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The evolution of a single cylindrical vortex sheet has been previously explored 
(Nitsche, 2000).  When a second identical vortex sheet is introduced, the initial fluid 
flow condition cannot be found analytically, and the symmetry that is present with only 
one vortex sheet is lost.  The initial condition for two cylindrical vortex sheets must be 
found computationally.   The  evolution  equations  also  require  correction  factors  and 
regularization in order to be useful.  This paper explores the process of setting up the 
evolution equations and gives preliminary results.  

Introduction

A cylindrical vortex sheet is a zero-thickness model for the shear layer that would exist 
immediately after “dissolving” a hollow cylinder immersed in potential flow that is steady with time. 
The fluid inside the cylinders would be stationary.  For this particular problem, two hollow cylinders 
would be placed side-by-side, with their axes parallel.  The flow in the dimension along the cylinders' 
axes of symmetry will remain zero, thus reducing the problem to 2-dimensions.  The equations that 
govern the motion  of the vortex sheets along with the initial condition, will be introduced in this paper. 
The evolution equations are then discretized using N point-vortex elements that are initially equally-
spaced.  The initial condition and the evolution equations will be also nondimensionalized.  Due to the 
use of principal value integrals, corrections factors using Taylor series will be given, as well as a 
regularization procedure to desingularize the problem. Preliminary results of the vortex sheet evolution 
will be given.  

1.  Flow Conditions

The basis for this problem is the Cartesian coordinate system (x,y,z).  The fluid velocity is 
nonzero in the x, and y directions, and is always zero in the z-direction.  Therefore, this problem can be 
solved in a 2-dimensional plane.  The initial velocity inside the cylinders is zero, and the velocity at 
infinity is prescribed.  The analytical solution for the potential flow condition around two separated 
hollow cylinders (side-by-side) is not known, and therefore an approximation must be computed 
numerically.  This will be developed in the following sections.  The fluid velocity is defined as

u = u , v , 0 (1.1)

and the complex velocity is defined as

f xiy=u−iv (1.2)
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The vorticity is defined as the curl of the velocity, which is 

 = ∇×u (1.3)

Since the fluid flow is potential, it is irrotational inside and outside the cylinder, and is 
incompressible everywhere.  Additionally, the condition of zero viscosity (inviscid flow) is imposed 
everywhere.  Given these conditions, the following is true

 = ∇×u = 0,0, v x−u y=0 (vorticity is zero except on the cylinder) (1.3)

which implies that 

∂ v
∂ x

=∂ u
∂ y

(1.4)

and since the fluid is incompressible, divergence is zero:

∂u
∂ x

=−∂ v
∂ y

 (1.5)

Equations (1.4) and (1.5) are known as the Cauchy-Riemann equations.  Equation (1.2) must 
satisfy the Cauchy-Riemann equations and is therefore analytic.

2.  The Vortex Sheet Model

A vortex sheet is a zero-thickness model for a shear layer in an incompressible and inviscid 
fluid.  The velocity is therefore discontinuous across the vortex sheet.  See Figs. 2.1 and 2.2.  Let the 
fluid velocities on opposite sides of the vortex sheet be either U+ or U-.  The jump can then be described 
as a step function with magnitude (U- - U+).  The vorticity along the vortex sheet is then defined as

 = U -−U  + y    (2.1)

where  y  represents the dirac delta function -  the derivative of the step function.  A primary goal 
of setting up this problem is to determine the velocity jump everywhere along the vortex sheets such 
that the potential flow described in Section 1 is induced.  This velocity jump will be defined as

 = U  -−U  +  which is the strength of the vortex sheet (2.2)
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Fig. 2.1. The vortex sheet is a velocity jump of zero thickness.  Although U- is shown here, the fluid is 
stationary inside the cylindrical vortex sheets described in this problem.

Fig. 2.2.  A shear layer (above) can be approximated by a vortex sheet.  
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3.  Paramaterization 

Let R represent the radius of the cylinder, and D represent the distance between the center of 
each cylinder and the x-axis.  In the cartesian coordinate system of (x,y), we can then parameterize 
each sheet by

x  , y  (3.1)

Let us define the circulation parameter Г(α) such that

d 
ds

= s  (3.2)

where s is the arclength along the vortex sheet.  The parameter σ is the jump in the velocity across the 
vortex sheet, as defined by (2.2).  

The vortex sheet is discretized into evenly-spaced point-vortex elements.  The following 
parameterization is used:

x  j=Rcos  j y  j=
D
R
Rsin  j  j=

2 j
N

(3.3)

where j = 0, ..., N-1.  See Fig. 3.1.

Fig. 3.1  Parameterization and discretization of vortex sheet.  The second cylinder is not shown, but is a 
mirror image across the x-axis.
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4.  Evolution Equation

The general stream function at (x,y) due to one point vortex at (x,y), excluding all others is

 x , y , x , y =
− j

4
log [ x−x 2 y−y2] (4.1)

The velocity field at (x,y) induced by one point vortex at (x,y), excluding all others, is given by

u , v =∂ y  ,−∂ x=− j

2  y−y
r 2  ,

 j

2  x−x
r2      where  r 2= x−x 2 y−y2  (4.2)

The superposition of infinitely many point-vortex elements gives

u x , y = 1
2

PV∫
0

2 − y−y  ' 
x−x2 y− y 2 d −∫

0

2 − yy  ' 
x−x2 y y 2 d 

v x , y = 1
2

PV ∫
0

2 x−x  ' 
x−x 2 y−y 2 d −∫

0

2 x−x  ' 
x−x2 yy 2 d 

(4.3)

where PV denotes a principal value integral.

To approximate the total velocity induced by the vortex sheets, the effect of N point vortices is 
superimposed with the parameterization given in Section 3.  The velocity at the jth point on the top 
sheet due to contributions from the kth vortices on one sheet above and one sheet below the x-axis is 
given by

u x j , y j=
−1
2 ∑

k =0,k ≠ j

N−1 y j− yk

x j−xk 
2 y j− yk 

2 k  s 1
2∑k=0

N−1 y j yk

 x j−x k
2 y j yk 

2 k  s

v x j , y j=
1

2 ∑
k =0, k≠ j

N−1 x j−xk

x j− xk 
2 y j− yk 

2  k  s− 1
2 ∑

k=0

N−1 x j−xk

x j−xk 
2 y j y k 

2 k  s

(4.4)

Since  k  will be used in the following sections to compute the initial condition,  k s  has been

substituted for d   since =
d 
ds

 and ds=
2
N

 is constant.

To complete the initial conditions, the unknown sheet strength  will be found in Section 
6, and equations (3.3) will be restated in dimensionless quantities in the following Section 5.  
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5.  Nondimensionalization

In order to remove units, this problem is nondimensionalized.  The following dimensionless 
quantities (denoted by *) are introduced:

x * = x
R

⇒ R x* =x  and 
dx

dx *
=R , y* = y

R
⇒ R y* = y  and 

dy
dy *

=R   (5.3a)

 * =


RU
⇒ RU * = ⇒ RU d  * =d  (5.3b)

x * = x
R

⇒ R x* =x , y * = y
R

⇒ R y * = y (5.3c)

t * =U
R

t ⇒ dt *
dt

=U
R

(5.3d)

So,

R x* =x  ,t =R cos ⇒ x *=cos ,

R y* = y  , t=DR sin ⇒ y *= D
R
sin (5.4)

Then using

dx  ,t 
dt

= dx
dx *

dx *
dt

= R
dx *
dt

= R
dx *
dt *

dt *
dt

= R
U
R

dx *
dt *

= U
dx *
dt *

(5.5)

it follows that

dx *
dt *

= 1
U [U dx *

dt * ] = 1
U

dx  , t 
dt

= 1
U [−1

2∫0
2

[ y−y
 x−x 2 y−y2 ] d  *

d 
d  1

2∫0
2 

[ yy
x− x 2y y2 ] d *

d 
d ] (5.6)

and 

dx *
dt *

= 1
2U ∫

0

2

[− Ry*−R y*

Rx*−R x*2Ry*−R y *2
 Ry *R y *

Rx *−R x *2Ry *R y *2 ] RU d  *
d 

d  (5.7)

Finally, after the R and U terms cancel,

dx *
dt *

= 1
2∫0

2

[− y*−y *
 x *−x *2 y*− y *2

 y *y*
x*−x*2 y *y*2 ] d *

d 
d  (5.8)
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The process is similar for 
dy *
dt *

, yielding 

dy *
dt *

= 1
2∫0

2

[ x *−x *
x*−x *2 y*−y *2−

x *−x*
x *−x *2 y *y*2 ] d *

d 
d 

(5.9)

Therefore, the equations that govern the motion of the vortex sheet do not change as the 
variables are nondimensionalized.  Equations (3.3) can now be re-defined in dimensionless quantities 
as

x  j=cos j y  j=sin j where  = D
R

   and    j=
2 j

N
(5.10)

This simplification yields one quantity, namely μ, that is varied in order to study the effect the 
vortex sheet have on one another.  When μ = 1, the cylinders are touching, and when μ = ∞, the 
cylinders have no effect on one another, reducing to the single cylinder case.

6.  Point-Vortex Strengths 

The only missing part of the initial condition is the vortex sheet strength σ(α).  First, let us 
restate the evolution equations (4.4) and subtract from them the background velocity - prescribed as 
U∞ = 1 and V∞= 0 at infinite distance - that the cylinders are “inserted” into:

u x j , y j=
−1
2 ∑

k =0,k≠ j

N−1 y j− yk

x j−xk 
2 y j− yk 

2 k  s 1
2∑k=0

N−1 y j yk

 x j−x k
2 y j yk 

2 k  s−U ∞

v  x j , y j=
1

2 ∑
k=0, k≠ j

N−1 x j− xk

x j− xk 
2 y j− yk 

2  k s− 1
2∑k=0

N−1 x j−xk

x j− xk 
2 y j yk 

2  k  s−V ∞

  (6.1)

At the vortex sheets, the exterior fluid velocity is entirely tangential to the surface.  Therefore, it 
follows that

u j
m⋅n j

m = 0 (6.2)

where the superscript m refers to the normal vectors at midpoints between vortices.  See Fig. 6.1.  This 
results in the linear system 

A=b  (6.3)

where  Aσ represents equations in (6.1) without the background velocity, and b is given by

 b j=U ∞cos  j
m (6.4)
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Fig. 6.1.
  
Equation (6.3) was first solved using the normal vectors at the actual vortex points.  This 

resulted in erroneous results with the condition number for A, which is defined as

=∣∣A−1∣∣⋅∣∣A∣∣ (6.4)

on the order of 1015 to 1017 for N = 16, 32, 64, 128, and 256.  This indicates an ill-posed problem.  See 
Fig. 6.2.

Fig. 6.2.  Erroneous results for σ(α) when normal vectors at actual points are used.

n j 
n j

m
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When the linear system (6.3) is is then solved using normal vectors at the midpoints, the 
condition number, κ, remains large (~ 1015), and the following results (Fig. 6.3) seem to oscillate 
around the desired solution for σ(α) as N is increased.

Fig. 6.3.  

To correct these errors, the condition that total circulation equals zero is imposed:

T =
2
N
∑
j=1

N

 j = 0 (6.4)

This condition is is certainly the case with a single cylindrical vortex sheet, but is not 
analytically known for two cylindrical vortex sheets.  Nevertheless, it is applied to (6.3), results in the 
following modified linear system:

[ A11 A12 ⋯ A1n

A21 A2N

⋮ ⋮
AN1 An2 ⋯ ANN

 s  s ⋯  s
][ 1

 2

⋮
N

]=[
b1

b2

⋮
bN

0
] where  s=

2
N

(6.5)

When the above equations - now an overdetermined system - are solved in the least-squares 
sense, the result is exponentially accurate convergence for σ(α), and very small residuals A−b . 
The error seen in Fig. 6.4 was computed by using a fine mesh with N=1024, and comparing with the 
results of mesh sizes N=32, 64, 128, 256, and 512.  It was also determined that as μ was made large, the 
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computed vortex strengths converge to the analytical solution for the single cylinder case where σ(α) = 
sin(α).  See Fig. 6.5.

Using the computed point-vortex strengths, the streamlines seen in Fig. 6.6 were computed and 
superimposed on the initial position of the discretized vortex sheets.

Fig. 6.4.  Convergence of vortex sheet strengths as N increases, with total circulation of zero imposed.

Fig. 6.5.  Verification that σ(α) for two-cylinder case approaches σ(α) for single cylinder case (μ = ∞) as μ becomes large. 
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Fig. 6.5.  Streamlines that represent the potential flow around the cylinders.  The fluid is stationary 
inside the cylinders.  Note the numerical noise in the computation of the position of the zero streamline.

7.  Numerical Instability

As the number of point vortices is increased, numerical instability leads to a lack of 
convergence, contradicting what may be expected.  Furthermore, due to singularity formation from 
Kelvin-Helmholtz instability, the results are erroneous past a critical time.  To compute the evolution of 
the vortex sheets, this problem must proceed in one of two directions:  (1) Adding a regularization 
parameter to the first denominator of (4.4) to allow computation past the critical time, or (2) Increasing 
the accuracy of the computation using a correction factor to (4.4) and reducing noise by filtering the 
Fourier coefficients, without evolving past the critical time.  These two methods are described in the 
following sections.
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8.  Regularized Case

In order to evolve past the critical time of singularity formation, a regularization parameter δ2 is 
added to the first denominator of (4.4), thus preventing irregular point vortex motion.  The problem is 
changed.  However, as δ → 0 and the mesh is refined, the convergence to the actual problem can be 
explored.  The discretized equations for the point-vortex motion are given with the regularization 
parameter δ2:

u x j , y j=
−1
2∑k=0

N−1 y j− yk

x j− xk 
2 y j− yk 

22  k s 1
2∑k=0

N−1 y j yk

x j− xk 
2 y j yk 

2  k s

v x j , y j=
1

2∑k=0

N−1 x j− xk

x j− xk 
2y j− yk 

22 k  s− 1
2∑k =0

N−1 x j− xk

 x j−x k 
2 y j yk 

2  k s

(8.1)

These equations are then solved using the fourth-order Runge Kutta method and the initial condition 
given by (5.10). See Fig.8.1 for preliminary results.  This computation was performed with N=1024. 
As longer computation times are used, and the sheets are placed closer together, it will be necessary to 
insert points to maintain sufficient accuracy.

Fig. 8.1.  Computed solution of upper vorte sheet up to time t = 5.0 with regularization parameter.
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9.  Singular Case

The evolution equations (4.3) include principal value integrals which are necessary to exclude 
the velocity contribution of nearby portions of the vortex sheet.  Since equations (4.4) use the trapezoid 
rule, this will result in a loss of accuracy.  Convergence of O(1/N) is observed as seen in Fig. 9.1.   The 
second integrals in each of (4.3), which represent contributions from the bottom cylinder are computed 
with exponential accuracy (with respect to mesh size) using the trapezoid rule.  In order to achieve 
exponential accuracy for the principal value integrals, a correction factor G(α) is added to (4.3) by 
using a Taylor series about α = αj.  First, let

Gu =
 y j− y  ' d 

x j− x 2 y j− y 2
   which is the integrand of the u component of (4.3) (9.1)

where

h = − j , x j = x  j , y j = y  j , and    j= j (9.2)

Then

x j−x =−x ' j h−
x ' ' j

2
h2−O h3 , y j− y =−y ' j h−

y ' ' j

2
h2−Oh3 ,   and

 ' = ' j ' ' j hO h2
(9.3)

Now, expand Gu(α):

Gu =
[− y ' j h−

y' ' j

2
−O h3] [ ' j ' ' j hO h2 ]

 x ' j
2 y' j

2 h2x ' j x ' ' j y ' j y ' ' j h
3O h4 

=

− y j  ' j

h
−

y ' ' j

2
 ' j y ' j  ' ' jO h

 x ' j
2 y ' j

2 x ' j x ' ' j y ' j y ' ' j hO h2
 (9.4)

Let the following be the C0
u  term from the above Taylor series be the correction factor Gu(α):

C0
u = 1

x ' j
2 y ' j

2 [− y ' j ' j x ' j x ' ' j y ' j y ' ' j
x ' j

2 y ' j
2 − y ' ' j

2
 ' j y ' j ' ' j]  (9.5)

The C0
v term is derived similarly,

 C0
v = 1

x ' j
2 y ' j

2 [−x ' j ' j x ' j x ' ' j y ' j y ' ' j
x ' j

2 y ' j
2 − x ' ' j

2
 ' jx ' j ' ' j] (9.6)

These terms are then added to their respective components of (4.3) and (4.4), thus yielding 
exponential accuracy.  The accuracy of the corrected upper contributions and lower contributions is 
given in Fig. 9.2.  The corrected equations for the self-induced motion of the vortex sheet are then 
evolved through time using the fourth-order Runge Kutta method with the initial condition given by 
(5.10).   
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Figure 9.1.  Convergence is of O(h) without correction factor.

Fig. 9.2.  The error drops to the level of roundoff error very quickly with correction factor.

In addition to the steps above, the Fourier coefficients of the point-vortex strengths below 
8x10-15 were filtered out.  The Fourier coefficients of the positions of the point-vortices below 10-12 

were also filtered out at each timestep.  This removes as much noise as possible due to roundoff error. 
However, as N is increased, less noise can be filtered out without removing meaningful data, and the 
use of a quadruple precision machine becomes necessary to achieve more accurate results.  Some 
preliminary results for the singular case are shown in Fig. 9.3, up to time t = 0.5, with μ=2.  This is the 
time when the first signs of singularity formation occur, and the evolution is stopped.  The exact time of 
singularity formation, and its correlation with the geometric conditions is a topic saved for future 
analysis of the results.
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Fig. 9.3.  The evolution of the upper cylindrical vortex sheet, up to critical time of singularity 
formation.

10.  Conclusions

When two hollow cylinders are placed next to each other in potential flow – a physical analogy 
to the initial condition of two cylindrical vortex sheets – there is no known analytical solution for the 
stream function.  As a result, the initial vortex sheet strength has been solved numerically to complete 
the initial condition.  Due to the nature of the numerical instability of the evolution equations for vortex 
sheets, high accuracy is required for the initial condition.  This requires care in computing the initial 
vortex sheet strength.  Once the linear system for the point-vortex strengths was properly posed, and 
the expected circulation conditions were imposed, a solution accurate to 10-12 was achieved. 
Furthermore, correction factors were required for the non-regularized evolution equations to achieve 
sufficient accuracy.  The initial condition and evolution equations that have been presented can be used, 
along with filtering of noise and regularization, to study the motion and behavior of dual cylindrical 
vortex sheets in detail.  
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