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We investigate the behavior of vortex flows in the presence of obstacles using numerical
simulations. Specifically, we simulate the evolution of an elliptically loaded vortex sheet
in the presence of a stationary flat plate in its path. The plate is represented by a number
of point vortices whose strength is such that they cancel the normal fluid velocity on the
plate. The sheet is approximated by a number of smoothed point vortices called vortex
blobs. The resulting system of ordinary differential equations is solved using the 4th
order Runge-Kutta method. In our simulations, we vary the initial distance d from the
vortex sheet to the plate, the angle φ of the plate relative to the sheet, and the numerical
smoothing parameter δ. We study the effects these parameters have on the vortex sheet
evolution, including the positions of the vortex centers and the vortex sheet midpoint.
We also compare with results derived from a simpler model using only two point vortices
instead of a whole sheet. Our main conclusions regard the effect of the distance d, which
reduces the total distance traveled as it is increased, and the angle φ, which significantly
affects the vortex trajectory after it encounters the plate.

1. Introduction

As planes fly through air, vorticity is shed from their wings and is left behind in the
wake of the plane. The shed vorticity concentrates in a layer, which rolls up into two
trailing vortices that travel downward. The air forced down by these vortices is often
referred to as downwash, with a downwards force of opposite sign and proportional in
magnitude to the upwards lift force acting on the plane. The strong force caused by the
trailing vortices of large planes can cause smaller airplanes flying behind them to crash.
Preventing such effects on following airplanes is the primary reason airports limit times
between takeoffs and landings. However, crashes still occur sometimes when an aircraft
flies into another aircraft’s path too soon. One example is the Piper Navajo crash in
Richmond, British Columbia in July 9, 2009 [http://www.cbc.ca/news/canada/british-
columbia/story/2009/07/10/richmond-plane-crash.html], which was flying behind an Air
Canada Airbus 321. Therefore much effort has been made to find mechanisms that reduce
the strength of the separated vorticity. For example, Rennich and Lele (1999) and Leonard
(1980) recommend mitigating trailing vortices’ effects by redesigning the airfoils to create
opposite signed vorticity that speeds up the viscous decay of the lead vorticity. A review
of the formation, motion, and persistence of trailing vortices relevant to air travel is given
by Spalart (1998).

In this paper we study the interaction of the trailing vorticity with obstacles in its path.
Following Baker (1979) and Krasny (1987), we model the 3-dimensional shed vorticity
layer by a planar 2-dimensional vortex sheet. The vortex sheet model consists of replacing
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the vortex layer of finite thickness by a surface of zero thickness. The fluid is assumed to
be inviscid, and is irrotational away from the surface. The velocity component tangential
to the surface is discontinuous across it. The velocity jump across the sheet is the vortex
sheet strength. Our initial conditions consist of the elliptically loaded vortex sheet which
induces flow past a flat plate.

We compute the evolution of the vortex sheet in the presence of a flat plate in its path.
The plate is, in turn, modeled as a sheet, whose strength is such that the normal fluid
velocity is zero on the plate wall. The free vortex sheet rolls up into a pair of vortices
approximating the trailing vortices. We find that the trajectory of this vortex pair is
deflected by the flat plate and study the amount of deflection as a function of the initial
distance between the sheet and the plate, and the angle of the plate relative to the initial
sheet. We also compare the vortex sheet results with those using a simple model in which
the trailing vortex is approximated by two point vortices.

Computing vortex sheet motion has a long history dating back to the numerical works
of Higdon and Pozrikidis (1985), Baker (1980), Saffman and Baker (1979), and Fink
and Soh (1978). Also see the review given by Sarpkaya (1989). These simulations are
based on approximating the sheet by point vortices and evolving these points using an
approximate set of governing ordinary differential equations. However, the early results
did not converge under mesh refinement. It was not until the work of Moore (1979) and
Krasny (1986ab) that some insight was gained as to the causes for the irregular point
vortex motion. Moore considered a periodic vortex sheet with analytic initial data, and
showed that, because of the Kelvin-Helmholtz instability of the sheet, the sheet does not
remain analytic at all times but develops a singularity in finite time. At that time the
vortex sheet strength and the sheet curvature become unbounded at a point on the sheet.
Krasny (1986a) showed that before that time, high wavenumber oscillations introduced
numerically due to roundoff error grow exponentially fast due to the Kelvin-Helmholtz
instability of the sheet, leading to noisy results. He introduced a Fourier filter, in which all
modes at the level of machine precision are truncated at each timestep in the simulation.
This filter prevents the growth of artificially introduced large wavenumbers. Numerical
simulations by Krasny (1986a) and Shelley (1992), and analytical work of Caflish, Er-
colani, Hou and Landis (1993) show that before the time of singularity formation, the
results computed with the Krasny filter converge as the spatial and time discretization
is refined, and the filter level decreased. However, Krasny also showed that past the time
of singularity formation, the filtered computations do not converge. The approach he
took to compute the motion past this time is to regularize the vortex sheet motion by
introducing a smoothing parameter into the governing equation. In effect, the sheet is
approximated by a finite number of regularized point vortices referred to as vortex blobs
[Chorin and Bernard (1973), Anderson (1986), and Krasny (1986b)]. The regularized
periodic sheet studied by Moore rolls up into a sequence of vortices, mimicking what is
observed in laboratory experiments. Comparison of vortex blob simulations with viscous
simulation [Tryggvason et al. (1991), Sheng et al. (2012)] and with laboratory experi-
ment [Nitsche and Krasny (1994)] shows that the regularized vortex sheet simulations
approximate the viscous flow well.

Here, we simulate the free vortex sheet modeling the wake of a plane using the regular-
ized vortex blob approximation. The free sheet rolls up at its edges into a double-spiral
forming two counter-rotating vortices. These vortices travel downstream in direction of
the plate, and move around the plate. We study the effect of the regularization parame-
ter, the distance between the initial sheet and the plate, and the angle of inclination of
the plate. We observed the following trends. As we reduce the vortex blob parameter, the
vortex spiral develops more turns and travels slightly faster. However, the trajectories of
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the vortex centers, and of the two-point-vortex approximation seem unchanged. On the
other hand, modifying the distance between the initial vortex sheet and the plate changes
the total distance travelled by the free sheet. If the sheet starts out close to the flat plate,
it travels noticeably further than in the absence of a plate. For larger initial distances
between the plate and the sheet, the sheet travels less far. Changing the inclination of
the plate deflects the trajectory of the plate. Here, interestingly, for small values of φ
the trajectory is deflected in the direction of the orientation of the plate, leaving at a
small angle from the direction of approach, normal to the plate. However, for large val-
ues, the vortex trajectory is deflected in the direction opposite to the orientation of the
plate, leaving in the direction parallel to the plate. In all cases studied, the vortex pair
approximation of the sheet behaved qualitatively similar to the vortex sheet trajectory.
Small quantitative differences between the sheet and the point vortex pair are observed
in the case of flow plast an inclined plate, with small changes in the angle of deflection
of the vortex motion.

The paper is organized as follows. Section 2 describes the problem considered here. In
Section 3, we present the governing equations, the discrete approximation by a system
of ordinary differential equations, and the numerical method to solve them. Section 4
presents the numerical results. The results are summarized in Section 5.

2. Problem Description

2.1. Shear layer separation behind airfoil

When fluid moves past walls, fluid viscosity causes particles to stick to the wall. This
creates large velocity gradients and thereby introduces nonzero rotation into the flow.
The fluid rotation is measured by the vorticity. This is easiest to see using a simple
example of planar two-dimensional flow.

First, we introduce the variables describing the fluid flow. In Cartesion coordinates
x = (x, y, z), the velocity field is given by

u(x, t) = (u(x, t), v(x, t), w(x, t)) (2.1)

where u, v, w are the velocity components in the x-, y-, and z-direction respectively. The
fluid rotation is measured by the vorticity

∇× u = (
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y
) . (2.2)

Specifically, at a point in the flow domain at which the vorticity vector is nonzero, the
fluid rotates in a plane normal to the vorticity with angular velocity equal to half of
the vorticity magnitude. Planar two-dimensional flow refers to the case when there is
no velocity component in the z-direction, and no changes in the z-direction, w = 0 and
∂/∂z = 0. In that case the velocity and vorticity reduce to

u(x, t) = (u(x, y, t), v(x, y, t), 0) , (2.3a)

∇× u = (0, 0, ω ) (2.3b)

where ω = ∂v
∂x −

∂u
∂y is the scalar vorticity. That is, the vorticity is a vector pointing in

the z-direction. If ω > 0, fluid rotates in the xy-plane, normal to the vorticity, in the
counterclockwise direction. If ω < 0, the rotation is clockwise. For planar flows, we will
not list the third zero component of the velocity field.

Now consider the simple example of planar flow parallel to a flat wall at y = 0. In the
absence of viscosity, the uniformly parallel flow (U, 0), illustrated in figure 1(a), solves



4 J. O. Archer

y

u

(a) y

u

(b)

Figure 1: Velocity profiles in parallel flow past a wall. (a) Inviscid flow. (b) Viscous flow
with boundary layer of clockwise rotating vorticity (in blue).
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Figure 2: Sketch showing shear layer separation and rollup behind an airfoil in oncoming
flow, that is parallel and uniform in the far field, with magnitude U .

the governing Euler Equations. On the other hand, in the presence of viscosity, the fluid
velocity must vanish at the wall. Thus a transition region forms between the wall and
the far field velocity in which the velocity decreases in magnitude from U to zero; see the
region indicated in blue in figure 1(b). Within this boundary layer the velocity gradients,
in particular ∂u

∂y in this case, are large, leading to large negative vorticity. The vorticity is
carried downstream with the fluid velocity and can separate at corners or regions of large
curvature. The flow within a separated layer of vorticity with large velocity gradients is
referred to as a shear flow.

Figure 2 is an idealized schematic of the three-dimensional generation and separation
of vorticity in flow past an airfoil. The vorticity, shown in blue, is generated around the
wing and separates as a shear layer that rolls up into a spiral along each of the wing tip
flat edges. The vorticity concentrates within the spirals, and forms the trailing vortices
often observed behind flying planes, also referred to as contrails. The fluid velocity is
large within the vortices, which, according to Bernoulli’s law, leads to small air pressure
in this region. As a result, water vapor in the air condensates forming a mini-cloud, which
is what makes the contrails behind the plane visible. The two trailing vortices induce a
downward motion on each other, which is felt as downwash when the plane is near the
ground.

For reference below, we let x = (x, y, z) denote the coordinates of a point in the
Cartesian coordinate system illustrated in figure 2, with the xy-plane parallel to the
span of the airfoil, the z-axis normal to it, with the origin at the center of the trailing
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Figure 3: Sketch showing the initial vortex sheet, in blue, mimicking the shear layer
behind the plane at z = 0. The sheet induces flow past it, from below to above, shown
in black, with no fluid flowing through the sheet. (a) Reference frame fixed on the sheet.
(b) Reference frame fixed at infinity.

edge of the wing. We consider a reference frame in which the airfoil is stationary, so that
the oncoming fluid flow is in direction of the z-axis.

2.2. Free vortex sheet model for separated shear layer

Following Krasny (1987), we now model the separated shear layer by an elliptically loaded
planar vortex sheet. The vortex sheet approximates the shear layer by a surface across
which the tangential velocity is discontinuous. The fluid is assumed to be inviscid, and
the vorticity is zero away from the sheet. The initial sheet is chosen so as to approximate
the idealized shear layer behind the airfoil, illustrated in figure 2 downstream of the
wing. That is, it is chosen to be flat with velocity jump across the sheet prescribed to be
such that it induces flow past the sheet but with no fluid flowing through the sheet. The
resulting vorticity distribution yields the sheet referred to as “elliptically loaded”. The
flow moves from the bottom to the top of the sheet, mimicking the flow from bottom to
top around the sides of the airfoil. This initial sheet and the induced flow is sketched in
figure 3. In figure 3(a), the flow is shown in a reference frame in which the velocity at
the sheet vanishes, and the flow is upward and uniform with constant value U at infinity.
In our computations we use the reference frame shown in 3(b), in which the velocity at
infinity vanishes, and the initial velocity is downward and uniform on the plate. It is
obtained from the flow in 3(a) by adding a potential flow −U to it.

The sheet is allowed to move freely under its self-induced motion. As will be seen, as
time increases the sheet rolls up at its edges as it moves downward, corresponding to a
crossection of the idealized shear layer in figure 2 at z > 0.

The vortex sheet is defined by its position

x(α, t) = (x(α, t), y(α, t)) , (2.4)

and by the distribution of vorticity along the sheet. The vorticity distribution is described
by the circulation function Γ(α), where

Γ(α) =

∫
∂D

u · T ds =

∫
D

∇× u · ndA =

∫
D

(0, 0, ω) · (0, 0, 1)dA =

∫
D

ωdA , (2.5)

and ∂D is a curve enclosing the sheet between x = 0 and x = x(α, t). As applied in
equation (2.5), Stokes theorem shows that Γ measures the integral amount of vorticity
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Figure 4: (a) Evolution of the initially flat vortex sheet (blue) under its self-induced
velocity, in the absence of a plate, at the indicated times. (b) Position of the plate (red)
relative to the initial vortex sheet, illustrating the vertical distance d, and plate angle φ.

in this portion of the sheet. One can show that Γ is related to the jump in the tangential
velocity component across the sheet by

dΓ

ds
= −(u+ − u−) = σ(s, t) (2.6)

where s is arclength, and u± are the limiting tangential velocities from above and below
the plate respectively. The quantity σ(s, t) is referred to as the vortex sheet strength. If
the points x(α, t), y(α, t) move with the average of the velocities above and below the
sheet, then Γ(α) is independent of time. However, the sheet strength σ at a given point
α does depend on time.

The elliptically loaded initally flat sheet illustrated in figure 3, non-dimensionalized to
have unit half-length and unit circulation around half the sheet, is given by

x(α, 0) = cos(α) , (2.7a)

y(α, 0) = 0 , (2.7b)

Γ(α) = sin(α) , (2.7c)

with α ∈ [0, π]. The corresponding non-dimensionalization initial downward sheet veloc-
ity is −U = (0,−1/4). Notice that this initial sheet has singularities near the endpoints
x = ±1. Since

Γ(s) = Γ(x) =
√

1− x2 , (2.8)

it follows that the velocity jump,

dΓ

ds
=
dΓ

dx
=
dΓ

dα
· dα
dx

= − x√
(1− x2)

, (2.9)

becomes unbounded as x approaches 1.

2.3. Bound Vortex Sheet Model for Plate

We consider the evolution of the initially flat vortex sheet under its self-induced velocity.
In the absence of an obstacle in its path, Krasny (1987) showed that the sheet rolls up at
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its edges as it moves downward, as shown in figure 4(a). In this paper, we consider how
the evolution is altered if a flat, rigid plate is positioned in its path, as shown in figure
4(b). The plate is positioned at distance d below the initial vortex sheet, and is inclined
at an angle φ from the horizontal. In our inviscid model, the plate modifies the total fluid
velocity by adding a component to it that ensures that no flow passes through it. We are
interested in the effect of the vertical distance d between the plate and the sheet, and of
the inclination angle φ on the evolution of the free vortex sheet.

Herein, we change reference frame and place the initial free sheet at y = d, with the
plate at y = 0 as shown in figure 4. The position of the plate is described by

xp(β) = (cosβ cosφ, cosβ sinφ− | sinφ|) , β = [0, π] . (2.10)

The plate is modelled by a fixed vortex sheet in its place whose strength σp is such that
the normal fluid velocity on the plate vanishes. As we will see, this results in a linear
system that determines the discretized vortex strength on the plate.

3. Governing Equations

3.1. Euler Equations

Vortex sheet flow is governed by the Euler equations for inviscid, incompressible flow.
These are a set of partial differential equations obtained from conservation of mass and
momentum, under the assumption that there are no friction forces parallel to solid walls
immersed in the fluid, and no viscous diffusion. The incompressible Euler equations for
fluid in a domain D bounded by solid walls are given by

Dρ

Dt
= 0 inD , (3.1a)

ρ
Du

Dt
= −∇p inD , (3.1b)

∇ · u = 0 inD , (3.1c)

u · n = Uwall · n on ∂D , (3.1d)

where ρ = ρ(x, t) is the fluid density, u = u(x, t) = (u(x, t), v(x, t)) is the fluid velocity,
p = p(x, t) is the fluid pressure, and Uwall is the wall/boundary velocity (which is
equal to 0 if the wall is stationary). Throughout, x = (x, y). The gradient operator is
∇ = (∂/∂x, ∂/∂y), and the material derivative is D

Dt = ∂
∂t +u ·∇ = ∂

∂t +u ∂
∂x + v ∂

∂y . The

boundary condition 3.1(d) states that the fluid velocity is parallel to the walls, but the
parallel component is not necessarily zero.

For homogeneous incompressible planar flow, for which ρ(x, t) = ρ0 is constant through-
out the fluid, the Euler equations imply that the scalar vorticity is constant on particles
moving with the flow,

Dω

Dt
= 0 . (3.2)

Furthermore, we know from vector calculus that for incompressible planar flow there
exists a streamfunction ψ(x, y, t) whose level curves are streamlines of the flow. It is
determined uniquely, up to a constant, by the fluid velocity from

∂ψ

∂x
= −v , ∂ψ

∂y
= u . (3.3)

Conventionally, the constant is set to be such that ψ = 0 on the walls. Thus, the stream-
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function is alternatively determined by the vorticity from

∇2ψ = −vx + uy = −ω in D , ψ = 0 on ∂D (3.4)

In infinite domain R2, with vanishing velocity at infinity, the solution to the Poisson
equation (3.4) is known to be

ψ(x, t) = − 1

2π

∫
ω(x′, t) ln |x− x′|dx′ . (3.5)

Given the vorticity in the fluid, the velocity is recovered from equations (3.3). In the
presence of solid bodies in the flow, the fluid velocity is given by

u(x, t) =
1

2π

∫
(−(y − y′), x− x′)

(x− x′)2 + (y − y′)2
ω(x′, t)dx′ +∇Φ(x, t) (3.6)

where ∇Φ is the potential flow that ensures that the total velocity is parallel to the solid
walls on the boundary of the domain.

Given the fluid vorticity, the fluid velocity is thus recovered from (3.6). The velocity
in turn determines the vorticity evolution through equation (3.2). This is the main idea
of the vortex method used in this paper, described in §4. The next section describes the
specific form of (3.6) for the vortex sheet flow past a plate.

3.2. Vortex sheet flow past a plate

For a vortex sheet, the vorticity is a delta function on the sheet and the integral in
equation (3.6) reduces to a line integral over the sheet. For circulation distribution Γ(α),
the resulting velocity induced by the sheet vorticity at a point x(α, t) = (x(α, t), y(α, t))
on the sheet is

u(x(α, t), t) =
1

2π

∫ π

0

(−(y − y′), x− x′)
(x− x′)2 + (y − y′)2 + δ2

dΓ

dα
(α′) dα′ +∇Φ(x(α, t), t) , (3.7)

where (x, y) = (x(α, t), y(α, t)) and (x′, y′) = (x(α′, t), y(α′, t)). Here, the parameter δ is
introduced in the denominator to regularize the motion, following Krasny (1986b). This
is necessary since otherwise the equations yield irregular particle motion.

In our case, x(α, t) and Γ(α) represent the free vortex sheet simulating the separated
shear layer behind the plane, initially given by equation (2.7c), and ∇Φ(x(α, t)) is the
potential flow that vanishes at infinity and cancels the normal fluid velocity on the plate.
It is induced by a second vortex sheet with position xp(β) bound to the plate, whose
vorticity distribution given by the strength σp = dΓp/ds is such that the normal fluid
velocity on the plate is cancelled. The resulting potential flow induced by the bound
sheet at a point x away from the plate is given by

∇Φ(x, t)) =
1

2π

∫ π

0

(−(y − y′p), x− x′)
(x− x′p)2 + (y − y′p)2

dΓp
dβ

(β′, t) dβ′ (3.8)

where (x′p, y
′
p) = (xp(β

′), yp(β
′)).

The position xp(β) is given by equation (2.10). The circulation Γp(β, t) is determined
from the equation

u(xp(β), t) · np = 0 where np = (− sinφ, cosφ) , (3.9)

and φ is the plate angle shown in figure 4b. Here, u(xp(β), t) is the total velocity given
by equations (3.7,3.8) at a point on the plate.

Note that the line integral in (3.8) has not been regularized by δ. This is necessary for
the following reason. As will be seen in the next section, upon discretizing, equation (3.9)
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determines a linear system for the discrete vortex sheet strength. This system is solved
at each time step to determine Γp(β, t). The system is invertible only if the integral over
the bound sheet in equation (3.8) is not regularized.

As a result, in order to evaluate the velocity at points on the plate, the integral in
(3.8) must be considered in the principal value sense. The Plemelj equations (e.g., see
Muskhelishvili 1953) show that the principal value integral equals the average of the
limiting velocities above and below the sheet. At a point away from the plate, the integral
in (3.8) is proper and no principal value needs to be taken.

In sumary, the evolution of the free vortex sheet x(α, t) in the presence of the plate is
given by

dx

dt
(α, t) =

1

2π

π∫
0

−(y − y′), (x− x′)
(x− x′)2 + (y − y′)2 + δ2

dΓ

dα
(α′) dα′

+
1

2π

π∫
0

−(y − y′p), (x− x′p)
(x− x′p)2 + (y − y′p)2

dΓp
dβ

(β′) dβ′

(3.10)

with initial conditions x(α, 0) = (x(α, 0), y(α, 0)) and Γ(α) given by equation (2.7c).
Notice that the free sheet x(α, t) is always at some distance from the plate, so the second
integral in (3.10) is not of principal value type. The solution of this system of two ordinary
differential equations is the one we are interested in here.

4. Numerical Method

4.1. Discretization

The free vortex sheet is approximated by a set of N + 1 regularized point vortices with
position and circulation xj(t) and ∆Γj , j = 0, . . . , N . Their initial position is given by
xj(0) = x(αj , 0), αj = jπ/N . Their circulation is given by

∆Γj =
dΓ

dα
(αj)∆αj

where ∆αj = (αj+1−αj−1)/2, j = 1, . . . , N −1, and ∆α0 = α1−α0 ∆αN = αN −αN−1
These are the trapezoid rule weights of the discretization of (3.10) given below.

The bound vortex sheet is approximated by a set of Np+1 point vortices with position
and circulation xp,j = xp(βj), βj = jπ/N and ∆Γp,j , j = 0, . . . , Np. These circulations
are determined at each time step as explained shortly.

With this discretization, the regularized point vortices representing the free vortex
sheet are evolved using an approximation of equations (3.10), obtained using the trape-
zoid rule,

dxj
dt

=
1

2π

N∑
k=0

−(yj − yk), (xj − xk)

(xj − xk)2 + (yj − yk)2 + δ2
∆Γk

+
1

2π

Np∑
k=0

−(yj − yp,k), (xj − xp,k)

(xj − xp,k)2 + (yj − yp,k)2
∆Γp,k ,

(4.1)

j = 0, . . . , N .
The plate circulations ∆Γp,k are obtained at each timestep by enforcing the discretized

version of equation (3.9) at the Np midpoints on the plate,

xmp,j = xp(β
m
j ) , βmj = (βj − βj−1)/2 , j = 1, . . . , Np . (4.2)

The system of discretized equations u(xmp,j) · np = 0 is given by the following Np linear
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equations in the Np + 1 unknowns ∆Γp,j

Np∑
k=0

sinφ(ymp,j − yp,k) + cosφ(xmp,j − xp,k)

(xmp,j − xp,k)2 + (ymp,j − yp,k)2
∆Γp,k .

= −
N∑
k=0

sinφ(ymp,j − yk) + cosφ(xmp,j − xk)

(xmp,j − xk)2 + (ymp,j − yk)2 + δ2
∆Γk .

(4.3)

In order to uniquely solve for the Np+1 unknowns, this system is augmented by enforcing
that the total circulation in the flow be zero,

Np∑
k=0

∆Γp,k = 0 . (4.4)

The linear system determining the bound vortex sheet circulations can be written as

A ·∆Γp = b , (4.5)

as follows,


sinφ(ymp,1−yp,0)+cosφ(xm

p,1−xp,0)

(xm
p,1−xp,0)2+(ymp,1−yp,0)2

. . .
sinφ(ymp,1−yp,Np )+cosφ(xm

p,1−xp,Np )

(xm
p,1−xp,Np )

2+(ymp,1−yp,Np )
2

...
. . .

...
sinφ(ymp,Np

−yp,0)+cosφ(xm
p,Np

−xp,0)

(xm
p,Np

−xp,0)2+(ymNp
−yp,0)2 . . .

sinφ(ymp,Np
−yp,Np )+cosφ(xm

p,Np
−xp,Np )

(xm
p,Np

−xp,Np )
2+(ymNp

−yp,Np )
2

1 . . . 1




∆Γp,0
...
...

∆Γp,Np



= −


∑N
k=0

sinφ(ymp,1−yk)+cosφ(xm
p,1−xk)

(xm
p,1−xk)2+(ym1,p−yk)2+δ2

∆Γk
...∑N

k=0

sinφ(ymp,Np
−yk)+cosφ(xm

p,Np
−xk)

(xm
p,Np

−xk)2+(ymNp,p−yk)2+δ2
∆Γk

0


(4.6)

Note that the matrix A depends only on the bound vortex sheet position, which does
not change in time. This system is solved at each timestep to obtain updated values of
∆Γp,k.

4.2. Time Steps

The system of equations (4.1) is solved using the 4th-order Runge-Kutta method to step
forward in time, 

k1 = ∆t ũ(x̃(t), t)
k2 = ∆t ũ(x̃(t) + k1/2, t+ ∆t/2)
k3 = ∆t ũ(x̃(t) + k2/2, t+ ∆t/2)
k4 = ∆t ũ(x̃(t) + k3, t+ ∆t)

x̃(t+ ∆t) = ˜x(t) + (k1 + 2k2 + 2k3 + k4)/6

(4.7)

where the tildes refer to the discrete approximations of x and u(x, t), x̃ = (x1(t), . . . ,xN (t)),
ũ = dx̃/dt. Note that the bound vortex sheet circulations ∆Γp,k are updated in each of
the four Runge-Kutta stages.

In all of our simulations, we set our time step to be ∆t = 0.05. If we set it larger
than this, the sheet starts twisting and deforming in odd places. If we set it smaller than
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this, there is no discernible improvement in simulation quality. In all our simulations,
we approximated the bound vortex sheet by 600 points (Np = 599). The free sheet is
approximated initially by 1000 points (N = 999). As the free sheet evolves and stretches,
new points are inserted to maintain resolution. This step is described next.

4.3. Inserting new vortices in the free sheet

As the free vortex sheet evolves it edges roll up into a spiral and the sheet is stretched.
As a result, soon after the beginning of the motion, the initial number of 1000 regularized
point vortices is insufficient to accurately represent the position of the vortex sheet. We
therefore use a 3rd-order Lagrange interpolation formula to place new vortices into the
vortex sheet as time progresses, interpolating in the α variable. Under certain conditions,
described below, we insert a point in the middle of four pre-existing sequential points,
as follows. Suppose the four pre-existing points have position xk−2,xk−1,xk,xk+1 and
correspond to parameters αk−2, αk−1, αk, αk+1. The new point is inserted between the
second and third point of these four. It is assigned a corresponding parameter of

αnew = (αk−1 + αk)/2

and given position

xnew = xk−2
(αk−αk−1)(αk−αk+1)(αk−αk+2)

(αk−2−αk−1)(αk−2−αk+1)(αk−2−αk+2)

+xk−1
(αk−αk−2)(αk−αk+1)(αk−αk+2)

(αk−1−αk−2)(αk−1−αk+1)(αk−1−αk+2)

+xk+1
(αk−αk−2)(αk−αk−1)(αk−αk+2)

(αk+1−αk−2)(αk+1−αk−1)(αk+1−αk+2)

+xk+2
(αk−αk−2)(αk−αk−1)(αk−αk+1)

(αk+2−αk−2)(αk+2−αk−1)(αk+2−αk+1)

(4.8)

and circulation

∆Γnew = Γ(αnew)(αk − αk−1)/2 .

To correctly represent the trapezoid rule approximation of the integrals, the circula-
tions of the neighbouring points to the new point need to be corrected to

∆Γk−1 = Γ(αk−1)(αnew − αk−2)/2

∆Γk = Γ(αk)(αk+1 − αnew)/2

All points are then reindexed from k = 1, N + 2, and the value of N is increased by 1.
We use this formula to insert new points under the following criteria:
(1) Points are not inserted in the innermost loop in each of the two spiral centers.

As will be seen below, the innermost loop has an inflection point near the end of the
sheet. Points are not inserted between this inflection point and the end of the sheet.
The inflection point within each spiral is determined by finding the point at which the
crossproduct of two vectors between consecutive points

(xk − xk−1, yk − yk−1, 0)× (xk+1 − xk, yk+1 − yk, 0)

changes sign. This inflection point, xI , is a good approximation of the spiral center.
(2) Points are inserted on the outer spiral turns if the spacing between the points is

too large. Here, we ensure that the total number of points around one turn of the spiral
is no less than a prescribed minimum, in our case 60 points. We thus insert a point if
the angle two consequtive points xk−1, xk make with the spiral center xI is bigger than
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π/30. This angle is computed using the Law of Cosines

A2 = ||xk−1 − xI ||2
B2 = ||xk − xI ||2
C2 = ||xk − xk−1||2

cos θ = A2+B2−C2

2AB ;

(4.9)

Each of the two spirals is considered separately.
(3) Points are not inserted outside of the spiral roll-up, past points on the sheet at

which the curvature changes sharply. Past those points, point insertion proved to be too
inaccurate. Thus, in our simulations the spiral roll-up is resolved, but the vortex sheet
in the far field is not fully resolved. This aspect of our computation could be improved,
but we will leave this for future work. The point at which the curvature κ changes too
fast was determined by trial and error to be the first point at which dκ/dα ≥ 100000.
Taking the variable s to be arc length, we approximate the curvature

κ =

∣∣∣∣d2xds2
∣∣∣∣

as follows, using formulas for finite-difference derivative approximations:

∆s1 = ||xk − xk−1|| , ∆x1 = xk − xk−1 , ∆y1 = yk − yk−1 ,
∆s2 = ||xk+1 − xk|| , ∆x2 = xk+1 − xk , ∆y2 = yk+1 − yk ,

κk = 2

√
(∆s1∆x2 −∆s2∆x1)2 + (∆s1∆y2 −∆s2∆y1)2

∆s1∆s2(∆s1 + ∆s2)

(4.10)

The rate of change of curvature at a point xk is approximated by

dκ

dα

∣∣∣∣
k

=
κk+1 − κk−1
αk+1 − αk−1

. (4.11)

4.4. Two Vortex Approximation of Shear Layer

We compare results of the vortex sheet model with an even simpler model in which the
vortex sheet is replaced at t = 0 by two point vortices with circulation and center of
mass equal to each half of the vortex sheet,

xl =

∑N/2
k=0 xk∆Γk∑N/2
k=0 ∆Γk

, xr =

∑N
k=N/2 xk∆Γk∑N
k=N/2 ∆Γk

, Γl = 1 , Γr = −1 . (4.12)

These two points are evolved in the flow equation according to the point vortex equations

dxl
dt

=
1

2π

−(yl − yr), (xl − xr)
(xl − xr)2 + (yl − yr)2

Γr +
1

2π

Np∑
k=0

−(yl − yp,k), (xl − xp,k)

(xl − xp,k)2 + (yl − yp,k)2
∆Γp,k ,

dxr
dt

=
1

2π

−(yr − yl), (xr − xl)
(xr − xl)2 + (yr − yl)2

Γl +
1

2π

Np∑
k=0

−(yr − yp,k), (xr − xp,k)

(xr − xp,k)2 + (yr − yp,k)2
∆Γp,k .

5. Results

This section presents the evolution of the vortex sheet and the two-point-vortex ap-
proximation computed as described above.



13

−5 0 5
−6

−4

−2

0

2

x

y

 t = 0

−5 0 5
−6

−4

−2

0

2

x

y

t = 0

−5 0 5
−6

−4

−2

0

2

x

y

t = 20

−5 0 5
−6

−4

−2

0

2

x

y

t = 20

−5 0 5
−6

−4

−2

0

2

x

y

t = 40

−5 0 5
−6

−4

−2

0

2

x

y

t = 40

−5 0 5
−6

−4

−2

0

2

x

y

t = 60

−5 0 5
−6

−4

−2

0

2

x

y

t = 60

Figure 5: Comparison of vortex sheet evolution at the indicated times, in the absence of
a plate (left column), with evolution in the presence of a plate at distance d = 2, with
φ = 0 (right column). Computations are performed with δ = 0.2. .
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Figure 6: Trajectory of vortex core from t = 0 to t = 60, with d = 2, δ = 0.2, φ = 0. (a)
Large scale showing vortex movement around plate. (b) Closeup showing the endpoint
of the sheet (green), the position of the inflection point (blue), and the position of the
point vortex pair approximation (purple).

5.1. Vortex sheet evolution around plate, with d = 2, φ = 0, δ = 0.2

Figure 5 compares the vortex sheet position at the indicated times, in the absence of a
plate (left column) with the evolution in the presence of a plate at d = 2, with φ = 0
(right column). In both cases, the computations are performed with δ = 0.2.

The left column reproduces results in Krasny (1987). The sheet rolls up into a spiral
around each of its edges as it travels downward. In the right column, a plate is positioned
one sheet length below the initial sheet position. As the sheet rolls up and moves down-
ward, it approaches the plate, and wraps around the plate around t = 20. Afterwards,
the sheet continues its roll-up and downward motion. However, comparison with the left
column shows that in the presence of the plate, the sheet has been slowed down. As a
result it has not traveled as far at t = 60 as in the case of no plate. We note that in
the right column, the sheet is shown in blue and green colors. The blue portion of the
sheet is the one that is well-resolved by the point insertion algorithm. The green portion
is the one that is underresolved due to regions of high curvature that form as the sheet
approaches the plate. This green portion does not correspond exactly to the regions of
high curvature exempted from interpolation by our criterion, but is edited for visual
clarity. These high curvature regions make it difficult to resolve the flow better.

Figure 6 shows the trajectory of the two spiral vortex centers. For comparison, the
position of the endpoints of the sheet (green) and the position of the inflection point
near the endpoint (blue) are shown. The position of the two-point-vortex approximation
of the vortex sheet is shown in purple. Figure 6(a) also plots the position of the midpoint
of the sheet corresponding to parameter α = π/2. Figure 6(a) shows that both spiral
centers remain symmetric about the middle line. The centerpoint on the discretized
vortex sheet travels straight downward after closely moving around the plate. The spiral
centers move down and around the plate. The closeup in figure 6(b) shows that the three
trajectories, approximating the spiral centers, follow each other closely. The endpoints
and the inflection point oscillate slightly as they travel downstream, while the path of the
two-point-vortex approximation is non-oscillatory. The two-point-vortex approximation
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Figure 7: Solution for δ = 0.4, 0.2, 0.1, as indicated, with d = 2, φ = 0. Closeup of vortex
sheet at t = 60 (left), and core trajectories (right).

travels slightly farther than the vortex sheet, but otherwise it models the vortex sheet
trajectory remarkably well. The following sections discuss the dependence of the solution
on the three parameters δ, d, and φ.

5.2. Dependence on δ

Figure 7 shows the dependence of the solution on δ, by comparing results with δ = 0.4, 0.2
and 0.1. The left column shows a closeup of the left spiral center at the final time t = 60.
As δ decreases, the number of spiral turns increases significantly. With the smallest value
of δ = 0.1, the number of spiral turns is so large we could not fully resolve it with
our available computing time, which is in part the reason for the irregularities that can
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Figure 8: Solution for d = 1, 2, 4, as indicated, where d is the distance of plate from initial
sheet position, for δ = 0.2, φ = 0. The position of the sheet at t = 60 (top) and and the
vortex core trajectories (bottom) are shown.

be observed near the spiral center. The position of the center depends somewhat on δ.
While the x-coordinate xc of the center remains almost unchanged as δ decreases, the
y-coordinate yc at the final time is slightly more negative for smaller δ. For example, for
δ = 0.1, yc ≈ −3.5, while for δ = 0.4, yc ≈ −3.2.

The left column in figure 7 clearly shows the behaviour characteristic of the vortex
sheet roll-up near the center. The spiral ends in the form of a small hook, formed by a
change in concavity of the roll-up close to the end of the sheet. The resulting inflection
point is the point xI referred to in figures 6 and in the discussion of the point insertion
method, in §4.3.

The right column in figure 7 shows the trajectory of the vortex center, approximated
by the vortex sheet endpoints and the inflection point, as well as the middle point on the
sheet with α = π/2, and the two-point vortex approximation. A close inspection of this
figure shows that as δ decreases, the vortex center oscillates with a smaller amplitude and
higher frequency. Again, the spiral center is well approximated by the two-point-vortex
approximation. The midpoint veers to the left of the straight downward trajectory for
the smallest value of δ. This is most likely caused by loss in resolution.

5.3. Dependence on d

Next, we vary the distance d between the plate and the initial vortex sheet. Figure 8
plots the solution computed with d = 1, 2, 4, with δ = 0.2, φ = 0. The top row shows
the vortex sheet position at the last time computed, t = 60. The bottom row shows the
sprial center trajectory.

The top row shows that at t = 60 with d = 4, the vortex sheet has just moved past
the plate. Comparison of the sheet position at t = 60 clearly shows that as d increases,
the vortex sheet travels less far. That is, the plate slows the sheet down, more so the
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further it is from its initial position. This is also evident from the trajectories shown
in the bottom row. As d increases, the total distance travelled by the spiral centers, as
well as by the two-point approximation, is smaller. It is interesting to note that with the
smallest value of d shown, d = 1, the total distance travelled is actually larger than in
the absence of a plate, shown in figure 5, left column. That is, if the plate is close to
the initial sheet, in speeds up the sheet’s downward motion. As the plate is moved away
from the initial sheet, it slows the motion down.

5.4. Dependence on φ

Figure 9 shows the results if the plate is inclined away from the horizontal by an angle
φ, where we consider φ = π/12, π/6, π/4, π/3, with δ = 0.2, d = 2. The sheet position at
t = 60 is shown at the left, the center trajectories (blue, green) and the two-point-vortex
approximation (red) is shown at the right. The top row shows the smallest inclination
angle, φ = π/12. This case is thus closest to the case φ = 0 considered previously.
Remember that for φ = 0, the vortices approached the plate at an angle normal to the
plate and leave the plate on its other side also at an angle normal to it. For φ = π/12
the situation is similar. The vortices approach the plate at an angle close to normal.
After encountering the plate they leave the plate practically normal to it. Thus the plate
deflects the trajectory by π/12.

As φ increases, the situation dramatically changes. In the top middle row, with φ =
π/6, the vortices leave the plate not normal to it, but close to parallel to it. Thus, for
this value of φ, the plate deflects the vortices in the opposite direction!

With the second largest angle, φ = π/4, shown in the bottom middle row, this be-
haviour is even more evident: after the vortices encounter the plate, they leave the plate
parallel to it, instead of normal to it.

For the largest angle φ = π/3, shown in the bottom row, the vortices first run parallel
to the plate while the plate is between them. Then they veer away in a straight line at
an even further angle from horizontal.

Thus, encountering a plate at an angle deflects the trajectory of the vortices. If the plate
is inclined little from the horizontal, the trajectory is deflected little from the vertical,
and remains close to normal to the plate. If the plate in inclined far from the horizontal,
the vortex is deflected in the opposite direction and leaves the plate almost parallel to
it, instead of normal to it.

The observed behaviour is qualitatively similar in the two-point vortex approximation.
However, for large angles φ, the two-point vortex approximation is deflected further than
the vortex sheet.

6. Summary

The evolution of an elliptically loaded vortex sheet in the presence of a plate in its
path, of the same size as the sheet, is computed using a vortex method. The sheet rolls up
into a spiral at each of its edges, forming a vortex pair that travels in a linear trajectory
towards the plate. The two vortices then move around the plate and continue to follow a
linear trajectory as they leave on the other side of the plate. When the vortex sheet hits
the plate the sheet develops regions of high curvature and becomes difficult to resolve in
those areas.

The vortex sheet motion is regularized numerically by introducing a parameter δ into
the governing equations. We studied the dependence of the solution on the parameter δ,
on the distance d of the plate from the initial sheet position, and on the inclination angle
φ of the plate, relative to the oncoming vortex sheet trajectory.
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Figure 9: Solution for φ = π/12, π/6, π/4, π/3, as indicated, for d = 2, δ = 0.2. The
position of the sheet at t = 60 (top) and the trajectories of the vortex core (blue/green)
as well as the point vortex pair approximation (pink) are shown.

The following trends are observed.
• As δ decreases, the vortex sheet develops more spiral turns, forming a more tightly

wound spiral. The vortex pair also travels slightly faster for smaller δ.
• As we increase the distance d of the plate from the initial sheet, the vortex sheet

meets the plate at correspondingly later times. For small values of d, the sheet speeds
up and travels faster than in the absence of any plate. As d increases, the total distance
travelled decreases slightly. Besides these effects, the vortex sheet trajectory is largely
unaffected by d.
• The above results are obtained with the plate normal to the oncoming vortex sheet
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Figure 10: Graphical comparison of angles φ and Θ, as indicated, for d = 2, δ = 0.2
Values of Θ are measured clockwise from horizontally downward.

trajectory, corresponding to inclination angle φ = 0. The inclination angle affects the
direction of propagation of the vortex pair after it encounters the plate. For small values
of φ, the vortex pair leaves the plate normal to it, in the direction of inclination of the
plate, and thus slightly displaced from the oncoming direction. However, for large values
of φ, the vortex pair leaves the plate almost parallel to the plate, in direction opposite
of the direction of inclination of the plate. Therefore there seems to be a bifurcation in
the direction of travel of the vortices as a function of φ. We estimate this bifurcation by
taking a cursory examination of the vortex deflection angle Θ. Figure 10 shows that for
φ = 0 and φ = π, Θ = 0; we know this beforehand. For small values of φ, Θ is deflected
weakly counterclockwise. For larger values of φ < π, the angle Θ is deflected strongly
clockwise.

We compared the vortex sheet trajectory with the trajectory of a two-point-vortex
approximation of the sheet with equal initial circulation and centroid in each half of the
symmetry plane. We found that in all cases the two-point-vortex motion and the vortex
sheet center trajectory were in very close agreement, with small angular discrepancies
for φ > 0.
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