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Abstract

The evolution of two cylindrical vortex sheets are studied and numerically

computed. The initial conditions, evolution equations, numerical methods needed

(including integral approximations, correction terms, fourier �lter implementation),

numerical results, and an analysis of the results, as well as the time and nature of

the singularity formation, are provided/explored.
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Fig. 0.1. A shear layer

Introduction

The evolution and singularity formation in a cylindrical vortex sheet has been studied

and modeled [10]. The aim of this work seeks to extend the case of one cylindrical vortex

sheet to that of two cylindrical vortex sheets.

Let two cylinders immersed in an inviscid �uid be given an impulse in a direction

normal to itself. The resulting potential �ow is induced by two planar vortex sheets in

place of the two cylinders. Essentially, we let the cylinders instantaneously disappear,

with a shear layer (�gure 0.1) of zero thickness remaining. This surface is termed a vortex

sheet (�gure 0.2). Note that a vortex sheet has a discontinuous tangential velocity across

the surface. The vorticity of the �ow is de�ned as � = r � u, where u is the velocity
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Introduction 2

Fig. 0.2. Vortex sheet approximation

of the �ow. � away from a vortex sheet is zero, yet
R
S
� da 6= 0. In other words, � is a

delta-function on the surface of the sheet.

The evolution of these two vortex sheets through time are studied. The governing

equations, evolution equations, numerical methods needed (including integral approxima-

tions, correction terms, fourier �lter implementation), numerical results, and an analysis of

the results are provided. Furthermore, the

The initial conditions, evolution equations, numerical methods needed (including dis-

cretization, integral approximations, correction terms, fourier �lter implementation), nu-

merical results, and an analysis of the results are presented. Furthermore, the time and

nature of singularity formation are examined.
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Chapter 1
Problem Formulation

1.1 Initial Conditions

Consider two identical cylindrical vortex sheets whose axies are z-directed and have radii

R. Let their centers fall on the y-axis and be a distance D from the x-axis (�gure 1.3).

Then the cross section of the top cylinder can be described by the curve (x (�; t) ; y (�; t)),

where x (�; t) = R cos�, y (�; t) = D +R sin�, and � 2 [0; 2�]. Suppose that D > R.

Let � denote the vortex sheet strength and � (�) denote the circulation. Then � is the

jump in the tangential velocity across the sheet, and � (s; t) = @�
@s
, where s is the arclength.

1.2 Evolution Equations

3



1.2 Evolution Equations 4
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Consider incompressible potential �ow. Then for a point vortex at xk and of strength �k,

the stream function at position x is given by  k (x) =
��k
2�
log kx� xkk. The velocity

is u (x) =
�
 k(x)
@y

;� k(x)
@x

�
=
�
��k
2�

�
y�yk

(x�xk)2+(y�yk)2

�
;��k

2�

�
x�xk

(x�xk)2+(y�yk)2

��
. Now if

we consider the contribution from N point vorticies in a plane, then by superposition, and

since �k is Lagrangian (invarient in time), u (x; t)=
NP
k=1

uj (x; t)

=
NP
k=1

�
��k
2�

�
y�yk

(x�xk)2+(y�yk)2

�
;��k

2�

�
x�xk

(x�xk)2+(y�yk)2

��
. Thus a set of N point vor-

ticies moves at xj , for j = 1; :::; N moves according to�
dxj
dt
;
dyj
dt

�
=

NP
k=1
k 6=j

�
��k
2�

�
yj�yk

(xj�xk)2+(yj�yk)2

�
;��k

2�

�
xj�xk

(xj�xk)2+(yj�yk)2

��
[2]. The

k = j term is not included in the summation so as to not include the self-contribution. Also,

note that the term would be singular if this term was to be included. Let the given sheet be

approximated by N vorticies, and let N !1 and ��! 0. Then for a point on the sheet

we get u (x; t) = 1
2�
P:V:

R
C

�
� y�~y
(x�~x)2+(y�~y)2 ;

x�~x
(x�~x)2+(y�~y)2

�
d~�, where d� = �0 (~�) d~�

([10]).
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Consider the two cylindrical vortex sheets mentioned above. Let us approximate

each sheet by N uniformly spaced point vorticies. Then at some point vortex of position

xj , we have

 (xj) =
�1
2�

NP
k=1
k 6=j

�k log
q
(xj � xk)

2 + (yj � yk)
2

� 1
2�

NP
k=1

�Bk log
q
(xj � xBk )

2
+ (yj � yBk )

2, where
�
xBk ; y

B
k

�
and �Bk denote a point

and the corresponding circulation on the bottom sheet, respectively. Notice that
�
xBk ; y

B
k

�
=

(xk;�yk) and �Bk = ��k. Thus,  (xj) = �1
2�

NP
k=1
k 6=j

�k log
q
(xj � xk)

2 + (yj � yk)
2 +

1
2�

NP
k=1

�Bk log
q
(xj � xk)

2 + (yj + yk)
2. Again using u (x) =

�
 k(x)
@y

;� k(x)
@x

�
, and

letting N ! 1 and �� ! 0, it follows that dxj
dt

= � 1
2�
P:V:

R
C

y�~y
(x�~x)2+(y�~y)2d

~� +

1
2�

R
C

y+~y

(x�~x)2+(y+~y)2d
~�, dyj

dt
= 1

2�
P:V:

R
C

x�~x
(x�~x)2+(y�~y)2d

~�� 1
2�

R
C

x�~x
(x�~x)2+(y+~y)2d

~�.

Note that we assummed the background velocity of the �ow u1 = 0.

1.4 shows the streamlines, or level curves, of  with a background velocity u1 =

(U1; 0). In this case,  mov (x; y) =  (x; y)� U1y,

and thus, umov (x) =
�
 k(x)
@y

� U1;� k(x)
@x

�
. Then

dxj
dt
= � 1

2�
P:V:

R
C

y�~y
(x�~x)2+(y�~y)2d

~� + 1
2�

R
C

y+~y

(x�~x)2+(y+~y)2d
~� � U1. Note that dyj

dt

would still be the same as above.

Side note: in �gure 1.4, the sparadic streamlines inside of the cylinder are simply

noise due to roundoff error.
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1.2.1 Non-dimensionalization

Let us change variables and introduce the following non-dimensional quantities, which we

will denote by (�):

Let R have units of length and U have units of velocity, lengthtime . Let us introduce the

following dimensionless quantities x� = x
R
, ~x� = ~x

R
, y� = y

R
, ~y� = ~y

R
, �� = �

RU
, and

t� = U
R
t.

So Rx� = x, Ry� = y, dx
dx� = R, dy

dy� = R, d� = RU d��,and dt�

dt
= U

R
.

ThenRx� = x (�; t) = R cos� implies that x� = cos�. Similarly,Ry� = y (�; t) =

D +R sin� yields y� = D
R
+ sin�.

Then using dx(�;t)
dt

= dx
dx�

dx�

dt
= Rdx�

dt
= Rdx�

dt�
dt�

dt
= RU

R
dx�

dt� = U dx�

dt� , we get

dx�

dt� =
1
U

�
U dx�

dt�

�
= 1

U
dx(�;t)
dt

= 1
U

h
� 1
2�
P:V:

R 2�
0

y�~y
(x�~x)2+(y�~y)2

d�
d~�
d~�+ 1

2�

R 2�
0

y+~y

(x�~x)2+(y+~y)2
d�
d~�
d~�
i

= �1
2�U

P:V:
R 2�
0

h
y�~y

(x�~x)2+(y�~y)2

i
d�
d~�
d~�+ 1

2�U

R 2�
0

h
y+~y

(x�~x)2+(y+~y)2

i
d�
d~�
d~�

= �1
2�U

P:V:
R 2�
0

h
� Ry��R~y�
(Rx��R~x�)2+(Ry��R~y�)2

i
RU d��

d~�
d~�

+ 1
2�U

R 2�
0

h
Ry�+R~y�

(Rx��R~x�)2+(Ry�+R~y�)2

i
RU d��

d~�
d~�

= � R2U
2�R2U

P:V:
R 2�
0

h
� y��~y�
(x��~x�)2+(y��~y�)2

i
d��

d~�
d~�

+ R2U
2�R2U

R 2�
0

h
y�+~y�

(x��~x�)2+(y�+~y�)2

i
d��

d~�
d~�

= � 1
2�

R 2�
0

h
y��~y�

(x��~x�)2+(y��~y�)2

i
d��

d~�
d~�+ 1

2�

R 2�
0

h
y�+~y�

(x��~x�)2+(y�+~y�)2

i
d��

d~�
d~�.

Similarly, using dy(�;t)
dt

= dy
dy�

dy�

dt
= Rdy�

dt
= Rdy�

dt�
dt�

dt
= RU

R
dy�

dt� = U dy�

dt� , it follows

that

dy�

dt� =
1
U

�
U dy�

dt�

�
= 1

U
dy(�;t)
dt
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= 1
U

h
1
2�
P:V:

R 2�
0

x�~x
(x�~x)2+(y�~y)2

d�
d~�
d~�� 1

2�

R 2�
0

x�~x
(x�~x)2+(y+~y)2

d�
d~�
d~�
i

= 1
2�U

P:V:
R 2�
0

h
x�~x

(x�~x)2+(y�~y)2

i
d�
d~�
d~�� 1

2�U

R 2�
0

h
x�~x

(x�~x)2+(y+~y)2

i
d�
d~�
d~�

= 1
2�U

P:V:
R 2�
0

h
Rx��R~x�

(Rx��R~x�)2+(Ry��R~y�)2

i
RU d��

d~�
d~�

� 1
2�U

R 2�
0

h
Rx��R~x�

(Rx��R~x�)2+(Ry�+R~y�)2

i
RU d��

d~�
d~�

= R2U
2�R2U

P:V:
R 2�
0

h
x��~x�

(x��~x�)2+(y��~y�)2 �
x��~x�

(x��~x�)2+(y�+~y�)2

i
d��

d~�
d~�

� R2U
2�R2U

R 2�
0

h
x��~x�

(x��~x�)2+(y�+~y�)2

i
d��

d~�
d~�

= 1
2�
P:V:

R 2�
0

h
x��~x�

(x��~x�)2+(y��~y�)2

i
d��

d~�
d~�

� 1
2�

R 2�
0

h
x��~x�

(x��~x�)2+(y�+~y�)2

i
d��

d~�
d~�.

Thus, the governing equations
�
dx�

dt� ;
dy�

dt�

�
are the same as those for

�
dx
dt
; dy
dt

�
, where

x� = cos� and y� = D
R
+ sin�. Let us introduce �, where � = D

R
. Also, let us now

rename (x�; y�) as (x; y). Then we have x = cos� and y = �+sin�. Then sinceD > R,

we have � > 1.

1.2.2 Solving for initial sheet strength

We can discretize the governing equations as follows

u (xj; yj) = � 1
2�

NP
k=1
k 6=j

yj�yk
(xj�xk)2+(yj�yk)2

�k�sk +
1
2�

NP
k=1

yj+yk
(xj�xk)2+(yj+yk)2

�k�sk � U1

and v (xj; yj) = 1
2�

NP
k=1
k 6=j

xj�xk
(xj�xk)2+(yj�yk)2

�k�sk � 1
2�

NP
k=1

xj�xk
(xj�xk)2+((yj+yk))2

�k�sk � V1,

where the background velocity is given by u1 = (U1; V1). Let u1 = (U1; 0). Now

by choosing uniform spacing of the N point vortices, we have �sk = �s = 2�
N
. The

�uid velocity has a tangential component and a component normal the the vortex sheet.
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It is this normal component that determines the sheet's evolution. Note tht the tangential

caomponent simply determines how marker particles move along the sheet [10].

Let us dot the discretized velocities with its normal vector,

n (xj) = (cos�j; sin�j). So u (xj) � n (xj) = 0.

So �s

0@� 1
2�

NP
k=1
k 6=j

yj�yk
(xj�xk)2+(yj�yk)2

�k +
1
2�

NP
k=1

yj+yk
(xj�xk)2+(yj+yk)2

�k

1A cos�j
+�s

0@ 1
2�

NP
k=1
k 6=j

xj�xk
(xj�xk)2+(yj�yk)2

�k � 1
2�

NP
k=1

xj�xk
(xj�xk)2+((yj+yk))2

�k

1A sin�j
= U1 cos�j . Now, since �s = 2�

N
,

1
N

0@� NP
k=1
k 6=j

yj�yk
(xj�xk)2+(yj�yk)2

�k +
NP

j;k=1

yj+yk
(xj�xk)2+(yj+yk)2

�k

1A cos�j
+ 1
N

0@ NP
k=1
k 6=j

xj�xk
(xj�xk)2+(yj�yk)2

�k �
NP
k=1

xj�xk
(xj�xk)2+(yj+yk)2

�k

1A sin�j
= U1 cos�j .

De�ne

Ajj =
1
N

h�
yj+yj

(xj�xk)2+(yj+yk)2

�
cos�j +

�
� xj�xj
(xj�xj)2+(yj+yj)2

�
sin�j

i
,

Ajk =
1
N
[
�
� yj�yk
(xj�xk)2+(yj�yk)2

+
yj+yk

(xj�xk)2+(yj+yk)2

�
cos�j

+
�

xj�xk
(xj�xk)2+(yj�yk)2

� xj�xk
(xj�xk)2+(yj+yk)2

�
sin�j] for k 6= j, and

bj = U1 cos�j .

Then we have

266664
A11 ::: A1N
A21 ::: A2N

:::
:::

AN1 ::: ANN

377775
266664
�1
:
:
:
�N

377775 =
266664
U1 cos�1

:
:
:

U1 cos�N

377775, that is, A� = b.
Initially, we know A and b. So we can �nd �, which was originally computed in

Matlab via the command � = Anb.

Now, there is not convergence of the �'s as N is increased (�gure 1.2.2).
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Also, note that condition number of A is very large (�gure 1.2.2), and thus, A is

poorly conditioned. Matlab gives the following error: Matrix is close to singular or badly

scaled. Results may be inaccurate.

1.2.3 Midpoint Method

Let
�
xmj ; y

m
j

�
=
�
cos�mj ; �+ sin�

m
j

�
, where �mj = �j +

�
N
. Remember that N is again

the number of point vortices. So
�
xmj ; y

m
j

�
is the "midpoint" between two adjacent point
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a
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vortices. Evaluate the velocities u at u
�
xmj ; y

m
j

�
instead of at (xj; yj). u

�
xmj ; y

m
j

�
=

� 1
2�

NP
k=1

ymj �yk

(xmj �xk)
2
+(ymj �yk)

2�k�sk+
1
2�

NP
k=1

ymj +yk

(xmj �xk)
2
+(ymj +yk)

2�k�sk�U1 and v (xj; yj) =

1
2�

NP
k=1

xj�xk
(xj�xk)2+(yj�yk)2

�k�sk � 1
2�

NP
k=1

xj�xk
(xj�xk)2+((yj+yk))2

�k�sk � V1. The k 6= j con-

straint in the �rst summations is now excluded. We again take u
�
xmj
�
� n
�
xmj
�
= 0,

where now we have n
�
xmj
�
=
�
cos�mj ; sin�

m
j

�
is the normal vector at the midpoint

xmj . Dot the discretized velocities with its normal vector, n (xj) = (cos�j; sin�j). So

u (xj) � n (xj) = 0.

De�ne

Ajk =
1
N
[

�
� ymj �yk

(xmj �xk)
2
+(ymj �yk)

2 +
ymj +yk

(xmj �xk)
2
+(ymj +yk)

2

�
cos�j

+

�
xmj �xk

(xmj �xk)
2
+(ymj �yk)

2 �
xmj �xk

(xmj �xk)
2
+(ymj +yk)

2

�
sin�mj ] , and

bj = U1 cos�
m
j . Then we again have the system A� = b. A has a little bit better

condition number (�gure ??). This is due to
�
xmj � xk

�2
+
�
ymj � yk

�2 being not quite as
small as (xj � xk)

2 + (yj � yk)
2, for some certain values of j; k. Yet, matlab still gives the

following error: Matrix is close to singular or badly scaled. Results may be inaccurate.

Again, there is not convergence of the �'s as N is increased (�gure 1.2.3).
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1.2.4 Zero Total Circulation Constraint

Let us use the midpoint method with the additional constraint that the total circulation is

zero, �Total = 0. Note that �Total =
NP
k=1

�k�sk = �s
NP
k=1

�k, where again �sk = �s = 2�
N
.

De�ne Ajk = 1
N

2664
�
� ymj �yk

(xmj �xk)
2
+(ymj �yk)

2 +
ymj +yk

(xmj �xk)
2
+(ymj +yk)

2

�
cos�j

+

�
xmj �xk

(xmj �xk)
2
+(ymj �yk)

2 �
xmj �xk

(xmj �xk)
2
+(ymj +yk)

2

�
sin�mj

3775
if j 6= N + 1,

and Ajk = �s, if j = N + 1, as well as

bj =

�
U1 cos�j , if j 6= N + 1

0, if j = N + 1
.

Then we have the system

2666664
A11 ::: A1N
A21 ::: A2N

:::
:::

AN1 ::: ANN
�s ::: �s

3777775
266664
�1
:
:
:
�N

377775 =
2666664
U1 cos�1

:
:
:

U1 cos�N
0

3777775, or again,
A� = b. This system is overdetermined, and must be solved in the least squares sense.

The �'s were originally computed in Matlab using the command � = Anb for the prelim-

inary results. Yet, the �'s were later computed in fortran with the aid of the subroutine
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HFTI which was downloaded from netlib [7], and originally published and commented

upon in the text [6]. This implementation in fortran was performed so that �'s could be

computed quickly with N large for a variety of � values. HFTI provides a solution of the

least squares problem by housholder transformations.

For this case, there is convergence of the �'s as N is increased (�gures 1.2.4, 1.2.4).

Also note the good condition number of A (�gure 1.2.4).

See �gure 1.2.4 to observe how � varies for different �. As � ! 1, � starts to

blow up at � = 3�
2
� 4: 712 4. Also note that as � increases, � (�) ! sin (�), which is

consistent with the limiting case of one cylindrical vortex sheet, which was studied by [10].
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Chapter 2
Numerical Methods

2.1 Overview

The cylindrical vortex sheets are discretized each byN point vortices, at (xj; yj) = (x (�j) ; yj (�j)),

with a uniform mesh �j = (j � 1)h, where h = 2�
N
. Remember that we have shown

dxj
dt

= �1
2�
P:V:

R 2�
0

yj�y(�)
(xj�x(�))2+(yj�y(�))2

�0 (�) d�+ 1
2�

R 2�
0

yj+y(�)

(xj�x(�))2+(yj+y(�))2
�0 (�) d�

and v (xj; yj) = vj =
dyj
dt
= 1

2�
P:V:

R 2�
0

xj�x(�)
(xj�x(�))2+(yj�y(�))2

�0 (�) d�

� 1
2�

R 2�
0

xj�x(�)
(xj�x(�))2+(yj+y(�))2

�0 (�) d�.

Let uj = u (xj; yj) =
dxj
dt
, vj = v (xj; yj) =

dyj
dt
. Also, de�ne Gu (�) =

yj�y(�)
(xj�x(�))2+(yj�y(�))2

and Gv (�) =
xj�x(�)

(xj�x(�))2+(yj�y(�))2
. The integrals given by

�
dxj
dt
;
dyj
dt

�
will be approximated by the a quadrature rule. The system will then be integrated in time

by a forth order Runge-Kutta method, and a Fourier �lter will be applied.

2.1.1 Integral Approximations

The integrals expressing
�
dxj
dt
;
dyj
dt

�
are approximated by the trapezoid rule (�gure 2.5)

[11]. The j = k contribution is dropped in the principle-value integrals. This is a �rst-

order approximation.

15
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2.1.2 Correction Terms

For the principle value integrals, an additional correction term can be added, which is found

via Taylor expansion.

Let (x (�) ; y (�)) = (x; y), (x (�j) ; y (�j)) = (xj; yj), and h = �� �j .

Using Taylor series about � = �j , we have

x (�) = x (�j) + x0 (�j) (�� �j) +
x00(�j)
2

(�� �j)
2 + ::: ,

y (�) = y (�j) + y0 (�j) (�� �j) +
y00(�j)
2

(�� �j)
2 + ::: ,

and �0 (�) = �0 (�j) + �00 (�j) (�� �j) + ::: .

Rewriting this, we have x (�) = xj +x
0
jh+

x00j
2
h2+ :::, y (�) = yj + y

0
jh+

y00j
2
h2+ :::,

and �0 (�) = �0j + �00jh+ ::: .

So Gu (�) =
yj�y(�)

(xj�x(�))2+(yj�y(�))2
�0 (�)

=

�
yj�

�
yj+y

0
jh+

y00j
2
h2+O(h3)

��
[�0j+�00j h+O(h2)]�

xj�
�
xj+x0jh+

x00
j
2
h2+O(h3)

��2
+

�
yj�

�
yj+y0jh+

y00
j
2
h2+O(h3)

��2

=

�
�y0jh�

y00j
2
h2+O(h3)

�
[�0j+�00j h+O(h2)]�

xj�
�
xj+x0jh+

x00
j
2
h2+O(h3)

��2
+

�
yj�

�
yj+y0jh+

y00
j
2
h2+O(h3)

��2

=

�
�y0jh�

y00j
2
h2+O(h3)

�
[�0j+�00j h+O(h2)]�

�x0jh�
x00
j
2
h2+O(h3)

�2
+

�
�y0jh�

y00
j
2
h2+O(h3)

�2

=
�y0jh�0j+h2

�
�
y00j
2
�0j�y0j�00j

�
+O(h3)

h2(x2j+y2j )+h3(x0jx00j+y0jy00j )+O(h4)
=

�
y0j�

0
j

h
�
�
y00j
2
�0j+y

0
j�

00
j

�
+O(h)

(x2j+y2j )+h(x0jx00j+y0jy00j )+O(h2)

= 1
x02j +y

02
j

�
1� (x

0
jx
00
j+y

0
jy
00
j )h

x02j +y
02
j

+O (h2)

� h
�y0j�0j
h

� y00j �j
2
� y0j�

00
j +O (h)

i
,

and Gv (�) =
xj�x(�)

(xj�x(�))2+(yj�y(�))2
�0 (�)

=

�
xj�

�
xj+x

0
jh+

x00j
2
h2+O(h3)

��
[�0j+�00j h+O(h2)]�

xj�
�
xj+x0jh+

x00
j
2
h2+O(h3)

��2
+

�
yj�

�
yj+y0jh+

y00
j
2
h2+O(h3)

��2
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=

�
�x0jh�

x00j
2
h2+O(h3)

�
[�0j+�00j h+O(h2)]�

xj�
�
xj+x0jh+

x00
j
2
h2+O(h3)

��2
+

�
yj�

�
yj+y0jh+

y00
j
2
h2+O(h3)

��2

=

�
�x0jh�

x00j
2
h2+O(h3)

�
[�0j+�00j h+O(h2)]�

�x0jh�
x00
j
2
h2+O(h3)

�2
+

�
�y0jh�

y00
j
2
h2+O(h3)

�2

=
�x0jh�0j+h2

�
�
x00j
2
�0j�x0j�00j

�
+O(h3)

h2(x2j+y2j )+h3(x0jx00j+y0jy00j )+O(h4)
=

�
x0j�

0
j

h
�
�
x00j
2
�0j+x

0
j�

00
j

�
+O(h)

(x2j+y2j )+h(x0jx00j+y0jy00j )+O(h2)

= 1
x02j +y

02
j

�
1� (x

0
jx
00
j+y

0
jy
00
j )h

x02j +y
02
j

+O (h2)

� h
�x0j�

0
j

h
�
�
x00j
2
�0j + x0j�

00
j

�
+O (h)

i
,

where we have noted that�
�x0jh�

x00j
2
h2
�2
+
�
�y0jh�

y00j
2
h2
�2
=
�
x0jh+

x00j
2
h2
�2
+
�
y0jh+

y00j
2
h2
�2

=
�
x0jh+

x00j
2
h2
�2
+
�
y0jh+

y00j
2
h2
�2

= h2x0j
2 + h3x0jx

00
j +

1
4
h4x00j

2 + h2y0j
2 + h3y0jy

00
j +

1
4
h4y00j

2

= h2
�
x0j
2 + y0j

2
�
+ h3

�
x0jx

00
j + y0jy

00
j

�
+ 1

4
h4
�
x00j
2 + y00j

2
�

= h2
�
x0j
2 + y0j

2
�
+ h3

�
x0jx

00
j + y0jy

00
j

�
+O (h4), and

1

(x2j+y2j )+h(x0jx00j+y0jy00j )+O(h3)
= 1

x02j +y
02
j

�
1� (x

0
jx
00
j+y

0
jy
00
j )h

x02j +y
02
j

+O (h2)

�
.

Now, let Gu (�; �j) =
cu�1
���j + c

u
0 + c

u
1 (�� �j) + ::: and Gv (�; �j) =

cv�1
���j + c

v
0 +

cv1 (�� �j) + ::: .

Then cu0 = 1
x02j +y

02
j

�
y0j�

0
j(x0jx00j+y0jy00j )
x02j +y

02
j

� y00j
2
�0j � y0j�

00
j

�
and

cv0 =
1

x02j +y
02
j

�
x0j�

0
j(x0jx00j+y0jy00j )
x02j +y

02
j

� x00j
2
�0j � x0j�

00
j

�
,

where we have observed that Gu (�j; �j) = cu0 and Gv (�j; �j) = cv0.

The derivatives x0j , y0j , x00j , y00j , and �00j are computed via spectral differentiation. Note

that �0j = �j .

With these correction terms, we get good convergence of
�
dxj
dt
;
dyj
dt

�
as N is in-

creased, even at times other than t = 0 (�gures 2.1.2, 2.1.2). Note the better convergence
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after the correction terms are added by comparing �gures 2.1.2 and 2.1.2 with �gure 2.5.

Some of the higher error in 2.1.2 is do to newly introduced errors in the computed xj; yj

positions as time evolves, imparted in part by a designated �lter level. Yet, both �gures il-

lustrate exponential decay of the errors up within a magnitude of the �lter level (see next

section), which was 10�12 in this case.

2.1.3 Precision and a Fourier Filter
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Simulations were performed in single precision, double precision, and double precision

with the implementation of a fourier �lter. Compare �gures 2.1.3, 2.1.3, and 2.1.3. The

noise is decreased when going from single to double precision, and when going from dou-

ble precision to double precision with a fourier �lter. See ?? for further explanation. The

irregular point motion is caused in part by the machine's �nite precision arithmetic. Meth-

ods for decreasing this irregualar point motion include using higher precision arithmetic,

and/or by implementation of a fourier �lter. Also, the noise is not do to a lack in reso-

lution of time. This can be observed by comparing �gures 2.1.3 and 2.1.3. The fourier

�lter is needed because high modes of error in uj due to the discretization grow under the

Kelvin-Hemholtz instability. The fourier �lter level is set higher than values of the high

modes times the timestep. For a given timestep, all of the modes below the designated

�lter level are set to 0.
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Chapter 3
Numerical Results

3.1 Evolution of Sheet

Note that from here on in this paper, the fourier �lter is implemented, and the computations

are performed in double precision. Figure 3.1 shows the evolution of the top vortex sheet,

where N = 512, � = 2, �lter level tol = 10�12, and with a timestep delT = 0:001. An

explanation of why the sheet rolls up as it does is given by [10]. Observe that the rear of

the sheet travels to the right faster than the front of the sheet does.

3.2 Curvature and Estimated Critical Times

The curvature of the vortex sheet is given by � (�; t) = x�y���x��y�
(x2�+y

2
�)

3
2

([10]). Clearly, for

all �, � (�; 0) = 1. Figure 3.2 shows the evolution of 1
�max(t)

. �max (�; t) denote the

maximum curvature at time. The time of singularity formation can be estimated as the

time limit in which 1
�max(t)

approaches 0. Note that the thus far implemented governing

equations are only valid up to the time of singularity formation. Figure 3.2 is a close-

up of 3.2, and shows that as the �lter level (denoted by 10�l here) and N increase from

right to left. Observe that the estimated critical time, the time of singularity formation,

decreases as N and l are increased. The critical time can also be seen to decrease as N

increases in �gure 3.6. Figure 3.6 also shows that the critical time decreases as � decreases.
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Figure 3.6 illustrates this for N = 512. Figure 3.6 provides a close-up of �gure 3.6. For

� < 1:5, the critical time seems to decrease linearly as � is varied. In this region, the

slope of the least squares �t is about 0:604. Figures 3.6, 3.6, and 3.6 use the following

method to estimate the critical time. If the following two conditions are satis�ed 1) yj <

c, for some appropriately chosen constant c (so as to choose a particular region of the

sheet), and 2) xj > max(xj+1; xj�1), then a singularity has formed in a small neighborhood

about (xj; yj). This method only roughly approximates the time of singularity formation.

Singularity formation is actually predicted a short bit prior to this approximation. The

shapes at different critical times are shown in �gure 3.6. The point of singularity formation

moves down on the actual sheet as � decreases.
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Fig. 3.6. Estimated critical times
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3.3 Type of Singularity

Figure 3.3 shows the absolute value of the fourier coef�cients for several different times.

As time increases, up to the critical time, the fourier coef�cients seem to become linear,

with slope �2:5. This line is indicated in the �gure. A slope of �2:5 for the fourier

coef�cients at times near the critical time indicates a branch point singularity with order of

3
2
[10].



Chapter 4
Conclusion

Note that the numerical methods/governing equations implemented thus far are only

valid up to the time of singularity formation. Future work includes performing runs for the

mentioned work in quadrapole precision, and performing regularization runs via a method

termed the "vortex blob method." The regularization includes putting an arti�cial �2 in the

denominator of the principal value integrands. Computation can then proceed past the time

of singularity formation. Self shedding and roll-up can then be studied [9]. This method is

termed the "vortex blob method." Also, more advanced methods to investigate the branch

point singularity with order are sought. After these aims are completed, evolution of the

axisymmetric case, which is a toroidal vortex sheet, will be studied and modeled. The

mentioned is sought to be completed by August 2007.

.
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