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 There is a need for accurate modeling of gravitational waves.  Currently there are a large 

number of projects designed to detect gravitational waves (the ground based detectors LIGO, 

VIRGO, GEO600, TAMA), and space-based detectors (e.g. LISA).  Yet, gravitational waves are 

expected to be very weak and difficult to detect. Therefore, accurate modeling of expected 

waveforms is important.  The Schwarzschild solution is a spherically symmetric vacuum solution 

to the Einstein equations.  Perturbations of the Schwarzschild solution can be described in terms 

of a denumerable collection of 1+1 "master" wave equations (Regge-Wheeler and Zerilli 

equations, indexed by spherical harmonic indices): 

                        

where r is the areal radius from the center of the hole, t is time, V(r) is a potential, S(r,t) is a 

source term, and x = r + 2M log(r/2M - 1) the Regge-Wheeler tortoise coordinate.  The 

difference between the Regge-Wheeler and Zerilli equations is in the potential, they describe 

perturbations of differing parity. These wave equations represent a simplified model of the 

situation and are accurate for small perturbations of non-rotating, non-charged, spherically 

symmetric black holes.  They can accurately model the case where an orbiting "particle" has a 

mass much much less than that of the hole, a so-called Extreme Mass Ratio Binary (EMRB).  

Time-domain simulations for such scenarios require inner and outer boundary conditions at the 

inner and outer edges of the computational domain. Boundary Conditions (BC's) for the inner 

radius are trivial since V(r) decays exponentially fast for x → -∞ (or in physical space as r → 

2M, the gravitational radius).  Typically, time-domain simulations adopt only approximate 

outgoing radiation boundary conditions and therefore require a correspondingly large outer 

radius since the potential decays approximately as the inverse square of the radius. The 

advantage of using exact nonlocal radiation boundary condition (RBC) instead of approximate 

RBC is that it allows for smaller computational domains. The exact RBC involves temporal 

convolutions of a kernel (which can be tabulated ahead of time) with the solution psi on the 

boundary.   

 Related to this, is the need for the asymptotic waveform. Since most sources of 

gravitational waves are very far away (>20 light years), one would like to know what the 

expected waveforms look like without actually running the simulation for correspondingly large 

times.  In a similar manner to the RBC kernels one can derive an extraction kernel, which can 

"extract" the solution at a larger radius through a convolution of the solution psi on the boundary 

with the kernel.  The project would involve the extended precision computation and testing of 



radiation and extraction kernels for black hole perturbations. As part of the project, I may also 

investigate the wellposedness of the RBC. 

 The RBC kernels have already been computed in [1], which used double precision 

accuracy to compute kernels satisfying error tolerances below double precision; however, there 

is a need for kernels, which satisfy double precision tolerances. The task of computing such 

compressed (i.e. numerical) kernels is ideal for extended precision, since it only needs to be done 

once, and only a small number of very accurate terms are needed to establish accurate results. 

Having more accurate compressed kernels for the Regge-Wheeler and Zerilli, equations would 

help lower error in certain numerical simulations of gravitational waves without adding extra 

computational costs.  Similarly, having extended precision tables for the extraction kernels 

would allow for accurate approximation of the asymptotic waveforms, which is what detectors 

would actually be looking for, given the large distance between the sources and detectors. 

Proving the wellposedness of the RBC is important theoretically and would suggest the 

procedure computationally stable. Empirical evidence suggests it is indeed stable, but as of yet 

there is no formal proof. 
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