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Introduction 

My research examined the possible periodic trajectories of a point-mass inside rectangular 

billiards, with the goal of discovering if and when finite and infinite trajectories are possible. A 

billiard is a type of dynamical system consisting of a closed boundary in the real plane, a ball 

that travels inside the boundary, and the possible trajectories of the ball. The ball starts its 

trajectory at some initial point and travels in a specified direction. The trajectory of the ball is the 

path along which the ball travels inside the boundary of the billiard. An impact occurs whenever 

the ball collides with the boundary of the billiard. I considered only totally elastic collisions. In 

totally elastic collisions the ball does not lose any momentum, whereas in inelastic collisions the 

ball loses momentum with each impact (Berger, 675). This simplification allows for the 

consideration of infinite trajectories. Additionally, impacts are not defined on corners. We treat 

corners of the billiard boundary like corners of a pool table. If the trajectory of the ball meets a 

corner then the trajectory terminates at that corner (Tabachnikov, 2). In my research I treated the 

ball like a point-mass. As such, I was able to ignore complications like mass, momentum, and 

friction, allowing me to study the periodicity of trajectories using geometry and algebra. Given 

an initial point and direction, we define the trajectory of a point-mass inside a billiard boundary 

to be periodic if the point-mass returns to the initial point within a finite number of impacts. If 

the point-mass never returns to the initial point within a finite number of impacts, then the 

trajectory is not periodic.  

 

The trajectory in a billiard changes after each impact. When the point-mass impacts the 

boundary, it bounces off continuing the trajectory so that “the angle of incidence equals the angle 

of reflection” (Hasselblatt, Katok, 1017). This means that each successive impact can be mapped 

by reflecting the trajectory by the line perpendicular to the boundary at the point of impact. This 

method, however, makes it very difficult to map a significant number of impacts. Instead of 

reflecting the trajectory, we can reflect the billiard domain, and continue the trajectory in a 

straight line. This unfolding process allows the trajectory of the point-mass in the billiard domain 

to be studied as a line in the real plane (Hasselblatt, Katok, 1019). In particular, this method 

works well for rectangular billiards, as the reflections of rectangles tile the real plane completely.  

A billiard trajectory is based on the initial conditions of boundary, initial location of the point-

mass, and the initial direction of travel. My goal was to find out when periods can exist and if 
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periods can exist with a specific number of impacts. Whether a periodic trajectory will occur 

relies on the slope of the trajectory before the first impact which gives the initial direction of 

travel. If the slope of the trajectory is rational in a rectangular billiard domain, the trajectory will 

be periodic. The opposite is true for irrational slopes. If the slope is irrational in a rectangular 

billiard domain, then the trajectory will never repeat (Berger, 680). Therefore, while looking for 

periodic trajectories with a specific number of distinct impacts, I assumed the slope of the 

trajectory was rational.  

Overview 

I begin by introducing some special cases of simple trajectories. A two impact periodic trajectory 

illustrates the importance of our simplifications. I use a four impact periodic trajectory to explain 

two methods for mapping periodic trajectories. Here I define a notion of equivalence between 

both methods which will be used throughout to determine if a trajectory is periodic. I then give a 

geometrical proof that a three impact periodic trajectory inside a square billiard is impossible. I 

also show an important property of totally elastic collisions, namely that the point-mass cannot 

travel along the boundary after an impact.  

 

I  then move onto squares. Using properties of the square tiling of the real plane, our previous 

condition about totally elastic impacts, and the linear representation of a billiard trajectory, I 

show that the terminating point of a periodic trajectory must have an even             . I 

similarly show that this point must also have an even             , using properties of 

reflections by successive integer lines along the       . I then use the midpoint of a general 

billiard trajectory to eliminate the case of a terminating point of the form          . This 

leaves points of the form           with          as the only possible terminating points of 

periodic trajectories. Using these claims, I then show that periodic trajectories in square billiard 

domains must have an even number of distinct impacts.  

 

To generalize the claims I proved for squares, I expand the same claims for rectangles. Similar 

methods will provide all of these proofs using scaling coefficients. I then exploit the benefits of 

representing our trajectories as lines by using the slope-intercept equation of general trajectory 

lines in rectangles. I examine how different initial conditions for the coordinates of the 
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terminating point can be used to determine when trajectories will impact corners, and implicitly 

how corners can be avoided when specifying a trajectory. 

 

To conclude, I give the reader a brief review of topics regarding billiards in triangles for those 

more ambitiously interested in the study of billiard dynamics as well as a description of billiards 

in circles.  

Special Cases 

In order to familiarize myself with the basic properties of billiards I began by examining some 

special cases. Their simplicity is deceptive, as even marginally more complex trajectories require 

more advanced and less intuitive tools to fully examine. The first is perhaps the most basic 

trajectory inside a square billiard, a periodic trajectory containing only two distinct points of 

impact. The second is the case of a four impact periodic trajectory. The third is the impossible 

case of a three impact period inside a square.  

 

Two Impact Periodic Trajectory 

We start with a simple square billiard domain, and an initial point placed for purely aesthetic 

reasons on the midpoint of one side. The trajectory is no more or less trivial if the initial point is 

placed at any other non-vertex location along that side. Additionally, we define the trajectory of 

the point-mass by the direction perpendicular to the side containing the initial point.  

 

Figure 1 A two-impact periodic trajectory inside a square 
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The point-mass travels along the perpendicular line from the initial red point to the blue midpoint 

on the opposite side, and then returns along the same path. It will always return along the same 

trajectory because the trajectory line is perpendicular to the sides of impact. It is also worth 

noting that when the point-mass impacts the boundary, its trajectory after that impact is on the 

interior of the billiard domain. It cannot travel along the boundary. I show this in Lemma 1.1. 

This means that in the above trajectory, the point-mass will only impact the boundary at the red 

and blue points.   

 

Even in this simple case, our simplifications are important. If we tried to replicate this trajectory 

on a physical pool table it would inevitably fail. At each impact the ball would lose momentum, 

so the periodic trajectory would not continue forever. Additionally, since the ball, pool table, and 

the surface beneath the pool table would all have imperfections, however small, we would never 

be able to accomplish a perfectly straight trajectory, and at each impact the ball would deviate 

slightly from its previous course. Mass, friction, and momentum all make this perfectly simple 

trajectory realistically impossible. However, with our billiard domain in the real plane and a 

point-mass for our billiard ball, we can consider this possibility and the infinite movement of our 

point-mass between the red and blue points along the same trajectory forever.  

 

Four Impact Periodic Trajectory 

A four impact trajectory is slightly more interesting. It can take the shape of a square or a 

rectangle inside the square billiard domain.  

 

Figure 2 Four impact periodic trajectory inside a square 
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At each impact, we reflect the trajectory line about the line perpendicular to the side of impact at 

the point of impact. This method of mapping the trajectory insures that at each impact, the angles 

of incidence and reflection are the same. Above, the angle approaching the first impact is θ and 

the angle as the point-mass leaves the first impact is also θ. This ideal periodic trajectory is also 

only possible in our ideal billiard domain, whereas it could not occur on a real pool table.  

 

With the four impact periodic trajectory the process of mapping the trajectory using reflections 

of the trajectory lines is clean and makes sense. However, this process becomes much more 

convoluted as the number of impacts in a trajectory are added and trajectory lines begin to cross. 

This complication necessitates an alternative method for mapping the trajectories inside a square 

billiard domain. Instead of reflecting the trajectory line, we reflect the boundary of the billiard 

domain by the line containing the impact point. This is easiest to see with a square trajectory.  

 

Figure 3 A square trajectory mapped by both methods 

Whereas with our original method, we map the trajectory with reflections of the trajectory lines 

and draw it in the domain as it would occur, with this new method we reflect the boundary itself 

and continue the trajectory as a straight line. This offers the advantage of studying the trajectory 

as a straight line, eliminating the mapping difficulty as the number of impacts increases. In the 

above trajectory the first impact is on the midpoint of the green line in both representations of the 

trajectory. Similarly, the second impact is on the midpoint of purple line, and so on. The impacts 

occur in the same order and the same locations relative to the initial orientation of the square. 

Visually, a periodic trajectory is more difficult to identify using this method for mapping the 



7 

 

trajectory, but the benefit of using the equation of a line to analyze trajectories is well worth this 

sacrifice in intuition.   

In order to determine whether an impact corresponds to a specific location on our billiard 

boundary when we use this method of mapping our trajectory we need to define a notion of 

equivalence. A point on our original billiard boundary is equivalent to a point in the plane if the 

two points are equal by the composition of reflection isometries about lines of the form     

and    , where        This is the notion of equivalence that we will use for the method of 

trajectory mapping in which we reflect the billiard domain instead of the trajectory at each 

impact. The restriction to reflections by integer lines limits our definition of equivalence very 

specifically. If two points are equivalent by this type of isometry, they correspond to the same 

point on the boundary of our unit square. If two points are not equivalent by this type of 

isometry, they do not correspond to the same point on the boundary of our unit square. Instead of 

returning to the initial point, periodic trajectories will eventually impact a point equivalent to the 

initial point. In the simple example of a periodic trajectory above, impact 4 is at (0, 0.5) in the 

first representation and (2,2.5) in the second representation if our unit squares are place in the 

real plane. The points (0,0.5) and (2,2.5) are equal by the composition of reflection isometries 

about integer lines. We reflect the point (0,0.5) about the lines          and then     to 

get the point  (2,2.5). Similarly, we could reflect (2,2.5) about the lines          and then 

    to get the point (0,0.5). These points are equivalent so they both correspond to the initial 

location on the boundary of our billiard domain, meaning the trajectory is periodic.   

Three Impact Periodic Trajectory 

The next simple case worth investigating is that of the impossible three impact periodic 

trajectory. The beauty in this case comes from the ease with which we can dismiss the possibility 

of a periodic trajectory with exactly three distinct points of impact.  
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Figure 4 An impossible three impact periodic trajectory 

If we suppose that a three impact periodic trajectory is possible, this trajectory must necessarily 

be triangular if it does not impact a corner, since the point-mass cannot travel along the 

boundary, as shown in Lemma 1.1. If θ is the angle of the first trajectory line, then the 

subsequent angles must be as pictured since the sum of the angles of a triangle is   . This gives 

us the following, 

 

                 

         

          

 

If we plug A and B into our equation for C we get that, 

 

                  

 

This is clearly impossible if A,B, and C are actually the interior angles of a triangle. Therefore, 

our assumption that a three impact periodic trajectory was possible is false. A three point 

periodic trajectory cannot exist in a rectangular billiard. Unfortunately, this type of intuitive, 

geometrical reasoning is not sufficient for cases involving more than four distinct points of 

impact.  
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Properties of Totally Elastic Collisions 

 

Lemma 1.1. If a point-mass impacts a line segment        at   from a point   not on         , and the 

trajectory of the point-mass is along          then                       

 

Proof. Since r is not on         ,        , for some      But by properties of elastic impacts 

we get that             for any           with      This implies that            

Therefore,           , which means that for any           with                           Therefore, 

                    .   

 

Figure 5 The point-mass impacts the boundary at only one point 

Square Billiards 

For square billiards consider square       a unit square with  at      ,  at      ,  at      , 

and  at      , with the trajectory of a point-mass starting on         at        

Claim 1.1. If the trajectory of a point-mass is periodic ending at a point            equivalent 

to      , then      . 
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Figure 6 A trajectory mapped as a line in the plane 

Proof. By Lemma 1.1, in order for the point-mass to travel from       back to any point on         , 

including       , it must leave the line         , and eventually impact   . With the trajectory 

unfolded in the plane, this means that in order for the point mass to travel from       on          to a 

point           equivalent to      , the trajectory line must cross the line containing     In 

the plane, the square is originally positioned with        at      Because we are investigating    

we are only concerned with what happens when the square is reflected horizontally because 

vertical reflections do not alter   . When the square is horizontally reflected, it is reflected first 

about the line    . This places the side of the square equivalent to            on the line      

Then reflection by the line     places the side of the square equivalent to        on the line     

since our unfolding process involved only reflections by successive horizontal and vertical 

integer lines. If we continue reflecting the square by each successive integer line in this manner, 

the side equivalent to            will always be placed on an even integer line. Similarly, these 

reflections will always place the side equivalent to        on an odd integer line. Therefore, if 

          is the terminating point of the trajectory, and           is equivalent to      , 

   cannot be an odd number. Therefore      .  

Claim 1.2. If the trajectory of a point-mass is periodic ending at a point            equivalent 

to      , then      . 
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Proof. If the trajectory of the point-mass ends at           and this point is equivalent to 

     , then it must be possible to reflect the point-mass by integer lines until the reflection of 

      is          . If we reflect       by successive integer lines starting with    , then 

   , and so on, then the distance between two successive reflections of       is either    or 

     since the point is always a distance of either   or 1    from the nearest integer line.  

 

If we reflect once, the distance between the two successive reflections of       will be     . 

If we reflect again, the distance between       and the new reflected point will be        . 

As we continue to reflect the point, we continue to alternate adding      and   . Thus, if we 

reflect an even number of times our new              will be              , for 

some      If we reflect an odd number of time, since we alternate adding      and    and 

we start with     , our new              will be                  , for some 

     

 

 

Figure 7 Vertical reflections of the point mass by successive horizontal integer lines 



12 

 

This means that if           is equivalent to      , then                     or 

                                .  

 

                       

                    

      

Therefore,      .  

Similarly, if           is equivalent to      , then, 

 

                     

              

      

 

Therefore,      . So, if           is the terminating point of the trajectory and is equivalent 

to      , then      .  

 

In order for           and       to be equivalent while reflecting by these specific and 

successive integer lines,         . This intuitively fits our method for unfolding trajectories 

by reflecting the billiard domain. However, our notion of equivalence allows for reflections by 

any integer lines, so we require a further lemma to show that in order for       and         to 

be equivalent    and    must be even.  

 

Claim 1.3. If the trajectory of a point-mass which starts on         at       ends at a point 

          with          then the point terminates in a corner before the trajectory 

completes a period.  

Proof. The initial point of the trajectory is       and the terminating point is          . 

Therefore, the trajectory line is the line through these two points. This means the midpoint of this 

line is in the trajectory. The midpoint of this line is  
  

 
 
  

 
 , and since          that means 

that 
  

 
 
  

 
    so this point is a corner. Therefore the point mass impacts a corner before a 

period can be completed.  
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Claim 1.4. The trajectory of the point-mass cannot be periodic if the number of impacts, N, is 

odd.  

Proof. We know that         . In order for      , the number of horizontal reflections of 

the billiard boundary must be odd. And in order for      , the number of vertical reflections 

of the billiard boundary must be even. This difference is because the initial point is on the integer 

line    , but falls between integer lines vertically. Since an even number plus an odd number 

is an odd number, the total number of reflections to map the trajectory is odd. However, the first 

impact occurs before we reflect the billiard domain, so we must add the first impact to this odd 

number of impacts. So, the total number of impacts is even. This will always be the case when  

          which we require for periodic trajectories. Therefore, if the number of impacts,  , in 

a trajectory is odd, the trajectory cannot be periodic.  

 

Though we know that our unfolding method requires    and    to be even integers, this 

alternative proof shows    and    must be even based on the conditions of our definition of 

equivalence of points.  

 

Lemma 1.2 Reflections about lines     and     with       preserve the parity of the 

coordinates of all integer points.  

Proof. For any point       with      , reflect the point       by an integer line        . 

Denote this reflection by          . By properties of reflections we get that: 

                                

Since    ,    is an even integer. This means that if   is even      will be even, and if   is 

odd      will be odd. We can similarly reflect by a our point       by a vertical integer line, 

         

                                

Since    ,    is an even integer. If   is odd      will be odd. If   is even      will be 

even as well.  

 

Lemma 1.3 No composition of reflections about integer lines will ever map one side of our 

billiard boundary to the opposite side of the billiard boundary, so if the points           and 
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      are equivalent,           This is a result of Lemma 1.2. The coordinates of the points of 

the line segment        will always have even parity, while the coordinates of the points of the line 

segment        will always have even parity. 

Rectangular Billiards 

For rectangular billiards consider rectangle      positioned in the plane such that  is at      , 

 is at      ,  is at      , and  is at       and a point mass starts its trajectory on        at       

with         with terminating point of the trajectory            The equation of the 

trajectory line in a rectangle is:   

 

     
  

  
    

 

 

Rectangular billiards tile the plane uniquely like squares, so proofs similar to those above also 

show that in rectangles: 

 

Claim 2.1. If the terminating point is           then       . 

Claim 2.2. If the terminating point is           then       . 

Claim 2.3 If the terminating point is           then the point-mass impacts a corner before 

the trajectory completes a period.  

Claim 2.4 The trajectory of the point-mass cannot be periodic if the number of impacts, N, is 

odd. 

 

However, going through the same type of proofs is unnecessary since we already have these 

properties for squares. For every point       in our original square billiard domain, we can 

define the function               , which just applies the dimensions of our rectangle as 

scaling coefficients. This function maps our square lattice to the rectangular lattice, mapping 

points to points, lines to lines, sides of our square to sides of our rectangle, and vertices to 

vertices. This means the trajectories inside our square are mapped by        to trajectories 
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within the rectangular lattice. So, all of the properties that we have for trajectories inside square 

billiard domains will also hold for rectangular billiard domains.  

 

Claim 2.5 If the trajectory of the point-mass starting at       and terminating at        

   equivalent to       has scaling coefficients such that       and      , and 
 

 
 

 

 
 with 

      and             then the point-mass will impact a corner only if     and      or 

if  
 

 
     

 Proof. The equation of the trajectory line is: 

     
  

  
    

Suppose the point-mass impacts the corner when     ,         for some      . Then the 

equation of the trajectory line becomes: 

   
  

  
     

  

  
     

  

 
    

This implies that: 

  
  

 
 

 

 
 

Since 
 

 
 

 

 
 our equation becomes: 

      
  

 
 

We have that         by Claim 2.1 and 2.2, and since       we also have that           

This equation is only true if 
  

 
 is an even integer. This can only happen when     and      

or 
 

 
   , since             It is also worth noting that both of these cases can only occur 

when either both   and   are rational, or both are irrational, else the ratio  
 

 
 will not be rational. 

These are the only trajectories inside rectangular billiards which can terminate at corners. All 

other trajectories are either periodic or infinite. This rule can also be used to show when 

segments of infinite trajectories will terminate in a corner. Instead of using a terminating point 

equivalent to      , since infinite trajectories do not have terminating points like periodic 

trajectories, we can just use some point along the trajectory and examine the trajectory on the 

segment from       to that specified point.  
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Billiards in Triangles 

The natural progression of this research is to examine periodic billiard trajectories inside billiard 

domains defined by non-rectangular polygons. Triangles provide an interesting avenue of study. 

When studying triangles there are more conditions to consider than those which must be taken 

into account for rectangles. Whether a triangle has a right angle, whether it is rational with all 

interior angles rational multiples of  , or irrational with at least one interior angle an irrational 

multiple of  , isosceles, or acute or obtuse all make a difference. Each case has to be dealt with 

separately. Though the existence of periodic orbits in all triangles is an open problem, there are 

some interesting results for acute, right, rational, and isosceles triangles (Hooper, Schwartz, 1).  

 

A rational polygon is a polygon in which the interior angles are all rational multiples of 

  (Galperin, Zvonkine, 30). We know that all rational polygons contain periodic trajectories, 

including our basic squares and rectangles (Troubetzkoy, 1). However, it is unclear which 

irrational polygons contain periodic trajectories, whether those periodic trajectories can have any 

number of impacts, and how densely non-periodic trajectories fill in the billiard domain. So 

when taking rationality into consideration, rational triangles will contain some periodic 

trajectories, but irrational triangles require further study.  

 

Some triangular billiards, however, are better understood. Though obtuse triangles are still 

largely a mystery, all acute triangles and right triangles contain periodic trajectories (Hooper, 

Schwartz, 1). There are even some specific periodic trajectories that occur in these triangles. For 

example, in every acute triangle there is a three impact periodic trajectory, called the Fagnano 

trajectory, predictably named after the man who discovered it (Galperin, Zvonkine, 29). Given 

an isosceles triangle, one can draw a straight line that perpendicularly intersects the opposite side 

from each vertex. These are the altitude lines of the triangle. We designate the vertices of our 

triangular trajectory by the points at which these lines intersect the boundary (Baxter, Umble, 

479). 
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Figure 8 Sketch of a Fagnano Trajectory 

Also of note, there are additional six impact periodic trajectories in bands parallel to the Fagnano 

trajectory (Galperin, Zvonkine, 29).  Trajectories inside triangles and rectangles behave similarly 

to each other, filling in parallel bands within the domain.  

 

For anyone interested in continuing the study of billiards in polygons, triangles provide a rich 

environment to explore. There are still many unanswered questions, and the likely tools needed 

to solve them delve much further into the abstract than the simple methods which can be used to 

study billiards in squares and rectangles.  

Billiards in Circles 

Billiards in circles are much more intuitive than billiards in triangles and rectangles. There are 

periodic and infinite trajectories inside circles. If the trajectory is defined by an angle, and the 

ratio of this angle to   is rational, then the impacts of the trajectory form a regular polygon and 

the trajectory is periodic (Berger, 713). The periodic trajectory will be a regular polygon because 

circles are invariant under rotation. If there are six distinct impacts, then there are six rotations 

which map the trajectory to itself, and thus the trajectory can only be a regular hexagon. 

 

If the ratio of the trajectory angle to   is irrational, then the trajectory is infinite (Berger, 713). 

More interestingly, however, unlike the square in which infinite trajectories fill in the entire 

billiard domain densely, infinite trajectories inside the circle cannot fill in the entire billiard 

domain (Berger, 713). The only trajectory in a circle that travels through the center of the circle 

is the simple two impact periodic trajectory from one point on the circle to another point, such 

that the trajectory line is perpendicular to the line tangent to the circle at that point.  
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Figure 9 The only trajectory in a circle through the center 

Instead of filling in the entire billiard domain, infinite trajectories in circles densely fill in a ring 

within the circle (Berger, 713). They fill in the ring densely because circles are invariant under 

rotation. Whereas a periodic trajectory will be mapped to itself by a finite number of rotations of 

the circle, with an infinite trajectory the trajectory is invariant under an infinite number of 

rotations. The points of impact will be dense everywhere on the boundary of the circle, so the 

trajectory lines will be everywhere dense on some ring inside the circle (Berger, 713).  
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