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Abstract 

     Bacteriophages are the most abundant organisms on the planet and play crucial roles in 

bacterial population dynamics, microbial food webs, and nutrient cycling. Understanding 

models of bacteriophage population dynamics is necessary to fully understand these ecological 

processes, but to do so we must mathematically distinguish between the different virus life 

cycles. Here, we build on two three-dimensional systems of differential equations, similar to 

Beretta and Kuang (1998) and Reluga et al. (2009) to model lytic and lysogenic virus life cycles. 

We used these models to generate hypotheses about the ecological costs and benefits of the 

two life cycles. The models suggest viral abundance and frequency of infected cells increase 

with habitat productivity. The lytic system is more prone to sustained oscillations, especially 

with slow-growing cells and more virulent viruses, whereas the lysogenic system only has 

sustained oscillations when rates of lysis are high relative to cell growth rates, making lysogenic 

phages qualitatively resemble lytic phages. The models also suggest that lysogenic viruses are 

capable of infecting all the cells in a population for realistic parameter regimes, and the 

evolutionary consequences of this prophage fixation are discussed here. Further research can 

yield new insights into viral population dynamics, test these models and help us better 

understand the roles of viruses in ecology.  

Introduction 

     Bacteriophages are the most abundant organisms on the planet (Bergh et al, 1989). They 

play crucial roles in bacterial population dynamics (Chao et al., 1977; Levin et al., 1977; Lenski 

1988; Bossi et al., 2003), microbial food webs (Proctor et al., 1988; Proctor & Fuhrman, 1990; 

Suttle et al., 1990; Suttle, 2000; Paul, 2000) and nutrient cycling (Fuhrman, 1999; Suttle, 2000; 

see Weinbauer, 2004 for a comprehensive review of bacteriophage ecology). A better 

understanding of viral population dynamics and viral ecology is necessary for a more complete 

understanding of ecology as a whole.  

    To date, most virus models have focused on viruses that infect cells and immediately lyse, but 

virus life cycles can be much more complex. Phages (another name for viruses infecting 

bacteria) exhibit several distinct life cycles: lytic, lysogenic, pseudolysogenic, and chronic 

infections (Ackermann and DuBow, 1987; Weinbauer, 2004), yet most modeling efforts have 



focused exclusively on lytic viruses (Levin et al., 1977; Lenski, 1988; Beretta and Kuang, 1998; 

Nowak and May, 2000; Weitz and Dushoff, 2008), with one Hepatitis-C model by Reluga et al. 

(2009) resembling a lysogenic infection. A better understanding of how virus life cycles differ 

from one another in their dynamical behavior can yield a broader understanding of viral 

ecology.   

     In this paper, we build on pre-existing models with the aim of describing two of the major 

viral life cycles: lytic and lysogenic (also referred to as virulent and temperate, respectively). We 

investigate what the models suggest about host thresholds for viral persistence, viral 

abundance, frequency of infected cells, conditions for sustained oscillations, and a novel fixed 

point in the lysogenic system in which every cell becomes infected yet both the cells and viruses 

persist. We then use these findings to provide directions for future research in both theoretical 

and experimental efforts in viral ecology.  

The Models 

     Figure 1 illustrates the key life cycle differences between lytic and lysogenic phages. Lytic 

phages that successfully infect a cell are assumed to instantaneously begin lysis, whereas 

lysogenic phages that successfully infect a cell can induce lysis or go dormant. The infected cells 

containing dormant prophages (the genetic material of lysogenic phages that has been inserted 

into the host’s genome) can either divide to produce daughter infected cells, or be lysed by an 

induced phage. In both cases, we assume cells cannot be superinfected by analogous phage 

(Durlington & Levine, 1971; Ackermann & DuBow, 1987; Marsh & Wellington, 1994).  

     We constructed two three-dimensional systems of ordinary differential equations describing 

the rates of change of V (viruses), U (uninfected cells), and I (infected cells). The structural 

similarity of the VUI models makes possible a direct comparison of the dynamics of these two 

phage systems.  

     In our models, the phage systems are in a well-mixed environment yielding random 

encounters between cells and viruses with encounter coefficient 𝑎. Not all viruses that 

encounter a cell successfully infect it, so we define the infection coefficient 𝑏, where 𝑏 < 𝑎. 

Free-floating viruses decay exponentially at a rate 𝑑. A fixed percentage of the infected cell 

population is lysing, resulting in exponential decay of infected cell populations at a rate 𝑙. From 

each lysis event, a constant number of viruses, 𝑟𝑉 , is produced. Finally, cells grow logistically 

with an intrinsic growth rate 𝑟𝑐 , and both uninfected and infected cells tap into the same 

limiting resource, producing a modified logistic growth term: 

(1)                                                          
𝑑U

𝑑𝑡
=  𝑟𝑐U 1 − U +I

𝐾
  



     If only uninfected cells divide and that their divisions produce only daughter uninfected cells, 

we arrive at the lytic phage system. 

                                                     
𝑑V

𝑑𝑡
= 𝑟𝑉𝑙I − 𝑎UV − 𝑑V  

(2)                                               
𝑑U

𝑑𝑡
=  𝑟𝑐U 1 − U +I

𝐾
 − 𝑏UV  

                                                    
𝑑I

𝑑𝑡
=  𝑏UV − 𝑙I  

     (2) is an expansion of the virus model well-studied in Nowak and May (2000), incorporating 

density-dependent growth of uninfected cells in place of constant growth. It is also nearly 

identical to the model extensively analyzed by Beretta and Kuang (1998), with the major 

difference being the inclusion of a distinct virus infection coefficient, 𝑏 < 𝑎.   

     To account for the division of lysogenic bacteria into daughter cells that are also infected, we 

added a similar density-dependent growth term for infected cells, assumed that the cost of a 

dormant prophage for the infected cells is negligible, and modified the third differential 

equation to arrive at the lysogenic phage system: 

                                                            
𝑑V

𝑑𝑡
= 𝑟𝑉𝑙I − 𝑎UV − 𝑑V  

(3)                                               
𝑑U

𝑑𝑡
=  𝑟𝑐U 1 − U +I

𝐾
 − 𝑏UV  

                                                    
𝑑I

𝑑𝑡
=  𝑟𝑐I 1 − U +I

𝐾
 + 𝑏UV − 𝑙I 

    Reluga et al. (2009) covered a model similar to (3), except they had a constant growth of 

uninfected cells in addition to the logistic growth term, and they did not differentiate between 

encounters and successful infections. For a list of the dimensional parameters of both systems 

and their estimated values, see table 1 and the appendix.  

     We then non-dimensionalized time with respect to the virus decay rate and made 

substitutions listed in table 2 to arrive at the following dimensionless systems: 

Lytic 

                        
𝑑𝑉

𝑑𝜏
= 𝛾𝐼 − 𝛼𝑈𝑉 − 𝑉 

(4)                   
𝑑𝑈

𝑑𝜏
=  𝜌𝑈 1 − 𝑈 − 𝐼 −  𝑈𝑉 

                        
𝑑𝐼

𝑑𝜏
 =  𝑈𝑉 − 𝜎𝐼 

Lysogenic 

                    
𝑑𝑉

𝑑𝜏
= 𝛾𝐼 − 𝛼𝑈𝑉 − 𝑉 

(5)               
𝑑𝑈

𝑑𝜏
=  𝜌𝑈 1 − 𝑈 − 𝐼 −  𝑈𝑉 

                    
𝑑𝐼

𝑑𝜏
=  𝜌𝐼 1 − 𝑈 − 𝐼 +  𝑈𝑉 − 𝜎𝐼 



     Where it should be noted that 𝛾 can also be written as 𝛾 ′𝜎=
𝑟𝑉𝑏𝐾

𝑑
𝜎, and 𝛾 ′  corresponds to 

Beretta and Kuang’s (1998) “virus multiplication factor”. We focused our analytical and 

numerical investigations on the dimensionless systems, with special emphasis on the virulence 

and cell-growth parameters 𝛾 and 𝜌, respectively. We occasionally revert back to dimensional 

parameters for more tangible biological interpretations of our results. Table 3 contains a list of 

the fixed points and their analytical stability.  

Coexistence Steady State, xVUI*, and K-threshold 

     In both systems, realistic parameter values can fall within the range of stability for the 

coexistence steady state, xVUI*, in which viruses, uninfected and infected cells persist. See the 

appendix for the values of (V,U,I) in the coexistence steady state of each system. The conditions 

for viral persistence can be used to infer a host carrying capacity threshold below which viruses 

cannot persist. 

     In the lytic system, xVUI* becomes stable when 

(6)                                                            𝛾 > 𝜎 𝛼 + 1   

     In the lysogenic system, xVUI* becomes stable when 

(7)                                                    𝛾 > 𝜎 𝛼 + 1 ,    and      𝜌 <
𝜎𝛾

𝛾 − 𝜎 ,       𝛾 > 𝜎 

     See (figure 2).  

     Reverting back to dimensional parameters, (6), the condition beyond which both systems are 

stable, suggests a host carrying capacity threshold, 𝐾′ , for phage persistence: 

𝐾′ =
𝑑
𝑎 

𝑟𝑣
𝑏
𝑎 − 1

 

 An interesting observation is that the threshold for virus persistence here is independent of cell 

growth rate and rate of lysis.  

     In addition to persistence when (6) holds, it’s also possible for lysogenic viruses to persist 

when 𝛾 >
𝜎 𝜌

𝜌 − 𝜎 , the criterion for stability of the prophage fixation fixed point, xVI*.  When 

there is overlap between stability of xVI* and (6), we get bistability. This happens when 

(8)                                                           𝜎 𝛼 + 1 > 𝛾 >
𝜎 𝜌

𝜌 − 𝜎  

     For these parameter values, the lysogenic system is bistable with both xU* xVI*, allowing 

lysogenic viruses to potentially persist despite (6) not holding (see figure 2). This leads to a 



conditional carrying capacity threshold in which the lysogenic viruses must have high enough 

titers in order for viral persistence to occur (see figure 3) 

Viral Abundance and Frequency of Infected Cells 

     Empirical studies suggest that both viral abundance (Boehme et al. 1993; Cochlan et al. 1993; 

Maranger & Bird, 1995; Paul, 2000) and the frequency of infected cells (Steward et al., 1992; 

Weinbauer et al., 1993; Steward et al., 1996; Noble & Fuhrman, 2000; Almeida et al., 2001; 

Guixa-Boixereu et al. 2001; Middleboe et al., 2002; Weinbauer et al., 2003) increase with the 

productivity of ecosystems. If we consider that cell growth rate and virus burst size both 

increase with the productivity of the environment (Weinbauer et al., 1993; Weinbauer & Suttle, 

1999), then we can use the models presented here to understand how productivity affects viral 

abundance.  

      In both systems, viral abundance increases with both 𝜌 and γ, with lysogenic viruses being 

more abundant than lytic viruses for regions of high productivity. The positive relationship 

between productivity and overall viral abundance is consistent with empirical data (figure 4). 

     Similarly, the frequency of infected cells shows a positive relationship with productivity, with 

lysogenic infected cells reaching higher frequencies than lytic infected cells, primarily through 

prophage fixation (see below). The exact relationship between lysogeny and habitat 

productivity is empirically unknown (Weinbauer, 2004) but these models suggest that, all else 

being constant, the frequency of lysogenic cells should increase with increasing productivity.  

Limit Cycles 

     Both systems undergo supercritical Hopf bifurcations around the fixed point xVUI* as γ 

(virulence) is increased, but the parameter regime for limit cycles in the lytic system is more 

feasible. Numerical simulations reveal that the Hopf bifurcation in the lytic system occurs for a 

fixed ratio of 𝜌 and γ, and in the lysogenic system along a curve in 𝜌=f(γ) bounded above by 

𝜌=σ (see figure 5). When 𝜌< σ, a necessary condition for oscillations in the lysogenic system, 

𝑟𝑐 < 𝑙, and it has been shown that this condition is unrealistic in at least one phage-host system 

(Lubitz et al., 1984).  

     In both systems, the magnitude of oscillations increase with increasing γ, but when γ is large 

the lysogenic system becomes very sensitive to slight changes in 𝜌 near the location of the Hopf 

bifurcation. The periods of these oscillations are more sensitive to changes in 𝜌, where 

decreasing 𝜌 increases the period.  

     These results suggest that the lytic viruses are more prone to oscillatory behavior, where 

increasing virulence (burst size 𝑟𝑉 , or infectivity 𝑏) results in larger oscillations and the 



oscillations of phages infecting slow-growing cells will have a longer period  than oscillations of 

phages infecting fast-growing cells.  

Prophage Fixation, xVI* 

      By incorporating density-dependent growth of infected cells, the lysogenic system gives rise 

to an alternative stable state not found in the lytic system, xVI*, in which every cell becomes 

infected yet both the viruses and the (infected) population of cells persist. This “prophage 

fixation” fixed point is stable if and only if: 

(9)                          𝜎 <
𝛾𝜌

γ+𝜌
                                or                          1 <

𝛾 ′ (
𝜌

𝜎
)

γ ′ +(
𝜌

𝜎
)
,     γ′ =

𝑟𝑉𝑏𝐾

𝑑
 

      

     (9) is only possible when 𝜌 > 𝜎 and γ′ >
𝜌

𝜌−𝜎
. 𝜌 > 𝜎, which translates to 𝑟𝑐 > 𝑙, and is a 

realistic scenario for many phage-host systems. When 𝑟𝑐 ≅ 𝑙, which tends to occur only in rich 

media (Lubitz et al. 1984), prophage fixation is not likely to occur as γ′must become very large. 

However, for 𝑟𝑐 ≫ 𝑙, a realistic condition for sub-optimal media, prophage fixation becomes a 

feasible steady-state for lysogenic viruses. If prophage fixation does occur, it is most likely to 

occur in sub-optimal environments, and it could explain the evidence for highest prevalence of 

lysogeny in environments with low bacterial and primary production (Williamson et al., 2002). 

Discussion 

     The models presented here provide a unique theoretical comparison of lytic and lysogenic 

virus life cycles. By incorporating density-dependent growth of uninfected cells (lytic) or both 

uninfected and infected cells (lysogenic), and by distinguishing between virus encounters and 

successful virus infections of cells, we have built on pre-existing models (Nowak & May, 2000; 

Reluga et al. 2009) with the aim of producing more mechanistically correct models of virus 

population dynamics. The behaviors of these models offer a few hypotheses and lead to further 

questions about the costs and benefits of the two virus life cycles.  

     The models are consistent with empirical data showing a positive relationship between 

productivity and both virus particle abundance and frequency of infected cells. The models 

predict that, if the lytic and lysogenic phages do not compete for the same host, there will be a 

higher percentage of lysogenic viruses and lysogenic-infected bacteria. However, these patterns 

could change if the models were modified to capture a reduction of fitness in lysogenic bacteria 

(Marintcheva et al., 2007), a time-delay for latent periods (Beretta & Kuang, 2001), or 

competitive interactions between lytic and lysogenic phage (Weigle & Delbrük, 1951; Korona & 

Levin, 1993; Turner et al., 1999). 



     These models suggest that populations of lytic phages are more prone to limit cycles, a 

dynamical regime not present in the standard virus model of Nowak and May (Tuckwell & Wan, 

2004). These limit cycles occur when virulence is high relative to host growth rate. Lytic 

oscillations increase in magnitude and decrease in frequency with increasing virulence of the 

phage, but the frequency is more sensitive to changes in cell growth rates than phage virulence. 

The feasibility of these oscillations may be a coincidence of the phage life-cycle, but it’s possible 

it could allow for evolutionary entrainment of lytic phage oscillations with oscillations in the cell 

populations independent of phage. Further studies looking at lytic phage dynamics in steady-

state and periodic cell cultures could test these models or similar models where host 

population size or growth rates change periodically with time.     

     In contrast, the lysogenic system is only capable of oscillations in the unlikely parameter 

regime when the host intrinsic growth rate is less than the rate of lysis. With these constraints, 

oscillations of lysogenic phage are only likely to happen in the presence of high concentrations 

of inducing agents that decrease cell growth rates and/or increase rates of lysis, making 

lysogenic phage behave as lytic phage. In general, though, these models predict that under 

constant cell growth rates and rates of lysis, lysogenic phage populations are not likely to 

oscillate. However, the rates of lysis of lysogenic phage may not be constant, since inducing 

agents such as intensity of sunlight, H2O2, temperature or concentrations of environmental 

pollutants can be periodic (Cochran et al., 1998; Weinbauer & Suttle, 1999). Further research is 

needed to determine how periodicity in the rate of lysis affects the population dynamics of 

lysogenic phage and the overall dynamical behavior of the lysogenic model.  

     Finally, the incorporation of a density-dependent growth term for lysogenic cells yielded a 

“prophage fixation” steady state in which lysogenic phages infect every cell in the population. 

The conditions for stability of prophage fixation overlaps comfortably with the range of realistic 

parameter values obtained from the literature, but whether or not it occurs in nature is unclear. 

Empiricists have found percent lysogeny values high and even near 100% (Cochran et al. 1998; 

Williamson et al, 2002; Weinbauer et al. 2003, Ghosh et al. 2008), with the highest occurrence 

found in habitats with lowest bacterial primary productivity (Williamson et al., 2002), consistent 

with our models. Also, genomic studies find a large percentage of bacterial genomes containing 

prophages (Ohnishi et al. 2001; Perna et al. 2001; Ohnishi et al. 2002; Paul, 2008), but the 

presence of phages in genomes could be due to a defective phage infecting one cell and 

becoming fixed through binary fission and horizontal gene transfer.  

     If prophage fixation occurs in nature, it would have large effects on the evolution of novel 

gene functions. With every cell infected, and without the possibility of superinfection with 

analogous phage, there would be no more evolutionary benefit for a lysogenic phage to lyse 

the cell, effectively coupling the virus fitness with host fitness. The feasibility of prophage 



fixation in these models warrants further investigation. However, the evolutionary pressure to 

not lyse, due to high frequencies of “immune” infected cells, may be large enough long before 

prophage fixation occurs, preventing fixation entirely. To address whether prophage fixation 

occurs, a model accounting for this trade-off, similar to Weitz and Dushoff (2007), but having 

density dependent growth of infected cells could be analyzed to see if prophage fixation is still 

possible. Experimentally, it would be necessary to develop more accurate ways of quantifying 

percent lysogeny, as exposure to mitomycin-C and other inducing agents underestimates the 

true percent lysogeny (Weinbauer, 2004). A more accurate method for determining percent 

lysogeny could then be employed in chemostat studies to see if and when prophage fixation 

occurs.  

     Further theoretical and experimental research can yield new insights into viral population 

dynamics, test these models and help us better understand the roles of viruses in ecology. 
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Figure 1: Diagram of lytic and lysogenic virus life cycles as they are modeled in this paper. Lytic viruses 

immediately induce lysis of the infected cells, whereas lysogenic viruses can either induce lysis of 

infected cell or be replicated during cell division to produce daughter infected cells. 
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Table 1: List of parameters for the dimensional systems. See Appendix for comments and citations for 

parameter values. 

Parameter Substitution Definition Range 

𝛼 𝑎𝐾

𝑑
 

 

Encounter Coefficient 0.046 - 1.275 

𝛾 𝑟𝑉𝑙𝑏𝐾

𝑑2
 

 

Virulence coefficient  1.8- 4·105 

𝜌 𝑟𝑐
𝑑

 

 

Growth coefficient 0.18 - 18.75 

𝜎 𝑙

𝑑
 

 

Lysis coefficient 4.5·10-5-1.9 

Table 2: list of parameters for the non-dimensionalized systems. Note that 𝛾 can be re-written as 𝛾’𝜎, 

where 𝛾’=
𝑟𝑉𝑏𝐾

𝑑
.  

 

Fixed Point Stability Conditions (Lytic) Stability Conditions (Lysogenic) 

x0*=(0,0,0) 𝜌 < 0 𝜌 < 0 
xu*=(0,1,0) 𝛾 < 𝜎(𝛼 + 1) 𝛾 < 𝜎(𝛼 + 1) 
xVUI*=(V,U,I) † 𝜎 𝛼 + 1 < 𝛾 <?†† 𝜎 𝛼 + 1 < 𝛾 <?‡ 

xVI*=(𝛾(1 − 𝜎
𝜌 ),0, (1 − 𝜎

𝜌 )) N/A  𝜎 <
𝛾𝜌

𝛾 + 𝜌
 

Table 3: Fixed points and their conditions of stability.  
†See “balanced steady state” section for the expressions for xVUI* in both systems.  
††Numerical simulations indicate a linear function of 𝛾 and 𝜌 at which a Hopf bifurcation occurs and xVUI* becomes 

unstable for the lytic system (figure 3).  

‡For 𝜌 > 𝜎, xVUI* is stable when 𝛾 <
𝜎 𝜌

𝜌 − 𝜎 , as it undergoes a transcritical bifurcation with xVI*. For 𝜌 < 𝜎,  

there is a curve at which a Hopf bifurcation occurs and xVUI* becomes unstable for the lysogenic system (figure 3).   

Parameter Definition Values 

𝑟𝑐  Cell growth rate 0.2-2.4 day-1 

𝑟𝑉  burst size 24-64 ml·Virus-1·Cell-1 

𝑎 Adsorption constant. 2.4·10-7-1.02  ml·Cell-1·day-1 

𝑏 Infection constant 10-8-0.34 ml·Virus-1·day-1 

𝑑 Virus decay rate 0.019-0.30 day-1 

𝑙 Lysis rate constant 0.012-12 day-1 

K Carrying Capacity 105 - 106 Cell·ml-1 



 

 

Figure 2: Stability diagram for lysogenic system. α=0.9, σ=0.5. The vertical line, a, is where 𝛾 = 𝜎 𝛼 + 1  the 

curved line, b, is where 𝛾 =
𝜎 𝜌

𝜌 − 𝜎 , above which the ‘prophage fixation’ fixed point xVI* is stable. In both 

systems, viral persistence is guaranteed when 𝛾 > a, but lysogenic viral persistence can also occur in the bistable 

region, a>γ>b where both xVI* and xU* are stable. Also, since it has been shown for at least one phage-host system 

that 𝑟𝑐 ≥ 𝑙 (Lubitz et al., 1984), it may be that xVUI* is only stable in darker-shaded of the two regions it covers, 

where    b > 𝜌 > 𝜎.  
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 Figure 3: Bistability of lysogenic system. 𝜌=21, γ=5,σ=3, α=1. Initial values of viruses were increased from 

1 to 5. The bistability of the lysogenic system allows for lysogenic viruses to persist even if inequality (6) is not 

satisfied, provided initial virus titers are large enough. Viruses in this regime, if they do persist, infect every cell and 

approach the prophage-fixation fixed point (dashed line).  

 

 
 

Figure 4: Viral abundance as a function of productivity. σ=0.8, α=0.5. Productivity affects both cell 

growth rates and virus burst size (Weinbauer et al., 1993; Weinbauer & Suttle, 1999), which corresponds to 

increases in 𝜌 and γ, respectively. These models are consistent with empirical data showing increasing viral 

abundance with increasing productivity of the environment. However, the models fail to show a greater relative 

abundance of lytic phage in more productive environments, and a greater relative abundance of lysogenic phage in 

less productive environments. Such patterns could be explained by expanding on these systems to model 

competition between virus types and adding costs for cells infected with lysogenic phage.  
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Figure 5: Characteristics of Oscillations around xVUI*.  σ=0.8, α=0.5 a) Location of Hopf bifurcation for 

lytic and lysogenic systems, where the dashed line of the lysogenic system is where 𝜌=σ. Notice that oscillations in 

the lysogenic system are only possible for 𝜌<σ, which translates to 𝑟𝑐 < 𝑙. These may be an unrealistic parameter 

condition, as it has been shown for one phage-host system that  𝑟𝑐 ≥ 𝑙 (Lubitz et al., 1984). b) Magnitude of 

oscillations. Increasing γ has the greatest effect on the magnitude of oscillations. c) Period of oscillations. Unlike 

the magnitude, here changing 𝜌 has the greatest effect on the frequency. For very small values of 𝜌, the lysogenic 

system becomes very stiff and numerical instability leads to problems in measuring cycle amplitude and period. 

Altogether, these figures suggest that lytic viruses are more prone to oscillations and that changes in virulence 

(burst size, infection rate) will have a greater impact on the magnitude of oscillations and that cell growth rate will 

have the greatest impact on the frequency of oscillations.  

  



Appendix 

 

xVUI*    =    𝑽,𝑼, 𝑰    =      (𝜌 1 − 𝑼 − 𝑰  , 𝑼 ,
 1−𝑼  𝛼𝑼+1 

 
𝛾

𝜌
+𝛼𝑼+1 

),           

                    where  𝑼 =
𝜎

𝛾−𝛼𝜎
 

     For the lysogenic system,  

xVUI*    =    𝑽,𝑼, 𝑰   =        𝑽 ,
1− 

𝛾+𝜌
𝛾𝜌  𝑽

1+ 𝛼 𝛾  𝑽
  ,

𝑽 𝛼𝑼+1 

𝛾
                      

                   where 𝑽 =  
1

2
  (𝜌 + 𝜎 −

𝛾
𝛼 ) +  (𝜌 + 𝜎 −

𝛾
𝛼 )2 − 4(

𝜌
𝛼 )(𝜎 𝛼 + 1 − 𝛾)   

 

 

Parameter Comments Reference 
𝑟𝑐 Max values hold for E. coli in vitro and are unlikely in situ. In 

situ growth rates are more likely in the 0.2-2 day-1 range 
Ducklow (1983), Stewart et al. 
(1991), & Middleboe (2000) 

𝑟𝑉 Increases with productivity of environment (presumably 
through increased sizes of cells in more productive 

environments) 

Wommack & Colwell (2000), 
Weinbauer et al. (1993), and 
Weinbauer & Suttle (1999) 

𝑎 Adsorption constant. Nowak & May (2000); Bocharov 
& Romanyukha (1994) 

𝑏 𝑏<a Dahari et al. (2005), Marchuk et 
al. (1991) Reluga et al. (2009) 

𝑑 Measured from half-lives of λ phage at 20-42oC Jepson and March (2004) 

𝑙 In rich medium, 𝑙 ≅ 𝑟𝑐 , whereas in minimal medium 
𝑙 ≪ 𝑟𝑐  for phage  ΦX174 

Lubitz et al. (1984), Middleboe 
(2000) 

K  Hanson et al. (1983) 

 

 


