 1Y) =t CE, (60, a, d)). (E13)

We conclude from (E7), (E10), and (E13) that
1850, x. £, &, k, a)l = C§ | (xo, €0, k, dy) + C5,(00, a, dy) =2 C§(6, X0, €0, k. a, d,, dy), (E14)
where C¥ | is given by (E9) and C¥, is given by (E13).

APPENDIX F: DERIVATIVES FOR LOW GAIN PROBLEM
We here derive (F6) which is needed in Sec. III G. By (3.177) we have

v/l('! 1) = 2112(', 1): UI(OJ 1) = 60’ (Fl)
Ak, AP,g)

vh(1, 1) = — Ak, AP,g) cos[kv(7, 1) —at] = — 3

explu(r)] + cc, v,(0,1) = xo,
where
u(r) == ilkv,(r, 1) — ar]. (F2)
It follows from (F1) that
vi(7, 1) = Ak, APo)[kv(7, 1) — a]sinlkv (7, 1) — at] = A(k, AP,o)[2kv,(7, 1) — a]sin[kv (7, 1) — a7]

— - PP o) + e
vy, 1) = — 7ﬂ(k’2APXO) exp(u)[u” + (u')?] + cc, vy( 1) = — 7ﬂ(k’2APXO) exp()[u’” + 3u'u" + (u')*] + cc,

(F3)
and from (F1)—(F3) that
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u'(r) = ilkv|(, 1) — a] = i[2kv,(+, 1) — a], u'(r) = i2kvh(r, 1) = —i2k A(k, AP,y) cos(kv(7, 1) — ar),
u"(r) = i2kvl(r, 1) = 2k A(k, AP )[2kv,(7, 1) — a]sin[kv(7, 1) — aT].

(F4)

We conclude from (F1), (F2), and (F4) that

u(0) = ikv,(0, 1) = ik#6,, u'(0) = i[2kv,(0, 1) — a] = i[2kxy — al,
u"(0) = —i2k A(k, AP,g) cos[kv,(0, 1)]
= —i2k A(k, AP,o) cos(kb),
u(0) = i2k A(k, AP )[2kv,(0, 1) — a]sin[kv,(0, 1)]
— 2k Ak, APo)(2kxo — a) sin(kfy), (F5)

whence, by (F1) and (F3),

v5(0,1) = — A(k, AP,) cos[kv(0, 1)] = — A(k, AP ) cos(kf),
(0, 1) = A(k, AP)[2kv,(0, 1) — a] sin[kv, (0, 1)]
= ﬂ(k, APXO)(ZkXO - Cl) Sin(keo),

AEEPO) ' (0) + [ OF) + ce

= — w exp(ikfy){—i2k A (k, AP.) cos(kBy) — [2kxo — al’} + cc

(0, 1) = —

— Ak, AP,0){2k A (k, AP ) sin(k6,) cos(kfy) — [2kxo — a]* cos(k6,)}
Ak, AP ){—kA(k, AP,) sin(2k6,) + [2kxo — al* cos(kfy)},
Ak, AP,)

2

_ - w expl(ikBo){i2k A (k, AP0)2kxo — a) sin(kfy)
+ 6k A (k, AP,o)[2kxo — alcos(kfy) — i 2kxo — aP} + cc
= —A(k’zAP x0) {—4k A (k, APo)(2kx, — a)sin®(k6,)

+ IZkﬂ(k, APxO)[ZkXO - CZ]COS2(k60) + 2[2](/\/0 - a]3 sm(kﬂo)}
= le(k, APxo){zkA(k, APXO)(Q’kXO - Cl)SiIlz(keo) - 6kﬂ(k, APxO)[ZkXO - a]COSZ(keo)
—[2kxo — a]® sin(k6,)}. (F6)

V)"0, 1) = — explu(0)Ku'"(0) + 3u’(0)u"(0) + [u/(0)P} + cc

APPENDIX G: ESTIMATE OF E,/cB,

In this Appendix we aim to estimate the magnitude of the electric field. The basic field equation is

a2 a2
(W - c? 6_Z2>Ex(zr t) = - vac (Zy t) (Gl)

where Z,,. = 1/c€ is the free space impedance and

ecKN
’yczl

Zn(t)] =

. . ecK il
jlz, 1) == — 3, cos(k,z) z

y 1(t) cos(k Z) z 8z — z,(1)] (G2)
n=1/n

with 2| being the transverse emittance, see [13,38]. We proceed in two ways. In the first we solve (G1) and (G2) directly
and in the second we use Fourier transforms.
The unique solution of the homogeneous IVP at ¢ = 0 is
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En=-2 [las [T 0y ) = - B0 + U ) (@)

where
veo= [ afi(virio-2)-i0.0] (@)
vian= [afini-10-2)-i0.0] (@)

The first equality in (G3) is often obtained using Duhamel’s principle and d’ Alembert’s formula and the second equality is
obtained after changing the order of integration. To obtain our estimate we consider z,(¢) = B.ct + z,(0) which is quite
crude (but may suffice for a rough estimate) and where the nonnegative 8, is determined by 82 = (y2 — 1)/y2. We obtain
391U, < U_ and

2ecKy N 1 & o
. N D 1,(z 1) cos{2k, ¥ [z — ct — z,(0)]}, (G6)

n=1

U_(z1) = —

where

1if 2,(1) <2 <z,(0) + et
I(z1) = { G7
(2 1) 0 if otherwise. ©7)
So if all the particles contributed at z, which they do not, then U_(z, 1) = 0(2“573‘1\’) and E,; = w would be a
typical value of the field E, at (z, 7).
We now give a second estimate, E,,, of E,. Following [38] which is based on [13] we Fourier transform (G1) by defining

. 1 foo
E.(z, w) == — [ dsEx(z, - i) exp(—iws). (G8)
27 J - c ck,
The Fourier inversion theorem gives
E(s1) = f " dob,(z o)expliok [z — cf]). (G9)
We define j(z, @) in the same way as £, (z, w) whence, in the slowly varying approximation, (G1) reduces to
oE, Zoae »
(z w) = = =%z w), (G10)
0z 2
and from (G2) we obtain
A ecKNk,
(2, 0) = ————<— j(z, w), Gl11
j(z ) TR j(z ) (G11)
where
. 1 &
j(z, ) = cos(k,z) exp(—ia)k,z)ﬁ Z expliwck,T, ()] (G12)
n=1

Here the function T, is the inverse of the function z,,. To obtain our estimate we note that || is bounded by 1 and replace it
by 1 which is quite crude but may suffice for a rough estimate. Inserting this into (G10) and integrating we obtain

N Z.. ecKNk 1
E . (z, == _—— " T i ), G13
X(Z w) ( 2 ZWBL'YC'EJ_ ku ut ( )
and, for k,z = O(1),
N V4 KN &k
E = O(E,),  Eni=22% i (G14)

2T 4r S kB2
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We now have, recalling that K = 3.7 in LCLS,

2

E 2 K
i 477% =47/K, = 27T<1 + 7) ~ 271 + (3.7)2/2] = 49, (G15)

ErZ kr
and we calculate E,,/cB,. From (G14),

E Z K k N
L _ LvacC €R Ky Y (G16)
1

Eo  Zyec € 1 2 N 1 2 N

cB, 4w mk, 1 +K/2) S, "k, 1+ K23

where r, denotes the classical electron radius. Furthermore,

(G17)

1 3 cm 2
~2.82 X 10715 m, — = , ~ 0.255, = 104,
e Sy (1 + K2/2) Ye
and so
E N E E., E
2 ~0.034 X 10712 m? = ~ 34, il 22 <34 % 49 ~ 1700,
¢B, > ¢B, ¢B,E,

for N =10% and 2, = 1 mm?.

APPENDIX H: IVP FOR A SYSTEM OF DIFFERENTIAL INEQUALITIES

Here we present and verify a solution of the IVP for a system of differential inequalities which is used in Secs. IVA and
IV B. Consider the IVP for

R1({) = a1Ry(0), (H1)
R,({) = ayR(9), (H2)
where a;, a, > 0 and R, R, are continuously differentiable. We want to show, for { = 0, that
R({) = ri(d), Ry({) = (), (H3)
where
}"ll = arp, rl(O) = RI(O), (H4)
”Iz = asry, r2(0) = R,(0). (H5)

We do this in two ways. First we define 7;({) := R;({) — r;({) for j = 1,2, { = 0 whence, by (H1), (H2), (H4), and (HS5),

#(§) = a1#2(0), #(8) = a1 (9), #1(0) = 7,(0) = 0. (H6)
Clearly we have to show that, for j = 1,2, { = 0,
#() =0. (H7)
It follows from (H6) that
HO=a [Casie) = aa [(asne). 1O = a [ dsiio) = aa [*dsho)

1.€.,
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R ¢
P = a(z)[o dst(s), (H8)
where a := ,/a;a,. It follows from (H8) and by partial integration that
4 4 4 s
exp(—apd)7;({) + aof ds exp(—ays)7;(s) = f ds exp(—ags)Fi(s) = a%[ ds exp(—aos)f dsr(5)
' 0 ' 0 0 0
{ {
= —ay exp(—aof)[ dst(s) + a()[ ds exp(—ays)7;(s), (H9)
0 0
|
which entails 7= ayf;y = 0<hl — ah,. (H21)
7)) = —ag f{ ds?;(s). (H10) ~ We now show that, for j = 1,2, { =0,
0
F () =h(0). H22
Abbreviating 7i(6) = hy(d) (H22)
¢lay Suppose that (H22) is wrong then there exists a smallest
Fi({) = f dsi(s), (H11) ¢, > 0 such that an index j, exists with
0
we obtain from (H10) Fio(o) = 1, (do), (F23)
5 1. ¢/a A 5 where we used that, by (H6) and (H17) and for j = 1, 2,
Q) = ¢ fag) = = [T asis(s) = 0. @ )
ap 0 rj(O) = 0 < a, = hj(O) (H24)
whence Clearly, for j = 1,2,0 < ¢ < &,
0 = exp(H[F;() + F(O] = [exp(HF; (O], (HI3) Q) < hi(). (H25)

so that exp({)7;({) is decreasing wrt { which entails, by
(H11), that

0 = exp(0)7;(0) = exp({)7;(4), (H14)
ie.,

7i({) =0.
We conclude from (H8), (H11), and (H15) that

(H15)

PO = a L “dst(s) = Fj(aed) =0, (HI6)

whence 7;({) is decreasing wrt { so that (H7) follows from
(H6).

The result in (H3) is a special case of a much more
general theorem on pages 112-113 of [33]. That proof
simplifies in the special case here and we present it for
the interested reader. The proof proceeds by cleverly in-
troducing a comparison function h. Here

h 1
h() = (éi;) =ay eXP(2a3§)< ) ) (H17)

where a; := max(ay, a,), as > 0. Then

h| = 2azhy = 2ash, > ahy, (H18)

h/2 = 2a3h2 = 2(13]’11 > dzl’ll, (ng)
and we have, by (H6),

Pl —aify = 0<h| —ah,, (H20)

Without loss of generality we take j, = 1 whence, for 0 =

=,

#2({) = hy({). (H26)
It follows from (H25) that at the first intersection
#1(4o) = hi (&) (H27)
But by (H20) and (H26)
#1(&o) — (&) < ai[72(Lo) — ha(dp)] = 0, (H28)

which is a contradiction.
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