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Introduction

This purpose of this paper is to summarize research done in the theory of Lie algebras,
with attention directed towards contractions of Lie algebras. It is written in the style of
an introduction to these topics for undergraduates familiar with (though not necessarily
proficient in) linear and abstract algebra. It is separated into three sections: section (1)
describes the basic definitions and properties of Lie algebras in an abstract setting; section
(2) narrows the discussion to specific linear Lie algebras and their properties, which are the
focus of the remaining section; section (3) defines and describes a particular type of a general
process known as contractions between linear Lie algebras, focusing on those properties of
Lie algebras that remain invariant under this process.

1 Abstract Lie Algebras

1.1 The General Definition of a Lie Algebra

A Lie algebra g of dimension n is a vector space V of dimension n over a field F with a
binary operation µ : V×V −→ V that is

(A1) bilinear :

µ(rx+ sy, z) = rµ(x, z) + sµ(y, z)

µ(x, ry + sz) = rµ(x, y) + sµ(x, z)

for all x and y in V, and for all r and s in F;

(A2) alternating :

µ(x, x) = 0

for all x in V;

and satisfies the (A3) Jacobi Identity :

µ(x, µ(y, z)) + µ(y, µ(z, x)) + µ(z, µ(x, y)) = 0
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for all x, y, and z in V. We will sometimes write g = (V,µ), where the underlying field is
implicitly understood.

Note that (A3) implies non-associativity. A very important implication of (A2) is anti-
commutativity. This can be demonstrated by applying (A2) to the vector x+ y:

µ(x+ y, x+ y) = µ(x, x+ y) + µ(y, x+ y)

= µ(x, x) + µ(x, y) + µ(y, x) + µ(y, y)

= µ(x, y) + µ(y, x)

= 0

so that

µ(x, y) = −µ(y, x)

We must also note that if char(F) 6= 2, then anti-commutativity implies (A2) by considering
µ(x, x):

µ(x, x) = −µ(x, x) =⇒ 2µ(x, x) = 0

=⇒ µ(x, x) = 0,

where the fact that the characteristic of F is not 2 is used to establish the final implication.
Thus, if the field is of characteristic zero, as in the case of the real and complex fields, then
anti-commutativity is logically equivalent to (A2). This fact will be used extensively later
on.

As a special example, consider the transformation defined by µ(x, y) = 0 for all x and
y in V. This always trivially defines a Lie algebra for any vector space V over any field,
known as the abelian algebra. This name is adopted because it is the only case where the
operator commutes, since we have µ(x, y) = 0 = µ(y, x) for all x and y.

It is important to note that this abstract definition of a Lie algebra makes no mention of
what the vector space V is, nor does it explicitly define µ in any computational sense. For
the moment, this level of generality is adequate to define some simple algebraic notions, and
to demonstrate some basic propositions. For the purposes of this paper, we shall consider
only finite-dimensional Lie algebras, the infinite-dimensional cases being far beyond the
scope of this paper. Furthermore, the underlying field F of the vector space V will only be
specified if necessary. Most of the general results in this paper hold regardless of the field.

1.2 Structure Constants

Since Lie operators are linear mappings of vector spaces, if we let g = (V,µ), and we fix a
basis {x1, ..., xn} for V, then the transformation µ is completely defined by the images of
µ(xi, xj) for i, j = 0,1,2,...,n. Expressing these images as linear combinations of the basis
vectors, we see that

µ(xi, xj) =

n∑
k=1

ckijxk

where the subscript ij indicates that the pair (xi, xj) is the pre-image. The coefficients ckij ε
F are known as the structure constants (or structure coefficients) of the Lie algebra g.
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In principle, simply knowing these structure constants is enough to completely determine g,
so the converse is also true: if we specify a set of constants, we can construct a Lie algebra
from them, provided that they satisfy

ckij + ckji = ckii = 0∑n
k=1(ckijc

q
kp + ckjpc

q
kp + ckpic

q
kj) = 0.

This forces the algebra to satisfy (A2) and (A3), and intuitively we can see that two Lie
algebras are essentially the same if a suitable change of basis in one or both algebras yields
the same structure contants[14, 9]. This will be made precise in Section 1.4. While it is not
typical to construct Lie algebras in this way, structure constants can be used in a variety of
ways to simplify calculations, as will be seen later.

1.3 Ideals of a Lie Algebra

A subset h of a Lie algebra g is called a subalgebra of g if and only if h is a vector subspace
of V, and µ(x,y) is an element of h whenever x and y are elements of h. In other words, a
subset of a Lie algebra is a subalgebra if it is closed under the Lie operator.

An ideal of a Lie algebra is defined similarly to other algebraic structures. An ideal
of a Lie algebra is a subalgebra with the property that µ(x,y) ε h whenever x ε h and y
ε g. It is important to realize that due to (A2), we could have just as easily defined an
ideal as µ(x,y) ε h whenever x ε g and y ε h. This paper will utilize both as is convenient
without explicitly mentioning which convention is being adopted. Ideals are among the
most important substructures in Lie algebra theory, so it is beneficial to mention several
examples and some general properties.

The zero subalgebra is simply the vector subspace containing only the zero vector (it is
clearly a subalgebra by (A2)). Both it and g itself are ideals of g:

µ(0, x) = µ(y − y, x) = µ(y, x)− µ(y, x) = 0,

for all x in g, and since the Lie operator is a mapping, it is trivial that g is an ideal of itself.
Another important example of an ideal is the center of g, denoted by Z(g):

Z(g) = {z ε g | µ(x, z) = 0, ∀x ε g}.

This is well-defined since we always have 0 ε Z(g). To see that Z(g) is an ideal, we note
that if x ε Z(g) and y ε g, then by the definition of the center we must have µ(x,y) = 0,
so for any z in g, we have that µ(µ(x,y),z) = µ(0,z) = 0. If g is abelian, then it follows
immediately that Z(g) = g.

If i and j are both ideals of g, then their sum

i + j = {x+ y | x ε i, y ε j}

is also an ideal. This is easily seen by noting that for z ε i + j, if we take any w ε g, then

µ(w, z) = µ(w, x+ y) = µ(w, x) + µ(w, y)

where x ε i and y ε j. This then implies that µ(w,x) ε i and µ(w,y) ε j, so that µ(w,z) ε i +
j. The intersection of two ideals, i ∩ j is also an ideal: if x ε i ∩ j, then for y ε g, µ(x,y) is
in both i and j, since x is. Then µ(x,y) ε i ∩ j. Note that the sum of i and j contains both i
and j, while the intersection of i and j is contained in both i and j.
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Furthermore, we have that their product

ij = {
∑

µ(xi, yi) | xi ε i, yi ε j}

is likewise an ideal. To see this, let x ε g and z ε ij. Then z =
∑
µ(yi,wi), where yi ε i and

wi ε j for each i, so that

µ(x, z) = µ(x,
∑

µ(yi, wi))

=
∑

µ(x, µ(yi, wi))

=
∑

(−µ(yi, µ(wi, x))− µ(wi, µ(x, yi)))

=
∑

(µ(yi, µ(x,wi)) + µ(µ(x, yi), wi))

=
∑

µ(yi, µ(x,wi)) +
∑

µ(µ(x, yi), wi)

where
∑
µ(yi,µ(x,wi)) and

∑
µ(µ(x,yi),wi) are in ij, since µ(x,wi) are in j for each i and

µ(x,yi) are in i for each i.
Using the notion of an ideal, we can form the quotient algebra g/i. This is simply the

quotient space of V over the vector subspace i, with the Lie operator µI defined on the
cosets by

µI(x+ i, y + i) = µ(x, y) + i,

where µ is the Lie operator over V. This is well-defined: for x1 + i = x2 + i and y1 + i =
y2 + i, we have

µ(x1, y1) = µ(x2 + p, y2 + q)

= µ(x2, y2) + (µ(x2, p) + µ(p, y2) + µ(p, q))

for p,q in i. If i = g, then g/i has only a single element and behaves like the zero algebra, and
if i is the zero subalgebra, then g/i is the set of singlets of the elements of g (it is isomorphic
to g—see below). Since these cases are uninteresting, it is typically assumed that i 6= g (in
which case we say that the ideal is proper) and that i 6= 0 (in which case we say that the
ideal is non-trivial). Any Lie algebra that has no proper, non-trivial ideals is called simple.
Since many claims involving simple Lie algebras would fail in the case of abelian algebras,
it is also assumed that g is non-abelian—otherwise, many proofs would need to be modified
in order to accomodate it[9]. Generally, in order to form an interesting quotient algebra, we
usually assume that g is not simple.

There are other very important ideals, and ideals are in general powerful theoretical
tools. However, since the majority of this paper deals with linear Lie algebras, they will be
discussed in detail in Section 2.4.

1.4 Mappings between Lie Algebras

Let ϕ be a linear mapping from g to g0, where µ and µ0 are the Lie operators on g and g0,
respectively. Suppose ϕ satisfies the familiar homomorphism property with respect to the
Lie operators

ϕ(µ(x, y)) = µ0(ϕ(x), ϕ(y)),

4



or in matrix terms

Aµ(x, y) = µ0(Ax,Ay)

for all x and y in g. Then ϕ is called a homomorphism of Lie algebras. If ϕ is surjective,
then ϕ is called an epimorphism; if ϕ is injective, then ϕ is called a monomorphism;
and if ϕ is bijective, then ϕ is called, predictably, an isomorphism, which we denote by '.
The notion of a Lie algebra isomorphism requires that V and V0 be isomorphic as vector
spaces, and if we represent ϕ as a vector space isomorphism with the non-singular matrix
A, then we can rewrite the matrix representation of the map as

µ(x, y) = A−1µ0(Ax,Ay).

Note that this is valid only for Lie algebra isomorphisms. This will become extremely
important in Section 3.

Recall the definitions of the image and kernel of a linear map:

Im(ϕ) = {y ε g0 | ∃ x ε g s.t. ϕ(x) = y}

and

Ker(ϕ) = {x ε g | ϕ(x) = 0}.

We want to know under what conditions ϕ preserves the structure given by the Lie operator.
We find that for any homomorphism ϕ, the following propositions hold:

Proposition 1.1: Ker(ϕ) is an ideal of g.

Proof : Let x ε Ker(ϕ) and y ε g. Since ϕ(x) = 0 and ϕ is a homomorphism, we have
that

ϕ(µ(x, y)) = µ0(ϕ(x), ϕ(y)) = µ0(0, ϕ(y)) = 0,

so µ(x, y) ε Ker(ϕ). �

Proposition 1.2: Im(φ) is a subalgebra of g0.

Proof : The proof is immediate from the definition of a subalgebra and the fact that ϕ
is a homomorphism:

µ(ϕ(x), ϕ(y)) = ϕ(µ(x, y)) ε Im(ϕ).�

Proposition 1.3: Ker(ϕ) = 0 if and only if ϕ is a monomorphism.

Proof : Suppose Ker(ϕ) = 0, and let ϕ(µ(x1,y1)) = ϕ(µ(x2,y2)). Then we have that

ϕ(µ(x1, y1))− ϕ(µ(x2, y2)) = ϕ(µ(x1, y1)− µ(x2, y2)) = 0

so that µ(x1,y1) - µ(x2,y2) ε Ker(ϕ). But since Ker(ϕ) = 0, we must have that µ(x1,y1) −
µ(x2,y2) = 0, so µ(x1,y1) = µ(x2,y2), so ϕ is a monomorphism.
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Now suppose ϕ is a monomorphism. Then since ϕ(0) = 0, we have at once that Ker(ϕ)
= 0. �

The standard isomorphism theorems hold as well. We state and prove them for later use.
In what follows, µ is the Lie operator on g.

Theorem 1.1 (First Isomorphism Theorem): Let ϕ: g −→ g0 be a homomorphism of Lie
algebras. Then g/Ker(ϕ) ' Im(ϕ).

Proof : Define γ: g/Ker(ϕ) −→ Im(g) by γ(x + Ker(ϕ)) = ϕ(x). This is well-defined:
If x1 + Ker(ϕ) = x2 + Ker(ϕ), then we have x1 + k1 = x2 + k2 or x1 − x2 = k2 − k1 =
k0, so that x1 − x2 ε Ker(ϕ). But then we have ϕ(x1 − x2) = ϕ(x1) − ϕ(x2) = 0, so that
ϕ(x1) = ϕ(x2). This then implies that γ(x1 + Ker(ϕ)) = γ(x2 + Ker(ϕ)).

Now let y ε Im(ϕ). Then y = ϕ(x) = γ(x + Ker(ϕ)) for some x in g, so γ is surjective.
The coset Ker(ϕ) acts as identity in g/Ker(ϕ), so for each and only those x in Ker(ϕ),
we have that γ(x + Ker(ϕ)) = γ(Ker(ϕ)) = ϕ(x) = 0, so Ker(γ) = Ker(ϕ). Thus γ is
injective, and so bijective.

To see that γ satisfies the homomorphism property, let µK and µ0 denote the Lie oper-
ators on g/Ker(ϕ) and g0, respectively. We see that from the definition we have

µ0(γ(x1 +Ker(ϕ)), γ(x2 +Ker(ϕ))) = µ0(ϕ(x1), ϕ(x2))

= ϕ(µ(x1, x2))

= γ(µ(x1, x2) +Ker(ϕ))

= γ(µK(x1 +Ker(ϕ), x2 +Ker(ϕ))).

This demonstrates that γ is an isomorphism, so that g/Ker(ϕ) ' Im(ϕ). �

Corollary 1.1: If i ⊂ Ker(ϕ), then there exists a unique homomorphism γ: g/i −→ g0
such that γ ◦ π = ϕ, where π is the canonical map from g to g/i (π(x) = x + i).

Proof : Let i ⊂ Ker(ϕ), and define γ as before, except with i in place of Ker(ϕ). Since i is
in the kernel of ϕ, γ is still well-defined. It is clear that (γ ◦ π)(x) = γ(π(x)) = γ(x + i) =
ϕ(x). The explcit construction of γ guarantees uniqueness. �

This corollary is sometimes called the universal property of the quotient and, like the theo-
rems themselves, applies generally to quotient algebras.

Theorem 1.2 (Second Isomorphism Theorem): If i,j ⊂ g, then (i + j)/j ' i/(i ∩ j).

Proof : Define γ: i −→ (i + j)/j by γ(i) = i + j, which is clearly well-defined: If we
let µJ be the Lie operator on (i + j)/j, then we have that µJ(γ(i1),γ(i2)) = µJ(i1 + j,i2 +
j) = µ(i1,i2) + j = γ(µ(i1,i2)), so γ is a homomorphism.

Now let x ε (i + j)/j. Then x = i + j + j = i + j = γ(i), so Im(γ) = (i + j)/j. The
result will now follow from the First Isomorphism Theorem if we can show that Ker(γ) =
i ∩ j.

Since j acts as identity in (i + j)/j, we see that Ker(γ) is the set of all i in i such that
γ(i) = i + j = j. However, this last equality implies that i ε j, so we have Ker(γ) = i ∩ j.
Then by applying Theorem 1.1 to γ, we see that (i + j)/j ' i/Ker(γ) = i/(i ∩ j). �
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Theorem 1.3 (Third Isomorphism Theorem): If i and j are ideals of g, and i ⊂ j, then
(g/i)/(j/i) ' g/j.

Proof : Define γ: g/i −→ g/j by γ(x + i) = x + j. Now let µI and µJ be the respec-
tive Lie operators, and perform the familiar calculation µJ(γ(x1 + i),γ(x2) + i) = µJ(x1 +
j,x2 + j) = µ(x1,x2) + j = γ(µ(x1,x2) + i) = γ(µI(x1 + i,x2 + i)). So γ is a homomorphism.

Since i ⊂ j and i is an ideal, we can see that for y = x + j ε g/j, y = (x− i) + (i + j) ε
g/i. Thus, Im(γ) = g/j. As before, the result will again follow from the First Isomorphism
Theorem if we can show that Ker(γ) = g/i.

Let x = x0 + i be in the kernel of γ. Then γ(x) = γ(x0 + i) = x0 + j = j, so x0 ε j.
Thus, x = j + i ε j/i. Conversely, it is obvious that for j + i in the domain, we have γ(j +
i) = j + j = j, so that Ker(γ) = j/i. So by Theorem 1.1, we arrive at (g/i)/(j/i) ' g/j. �

We will use the concept of isomorphisms extensively below, but we should here mention
an important type of isomorphism: An ismorphism ϕ from g to g is known as an automor-
phism.

1.5 A Familiar Example of a Lie Algebra

An example of a Lie algebra from basic calculus is given by the cross product on R3. Recall
that for ~x and ~y in R3, we have both that

~x× (~y + ~z) = (~x + ~y)× (~x + ~z)

(~x + ~y)× ~z = (~x + ~z)× (~y + ~z)

and that

~x× ~x = 0,

so the cross product satisfies both (A1) and (A2). To show that it satisfies the Jacobi identity
as well, we can calculate directly (the details are not difficult, but they are time-consuming):

~a× (~b× ~c) + ~c× (~a×~b)
= (a1, a2, a3)× [(b1, b2, b3)× (c1, c2, c3)] + (c1, c2, c3)× [(a1, a2, a3)× (b1, b2, b3)]

= (a1, a2, a3)× [(b2c3 − c2b3, b1c3 − c1b3, b1c2 − c1b2)]

+(c1, c2, c3)× [(a2b3 − b2a3, a1b3 − b1a3, a1b2 − b1a2)]

= −(b1, b2, b3)× (a3c2 − a2c3, a3c1 − a1c3, a2c1 − a1c2)

= −(b1, b2, b3)× [(c1, c2, c3)× (a1, a2, a3)]

= −~b× (~c× ~a)

so (A3) is satisfied as well. We will revisit this Lie algebra briefly at the end of Section 2.2.

2 Linear Lie Algebras

2.1 The General Linear Algebra

For a vector space V of dimension n, denote by End(V) the set of all linear maps ϕ from
V to itself. Such maps are called endomorphisms. It is well-known that this set is a vector
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space of dimension n2[8, 5]. Under the operation µ(x, y) = xy− yx, End(V) becomes a Lie
algebra.

Let x,y ε End(V), and let r,s ε F. Then:

(A1)

µ(x, ry + sz) = x(ry + sz)− (ry + sz)x

= x(ry) + x(sz)− (ry)x− (sz)x

= r(xy) + s(xz)− r(yx)− s(zx)

= r(xy − yx) + s(xz − zx)

= rµ(x, y) + sµ(x, z) ;

(A2)

µ(x, x) = xx− xx
= 0 ;

(A3)

µ(x, µ(y, z)) + µ(y, µ(z, x)) + µ(z, µ(x, y)) = µ(x, yz − zy) + µ(y, zx− xz) + µ(z, xy − yx)

= x(yz − zy)− (yz − zy)x+ y(zx− xz)
−(zx− xz)y + z(xy − yx)− (xy − yx)z

= xyz − xzy − yzx+ zyx+ yzx− yxz
−zxy + xzy + zxy − zyx− xyz + yxz

= 0.

In this context, µ is called the commutator or bracket of the Lie algebra and is denoted
by [·,·]. Furthermore, End(V) is called the general linear algebra of dimension n2 and
is denoted by gl(V). If V is a vector space of dimension n, and if we fix a basis {xi} for V,
then we can find a basis {eij} 1 ≤ i,j ≤ n, for gl(V), and identify it with the set of n × n
matrices[11, 9]. We then denote gl(V) by gl(n,F).

Any subalgebra of gl(V) is called a linear Lie algebra. A surprising and elegant result
from advanced Lie algebra theory is that any finte-dimensional abstract Lie algebra over a
field of characteristic zero is isomorphic to a linear Lie algebra. This is known as Ado’s
Theorem[1], and it’s proof is far beyond the scope of this paper. However, a similar though
more restricted version whose proof is not beyond said scope is the following:

Theorem: Every simple lie algebra is isomorphic to a linear Lie algebra.

We will prove this result in Section 2.3. For the rest of this paper, we will be primarily
concerned with what are called the real linear Lie algebras, where the underlying field F is
R. Whenever the underlying field is not explicitly mentioned, it will be understood that it
is the field of real numbers.
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2.2 Examples of Linear Lie Algebras

The Special Linear Algebras

For any matrices x and y in gl(n,F), we have Tr(x + y) = Tr(x) + Tr(y) and Tr(xy) =
Tr(yx), where Tr(x) is the trace of the matrix x. It follows that

Tr([x, y]) = Tr(xy − yx) = Tr(xy)− Tr(yx) = 0,

so the trace of the bracket is always zero. It is now trivial that the subspace of gl(n,F) given
by taking all of the n× n matrices that have trace zero is a subalgebra of gl(n,F), denoted
by sl(n,F). This subalgebra is known as the special linear algebra.

Consider the canonical basis for sl(2,R):

e1 =

(
0 1
0 0

)
, e2 =

(
0 0
1 0

)
, e3 =

(
1 0
0 −1

)
.

Since there are three matrices in this basis, there are nine possible brackets: [ei,ej ] for 1
≤ i, j ≤ 3. However, by (A2) we can eliminate all brackets of the form [ei,ei], so this leaves
us with six brackets:

[e1, e3], [e3, e1],

[e1, e2], [e2, e1],

[e2, e3], [e3, e2].

Furthermore, by skew-symmetry, we need only specify the brackets for one column—the
values for the other column are then determined by these images. We now calculate the
brackets in the first column:

[e1, e2] =

(
0 1
0 0

)(
0 0
1 0

)
−
(

0 0
1 0

)(
0 1
0 0

)
= e3

[e1, e3] =

(
0 1
0 0

)(
1 0
0 −1

)
−
(

1 0
0 −1

)(
0 1
0 0

)
= −2e1

[e2, e3] =

(
0 0
1 0

)(
1 0
0 −1

)
−
(

1 0
0 −1

)(
0 0
1 0

)
= 2e2,

and we have the nice result that the special linear algebra is completely determined by the
three equations

[e1, e3] = −2e1, [e1, e2] = e3, and [e2, e3] = 2e2.

In terms of the structure constants, we see that there are six non-zero entries: c312 = 1,
c321 = −1, c113 = c132 = −2, and c223 = c231 = 2.

The Symplectic Algebras

To obtain the symplectic algebra, let dim(V) = 2n. This condition of even-dimensionality
is necessary[8] to define a non-degenerate form f : V × V −→ F by the matrix

A =

(
0 In
−In 0

)
.
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Take the set of all x ε gl(2n,F) satisfying f(xv,w) = −f(v,xw) for v,w ε V. These are all
of the transformations that are skew-symmetric relative to the form f . This defines a Lie
algebra. To see this, we write

f([x, y]v, w) = f((xy − yx)v, w)

= f((xy)v − (yx)v, w)

= f((xy)v, w)− f((yx)v, w)

= f(x(yv), w)− f(y(xv), w).

Since x,y satisfy f((·)v,w) = −f(v,(·)w), and yv,xv ε V, we have

f(x(yv), w)− f(y(xv), w) = −f(yv, xw) + f(xv, yw)

= f(v, y(xw))− f(v, x(yw))

= f(v, (yx)w)) + f(v, (xy)w))

= f(v, (yx)w − (xy)w))

= f(v, (yx− xy)w))

= −f(v, (xy − yx)w)

= −f(v, [x, y]w)).

We denote the symplectic algebra by sp(2n,F)
Consider sp(2,R). Here f is the matrix A2 =

(
0 1
−1 0

)
, so any matrix x =

(
a b
c d

)
in sp(2,R)

satisfies A2x = −xTA2:(
0 1
−1 0

)(
a b
c d

)
+

(
a c
b d

)(
0 1
−1 0

)
=

(
0 a+ d

−(a+ d) 0

)
= 0.

This implies that b and c are arbitrary, while d = −a, so x must be of the form

x =

(
a b
c −a

)
.

From this, it is clear that sp(2,R) is isomorphic to sl(2,R).

The Orthogonal Algebras

Consider the subset of gl(n,F) given by taking all skew-symmetric n×n matrices. This yields
an orthogonal algebra. To see that it preseves the bracket, let A and B be skew-symmetric
matrices and calculate

[A,B]T = (AB −BA)T = (AB)T − (BA)T = BTAT −ATBT = BA−AB = −[A,B].

We denote this by o(n,F). Consider o(3,R) with the canonical basis

e1 =

 0 1 0
−1 0 0
0 0 0

 , e2 =

0 0 0
0 0 1
0 −1 0

 , e3 =

 0 0 1
0 0 0
−1 0 0

 .

The brackets on these basis vectors define the algebra by the relations

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.
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Recall that the cross-product of vectors in R3—which defines a Lie algebra, as was seen in
Section 1.5—can be defined by the unit vector equations ~i×~j = ~k, ~j × ~k = ~i, and ~k ×~i =
~j. Define the map from the Lie algebra (×,R3) to o(3,R) by

~i −→ e1,~j −→ e2,~k −→ e3.

This is a Lie algebra isomorphism given by the matrix A = I3, so the cross-product of
vectors in R3 is really nothing more than the orthogonal linear Lie algebra o(3,R).

2.3 Representations

We define a representation as a homomorphism from an abstract Lie algebra to a linear Lie
algebra; i.e., ϕ: g −→ gl(n,F where

ϕ(µ(x, y)) = [ϕ(x), ϕ(y)],

is a representation of g. Representations are the key to demonstrating the result mentioned
in Section 2.1, and are generally of fundamental importance to the classification and study
of Lie algebras, as well as many other algebraic structures[6]. Representation theory is a
rich and vitally important area of mathematics, but what is presented here is only what is
fundamentally necessary for the purposes of this paper.

The most important representation is the adjoint representation. To understand this, we
must first define the adjoint of an element of g. Consider the subset of gl(V) given by taking
all of the endomorphisms δ of V that satisfy δ(xy) = xδ(y) + δ(x)y. Such a mapping is
called a derivation of V, and the subset containing them is denoted by Der(V) (or Der(g)
if we are viewing V as a Lie algebra). It is a subalgebra of gl(V). To show this, we must
demonstrate that it is a linear map, and that it is closed under the bracket.

Let δ,ε ε Der(V), x,y ε V, and c ε F. Then

(δ + cε)(xy) = δ(xy) + cε(xy)

= xδ(y) + δ(x)y + cxε(y) + cε(x)y

= (xδ(y) + cxε(y)) + (δ(x)y + cε(x)y)

= x(δ + cε)(y) + (δ + cε)(x)y,

so δ + cε ε Der(V). Now consider the commutator [δ,ε]:

[δ, ε](xy) = (δε− εδ)(xy)

= (δε)(xy)− (εδ)(xy)

= δ(ε(xy))− ε(δ(xy))

= δ(xε(y) + ε(x)y)− ε(xδ(y) + δ(x)y)

= δ(xε(y)) + δ(ε(x)y)− ε(xδ(y))− ε(δ(x)y)

= xδ(ε(y)) + δ(x)ε(y) + ε(x)δ(y) + δ(ε(x))y)

−xε(δ(y))− ε(x)δ(y)− δ(x)ε(y)− ε(δ(x))y

= xδ(ε(y))− xε(δ(y)) + δ(ε(x))y)− ε(δ(x))y

= x(δ(ε(y))− ε(δ(y))) + (δ(ε(x))− ε(δ(x)))y

= x(δε− εδ)(y) + (δε− εδ)(x)y

= x[δ, ε](y) + [ε, δ](x)y,
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which demonstrates that Der(g) is a subalgebra of gl(n,F).
Now let x ε g = (V,µ). Then the function adx: g −→ g defined by

adx(y) = µ(x, y)

is an endomorphism known as the adjoint of x. To see this, we calculate adx(y + cz) =
[x,y+ cz] = [x,y] + c[x,z] = adx(y) +cadx(z). We can demonstrate that adx is a derivation
as well by using the Jacobi identity:

adx([y, z]) = [x, [y, z]]

= −[y, [z, x]]− [z, [x, y]]

= −[y,−[x, z]] + [[x, y], z]

= [y, [x, z]] + [[x, y], z]

= [y, adx(z)] + [adx(y), z].

We are now ready to define the adjoint representation, which will allow us to prove the
theorem that all simple Lie algbras are isomorphic to a linear Lie algebra.

The map σg: g −→ Der(g) defined by

σg(x) = adx

is a representation, called the adjoint representation. To demonstrate this, we must show
that it satisfies the homomorphism property:

[σg(x)σg(y)](z) = [adx, ady](z)

= (adxady)(z)− (adyadx)(z)

= [x, [y, z]]− [y, [x, z]]

= [x, [y, z]] + [y, [z, x]]

= −[z, [x, y]]

= [[x, y], z]

= ad[x,y](z)

= σg([x, y]).

As a final note, if Tr(σg(x)) = Tr(adx)) = 0 for all x in g, then we call g unimodular. As
an example, in any abelian algebra, adx ≡ 0, so all abelian algebras are unimodular. This
will become important in Section 2.6. We are now ready to prove the theorem stated in
Section 2.1.

Proof of the Theorem

Theorem: Every simple Lie algebra is isomorphic to a linear Lie algebra.

Proof: Let g be a simple Lie algebra, and consider the center of g, Z(g). There are three
options: Z(g) is trivial, Z(g) is proper and non-trivial, or Z(g) = g. By the definition of a
simple Lie algebra, g is non-abelian, so we must have that Z(g) 6= g. Since g is simple, Z(g)
cannot be proper. So we must have that Z(g) = 0 for any simple Lie algebra.
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Now consider the adjoint representation σg from g to Der(g). First, we note that by
Proposition 2.2, Im(σg) is a subalgebra of Der(g), and so by extension it is a subalgebra
gl(n,F), and therefore a linear Lie algebra. So we need to show that σg is a monomorphism.

We see that Ker(σg) is the set of all x in g such that adx ≡ 0; in other words, we require
[x,y] = 0 for all y in g, so that Ker(σg) = Z(g) = 0 (these are equal as ideals by Proposition
2.1 and the fact that g is non-abelian, as noted above). By Proposition 2.3, this implies
that σg is a monomorphism, so we conclude that g is isomorphic to the linear Lie algebra
Im(σg). �

2.4 Ideals Revisited

Let g be a Lie algebra, and recall the definition of the ideal ij given in Section 1.3. Since
we are now dealing solely with linear Lie algebras, we will denote this by [ij]—the definition
is the same. An important ideal of this type is the derived algebra of g, denoted by [gg].
It follows immediately from the definition that g is abelian if and only if [gg] = 0 —this is
simply the statement that the Lie operator maps all pairs to zero. We use this notion of a
derived algebra to define two important sequences of ideals:

The derived series:

g(0) = g, g(1) = [gg], g(2) = [g(1)g(1)], ... , g(i) = [g(i−1)g(i−1)], ...

We call g solvable if and only if g(i) = 0 for some i. No simple Lie algebra is solvable, since
g(i) = g for all i, because a simple Lie algebra has no proper, non-trivial ideals.

The lower central series:

g0 = g, g1 = [gg], g2 = [gg1], ... , gi = [ggi−1], ...

We call g nilpotent if and only if gi = 0 for some i.

We now prove a number of propositions about solvable and nilpotent algebras. We be-
gin with two lemmas that will be of use throughout the following proofs:

Lemma 3.1: If n1 ⊂ m1 and n2 ⊂ m2, then [n1n2] ⊂ [m1m2].

Proof : If x ε [n1n2], then x = λi[xi,yi] for xi in n1 and yi in n2. But then xi is in m1

and yi is in m2, so λi[xi,yi] is in [m1m2]. �

Lemma 3.2: (g(i))(j) = g(i+j).

Proof : We must first demonstrate as a sublemma that [n(i)n(i)] = [nn](i). We proceed
by induction. We have as the base case that [n(0)n(0)] = [nn] = [nn](0). Suppose that
[n(k)n(k)] = [nn](k). Then [n(k+1)n(k+1)] = [[n(k)n(k)][n(k)n(k)]] = [[nn](k)[nn](k)] = [nn](k+1).

To prove the lemma, we fix j and induct on i. We have as the base case that n(0+j)

= n(j) = (n(0))(j). Now suppose that n(k+j) = (n(k))(j). Then by the above sublemma,
we have that n((k+1)+j) = n((k+j)+1) = [n(k+j)n(k+j)] = [(n(k))(j)(n(k))(j)] = [(n(k)n(k)](j) =
(n(k+1))(j). �
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The previous lemma also holds for the lower central series; the proof is similar.

Proposition 3.1: Every nilpotent Lie algebra is solvable.

Proof : We proceed by induction. We have as the base case that g(0) = g = g0. Now
suppose g(k) ⊂ gk. Then by Lemma 3.1 we have that g(k+1) = [g(k)g(k)] ⊂ [ggk] = gk+1,
since g(k) ⊂ g. Thus, if we suppose that gi = 0, then we must have that g(i) = 0 as well, so
every nilpotent algebra must also be solvable. �

Proposition: Let g be a Lie algebra, h be an arbitrary subalebra of g, i and j be arbitrary
ideals of g, and let ϕ be a homomorphism from g to g0. Then

(3.2) If g is solvable (nilpotent), then so are h and Im(ϕ);

Proof : We demonstrate this for solvable algebras; the nilpotent case is similar. We proceed
via induction. First, as the base case, we have that h = h(0) ⊂ g(0) = g. Then if we suppose
h(k) ⊂ g(k), we see that h(k+1) = [h(k)h(k)] ⊂ [g(k)g(k)] = g(k+1), and so every subalgebra of
a solvable algebra is solvable.

Now as the base case we see that (ϕ(g))(0) = ϕ(g) = ϕ(g(0)). Then if we suppose that
(ϕ(g))(k) ⊂ ϕ(g(k)), we see that since ϕ is a homomorphism (ϕ(g))(k+1) = [(ϕ(g))(k)(ϕ(g))(k)]
⊂ [ϕ(g(k))ϕ(g(k))] = ϕ([g(k)g(k)]) = ϕ(g(k+1)), and so every homomorphic image of a solv-
able algebra is solvable. �

(3.3) If i and g/i are solvable, then so is g;

Proof : Suppose that (g/i)(i) = 0. If we let π be the canonical homomorphism from g
onto g/i, then π(g(i)) = (π(g))(i) = (g/i)(i) = 0, by Proposition 3.2. Thus g(i) ⊂ Ker(π) =
i. So if i(j) = 0, then by Lemma 3.2 (g(i))(j) = g(i+j) = 0, so g is solvable. �

(3.4) If g/Z(g) is nilpotent, then so is g;

Proof : Suppose g/Z(g)i = 0. As in the proof of Proposition 3.3, we have that gi is in
Ker(π), so gi ⊂ Z(g). Then gi+1 = [ggi] ⊂ [g Z(g)]. We see that for x ε [g Z(g)], x =
λi[xi,zi] = 0, since zi is in the center. Thus [g Z(g)] = 0, so gi+1 = 0, and g is nilpotent. �

(3.5) If i and j are solvable, then so is i + j;

Proof : By the second isomorphism theorem, (i + j)/j ' i/(i ∩ j). Under the canonical
homomorphism, we see that i/(i∩ j) is a homomorphic image of i, and so it is also solvable.
But then (i + j)/j is also solvable, so by Proposition 3.3, if j is solvable, then we see that
i + j is solvable. �

(3.6) If g is non-zero and nilpotent, then Z(g) 6= 0.

Proof : Suppose that g is nilpotent. Then we can write gi = 0, where i is the smallest
such integer. Then [ggi−1] = 0, where gi−1 6= 0, so we have that gi−1 ⊂ Z(g). �

There is one last ideal to mention—the normalizer of a subalgebra h of g, denoted by
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Ng(h). It is defined as

Ng(h) = {x ε g | adx(h) ε h, h ε h}.

To see that it is a subalgebra, we note that if x and y are in Ng(h), then so is ad[x,y](h) =
[[x,y],h] by the Jacobi identity, as seen in section 2.3. If h is an ideal, then it is clear that
adx(h) = [x,h] ε h for all x, so that Ng(h) = g, and conversely. This will be important in
the next section.

2.5 Engel’s Theorem

There is an important theorem that can be very useful in determining when a Lie alge-
bra is nilpotent, known as Engel’s Theorem. We call x ε gl(V) ad-nilpotent if adx is a
nilpotent endomorphism. This means that there is an i such that (adx)i = 0. Then we have:

Theorem 2.3 (Engel’s Theorem): g is a nilpotent Lie algebra if and only if all elements
of g are ad-nilpotent.

This theorem is also interesting in it’s own right, so we here dedicate a section to it’s
proof. We first demonstrate two essential lemmas.

Lemma 2.3: If x ε gl(V) is nilpotent, then so is adx.

Proof : Define the endomorphisms σx(y) = xy and τx(y) = yx, known respectively as left
and right translation. Since x is nilpotent, we can write xi = 0. Now we have that

(σx)i(y) = xiy = 0

and

(τx)i(y) = yxi = 0,

so the left and right translations are also nilpotent. Furthermore, we have that (σxτx)(y) =
xyx = (τxσx)(y), so we can apply the binomial theorem and write:

(adx(y))2i = [x, y]2i = (xy − yx)2i = (σx(y)− τx(y))2i =

2i∑
k=0

(
2i

k

)
σ2i−k
x (−τx)k.

For k < i, 2i − k > i; otherwise, k ≥ i, so the sum is zero. Therefore, we must have that
(adx)2i = 0, so adx is nilpotent. �

Lemma 2.4: Let g be a linear Lie algebra (V 6= 0) consisting of nilpotent endomorphisms.
Then there is a non-zero vector v ε V such that xv = 0 for all x ε g.

Proof : We proceed via induction on dim(g). As the base case, let dim(g) = 1. Then
every x in g is a multiple of a single endomorphism e, which is nilpotent. Suppose ei = 0,
and let λ be an eigenvalue of e. Then ev = λv for some non-zero v in V. The fact that ekv
= λkv implies

ek+1v = eekv = eλkv = λkev = λk+1v
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shows that eiv = λiv = 0, so λ = 0, and we arrive at ev = 0.
Now suppose that the conclusion holds for all algebras of dimension less than n, and let

h be a maximal proper subalgebra of g, where dim(g) = n. By Lemma 2.3, every h in h is
ad-nilpotent, and these are linear maps over the vector space V/H via the action

adh(x+ H) = adh(x) + H.

We conclude that σh(h) is a subalgebra of gl(V/H), and since dim(σh) ≤ dim(h) < dim(g),
we can apply the induction hypothesis to conclude that there is a vector a + H 6= H, such
that adh(a) + H = H for all h in H (h). So [h,a] is in h for all h, while a is not in h, so h
is properly included in Nh(g).

However, since h was supposed to be a maximal proper subalgebra, this forces Nh(g)
= g (otherwise, h would not be maximal). Therefore, h is an ideal of g. Furthermore, if
dim(V/H) > 1, then dim(h) > 2, which implies that there is a proper subalgebra of g
properly containing h. This, however, contradicts the maximality of h, so we conclude that
h has co-dimension one, which allows us to write g = h + span(g), where g is in g− h.

By induction, K = {v ε V | hv = 0, h ε h} is non-empty. We need to show that for x
ε span(g), xk = 0 for some k ε K. Since x is nilpotent, we must have that its eigenvalues
are all zero. Since h is an ideal, K is invariant under x:

(hx)k = h(xk) = x(hk)− [x, h]k = x0− 0 = 0,

for x ε span(g), h ε h, and k ε K. Then x restricted to K has an eigenvector k in K, so
that xk = 0. We conclude that there exists a v in V such that xv = 0, for all x in g. �

Note that absolutely no assumptions about the underlying field of the vector space were
made in this proof. This level of generality holds in the proof of Engel’s Theorem.

Proof of Engel’s Theorem: If we assume that g is nilpotent—say gn—then

[x1, [x2, [...[xn, y]...]]] = 0, or adx1
(adx2

(...(adxn(y))...) = 0,

for any xi,y ε g. In particular, if we choose xi = xi+1 for i = 1,...,n− 1, and y 6= 0, then we
have that (adx)n = 0, for all x in g, so every element of g is ad-nilpotent.

Now we assume that all of the elements of g are ad-nilpotent, and we induct on the
dimension of g (assume without loss of generality that g 6= 0). If dim(g) = 1, then the result
is trivial, since the abelian algebra is trivially nilpotent (see Section 2.6 below). Now assume
that the result holds for dim(g) < n, and let dim(g) = n. We saw in Section 2.3 that the
algebra σg(g) is a subalgebra of gl(g), so we can apply Lemma 2.4 to conclude that there
exists a non-zero x in g such that [y,x] = 0 for all y in g. This implies that x ε Z(g) so we
must have Z(g) 6= 0. The quotient algebra g/Z(g) must have a strictly smaller dimension
than g, because otherwise we would have g = 0. Since all of the elements of g and Z(g) are
ad-nilpotent, and since the sum of ad-nilpotent maps is also ad-nilpotent, g/Z(g) consists
of ad-nilpotent endomorphisms, and so we can apply the induction hypothesis to conclude
that g/Z(g) is nilpotent. Then by Proposition 3.4, g must also be nilpotent. �

2.6 Classifications of Lie Algebras

In this section we will discuss the classification of all 1-, 2-, 3-dimensional real Lie algebras.
All 3- and 4- dimensional real (and complex) Lie algebras have been classified up to isomor-
phism with a linear Lie algebra[12], but we here are only concerned with those algebras of
dimension less than or equal to 3.
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The 1- and 2-Dimensional Lie Algebras

Start with a one-dimensional vector space V, with a basis {e}. If we now define a Lie
operator µ on this space, we see that for all x,y in V

µ(x, y) = µ(re, se) = rsµ(e, e) = 0,

for some r,s in R. In terms of the structure constants, ckij is always zero, since there is
only one basis vector. Thus, any Lie algebra defined on a one-dimensional vector space is
necessarily isomorphic to the abelian algebra. This result can clearly be generalized to cover
all underlying fields since (A2) holds regardless of char(F). Note that we can always define
µ(x, y) = 0 regardless of the dimension of V, so in the following examples, we are interested
only in the non-abelian 2- and 3-dimensional algebras.

For a more interesting case, we turn to the two-dimensional real Lie algebras, so let dim(V)
= 2 and fix a basis {e1, e2} for V. It should be clear that there is only one non-trivial product
for these basis vectors: µ(e1, e2) = −µ(e2, e1). Thus, for any x,y in V, we have that µ(x, y)
is a scalar multiple of µ(e1, e2), so µ must be of the form µ(e1, e2) = re1 + se2, for some
scalars r,s. In order to get a non-abelian algebra, we impose without loss of generality that
s 6= 0. We claim that this algebra is isomorphic to the one given by

µ0(α, β) = β.

Define the linear map ϕ by the matrix:

A =

(
s −r
0 1

s

)
.

We can clearly see that

A−1 =

(
1
s r
0 s

)
,

so ϕ is invertible and the two algebras are isomorphic as vector spaces. Now we show that
it satisfies the homomorphism property, i.e., that it preserves the Lie operator:

A−1µ0(Ae1, Ae2) = A−1µ0(sα,−rα+
1

s
β)

= −rsA−1µ0(α, α) +A−1µ0(α, β)

= A−1β

= re1 + se2

= µ(e1, e2)

Thus there is one non-abelian Lie algebra of dimension two up to isomorphism. The linear
Lie algebra that exemplifies this abstract algebra is the set ξ of matrices of the following
form with the basis B:

ξ =

(
a b
0 −a

)
, B =

{(
1 0
0 −1

)
,

(
0 1
0 0

)}
which is nothing more than the subalgebra of gl(2,R) consisting of all upper triangular
matrices with trace 0 (a subalgebra of sl(2,R)).

17



The Bianchi Classification

The classification of the 3-dimensional real Lie algebras is of direct relevance to cosmological
models because of the connection between real linear Lie algebras and the various groups
of geometrical physical operators[4]. It can be achieved via the Bianchi classification. In
this section, we will use the bracket notation for clarity. We begin by recalling that any
3-dimensional algebra is determined by the three brackets [e2,e3], [e3,e1], and [e1,e2] of
basis vectors, the others being given by anti-symmetry. For each bracket, we write out the
structure coefficients:

[e2, e3] = ck23ek, [e3, e1] = ck31ek, [e1, e2] = ck12ek.

Given this, we can describe the algebra by the matrix equation

([e2, e3], [e3, e1], [e1, e2]) = (e1, e2, e3)C

where C is the matrix of structure coefficients

C =

c123 c131 c112
c223 c231 c212
c323 c331 c312

 .

The strategy now is to find a condition on C that is equivalent to the Jacobi identity.
This will tell us which structure coefficients are permissible. Thus, we can classify all 3-
dimensional real Lie algebras in terms of these constraints. First, we write C = S + T ,
where S is a symmetric matrix and

T =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 where t =

t1t2
t3

 .

We must now prove the following: the Jacobi identity holds if and only if St = 0. To
demonstrate this, we first compute:

[[e2, e3], e1] + [[e3, e1], e2] + [[e1, e2], e3] = [ck23ek, e1] + [ck31ek, e2] + [ck12ek, e3]

= (c212 − c331)[e2, e3] + (c323 − c112)[e3, e1] + (c131 − c223)[e1, e2].

Since C = S + T , we see that c212− c331 = s32 + t32− s23− t23 = 2t1, from the fact that S is
symmetric and T is skew-symmetric. The second and third terms are computed similarly.
So we have

[[e2, e3], e1] + [[e3, e1], e2] + [[e1, e2], e3] = 2t1[e2, e3] + 2t2[e3, e1] + 2t3[e1, e2]

= 2([e2, e3], [e3, e1], [e1, e2])t

= 2(e1, e2, e3)Ct.

We see that since Tt = 0, Ct = (S + T )t = St + Tt = St. Thus, if the Jacoby identity
holds, then 2(e1,e2,e3)Ct = 0. Multiplying on either side by (e1,e2,e3)T , we arrive at St =
0. Clearly, if Ct = 0, the Jacobi identity for the given basis holds as well. To see that this
result is invariant under a change of basis, we let B be a change of basis matrix and write
yi = b1ix1 + b2ix2 + b3ix3. One can then use Matlab (the computation is very lengthy) to
show that

[[f2, f3], f1] + [[f3, f1], f2] + [[f1, f2], f3] = det(B)([[e2, e3], e1] + [[e3, e1], e2] + [[e1, e2], e3]),
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so that

[[f2, f3], f1] + [[f3, f1], f2] + [[f1, f2], f3] = 2det(B)(e1, e2, e3)Ct.

Thus, we conclude that the result holds regardless of basis, and the equivalency is proven.
Using this equivalency, it can be shown[2, 6] that every 3-dimensional real Lie algebra is

equivalent to either so(3), sl(2,R), or an algebra of the form

[e2, e3] = ae1 + be2

[e3, e1] = ce1 + de2

[e1, e2] = 0

where the matrix

(
a b
c d

)
is of one of the following forms:(

0 0
0 0

) (
1 0
0 0

) (
1 0
0 1

)
(

0 1
1 0

) (
0 1
−1 0

) (
1 1
−1 0

)
or (

α 1
−1 α

) (
α 1
−1 −α

)
where α is a positive real number. The previous classification scheme is known as the
Bianchi classification of the Lie algebras. Each of these algebras can be classified accord-
ing to whether or not it is simple, solvable, nilpotent, or unimodular[11, 7]. We show this
for two particular algebras.

The 3-dimensional real Heisenberg algebra, denoted by H is both nilpotent (and therefore
also solvable) and unimodular. It is defined by the single bracket [e2,e3] = e1. To see that
it is nilpotent, we note that [H,H] is just a scalar multiple the basis vector e1:

[H,H] = [aiei, bjej ] = aibj [ei, ej ] = (a2b3 − a3b2)e1.

However, all brackets involving this vector are zero, so that

[H, [H,H]] = [H, ke1] = [aiei, ke1] = 0,

which is equivalent to H2 = 0, so the Heisenberg algebra is nilpotent.
We can also use Engel’s Theorem to establish that the Heisenberg algebra is nilpotent.

Clearly, ade1 is nilpotent, and it is easy to very that

ad2e2 = ad2e3 = 0,

so that all elements of H are ad-nilpotent. Then by Engel’s Theorem, H is nilpotent.
To see that it is unimodular, we must show that Tr(adei)) = 0 for each basis element

ei in H (this is sufficient since adx = ad∑ aiei =
∑
aiadei , so Tr(adx) =

∑
aiTr(adi)). We

can calculate

ade1(e1) = 0, ade1(e2) = 0, ade1(e3) = 0

ade2(e1) = 0, ade2(e2) = 0, ade2(e3) = e1

ade3(e1) = 0, ade3(e2) = −e1, ade3(e3) = 0
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so the matrices of adei are

ade1 =

0 0 0
0 0 0
0 0 0

 ade2 =

0 0 1
0 0 0
0 0 0

 ade3 =

0 −1 0
0 0 0
0 0 0

 .

which are clearly all of trace zero, so the Heisenberg algebra is unimodular.
The special linear algebra is also unimodular. It has the basis [e1,e3] = -2e1, [e2,e3] =

2e2, and [e1,e2] = e3, and we can see that

ade1(e1) = 0, ade1(e2) = e3, ade1(e3) = −2e1,

ade2(e1) = −e3, ade2(e2) = 0, ade2(e3) = 2e2,

ade3(e1) = 2e1, ade3(e2) = −2e2, ade3(e3) = 0.

So the matrices of adei are

ade1 =

0 0 −2
0 0 0
0 1 0

 ade2 =

 0 0 0
0 0 2
−1 0 0

 ade3 =

2 0 0
0 −2 0
0 0 0

 .

These are all of trace zero, so sl(2,R) is unimodular. It is also simple[9], and therefore
neither solvable or nilpotent.

3 Contractions of Lie Algebras

3.1 The Definition of a Contraction

The Automorphism Group GL(V)

Consider the subset of End(V) consisting of all invertible endomorphisms of V, where
dim(V) = n. In order for a linear map γ from V to V to have an inverse γ−1, γ must be a
bijective map, so this subset consists of all isomorphisms from V to itself, which are known
as automorphisms, denoted by GL(V), or in matrix terms, GL(n,R). For the purposes of
this section, we will identify GL(V) with GL(n,R), and identify an invertible endomorphism
γ with its associated non-singular matrix [T ]γ . For the sake of brevity, we will simply write
T for [T ]γ .

Under the operation of matrix multiplication (also to be understood as function com-
position), GL(n,R) is a group: Associativity is given by the fact that matrix multiplication
is always associative. It should be clear that the identity matrix In serves as the identity
element. It is non-singular with the inverse (In)−1 = In, and for any T ε GL(n,R), we have

(TIn)x = T (Inx) = Tx = In(Tx) = (InT )x,

for any x ε V. By definition, every T has an inverse T−1, with T−1T = TT−1 = In.

The Definition of a Contraction

Consider now a function T : (0,1] −→ GL(n,R). For ε ε (0,1], T (ε)—or more simply, Tε—is
by definition an isomorphism of the vector space V. Given a Lie algebra g with a Lie bracket
[·,·], we can define a new Lie bracket, [·,·]ε, in the following way:

[x, y]ε = T−1ε [Tεx, Tεy],
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for all x,y in V. Since Tε ε GL(n,R), then we have that gε = (V,[·,·]ε) is isomorphic to g. If

lim
ε→0+

[x, y]ε = lim
ε→0+

T−1ε [Tεx, Tεy] = [x, y]0

exists for all x,y in V, then the Lie algebra g0 = (V,[·,·]0) is called a contraction of g,

and we write g −→ g0, or if the specific matrix-family Tε is important, g
Tε−→ g0 (we also

refer to the limiting process itself as a contraction). If T is continuous for all ε, then g0
is called a continuous contraction. In this paper, we are concerned only with continuous
contractions, so we will use the term contraction to mean a continuous contraction, unless
noted otherwise. We often refer to ε as the contraction parameter and to the matrix family
T as the contraction matrix.

For any Lie algebra g, there exist at least two contractions. If we define the contraction
matrix by Tε = εIn, then we have that

[x, y]ε = (εIn)−1[(εIn)x, (εIn)y]

= (ε−1In)[ε(Inx), ε(Iny)]

= ε−1[εx, εy]

= ε[x, y],

so we see that

lim
ε→0+

[x, y]ε = lim
ε→0+

ε[x, y] = 0.

Thus, every Lie algebra can be contracted to the abelian one. This is called the trivial
contraction of g.

Now define T by Tε = In. Then we have that

lim
ε→0+

(In)−1[Inx, Iny]ε = [x, y],

so g −→ g. Thus, every Lie algebra can be contracted to itself. More generally, if g −→ g0,
where g0 is isomorphic to g, then this is called an improper contraction. Otherwise, the
contraction is proper. Improper contractions amount to little more than a change of basis,
since the algebras are isomorphic. In order for a contraction to be proper, either limε→0+ Tε
fails to exist for at least one component of Tε or

lim
ε→0+

Tε = T0

exists, but T0 is singular.
It is often useful to rewrite the definition of a contraction in terms of the structure

coefficients. First note that since Tε is linear, if we fix a basis {ei}, 1 ≤ i ≤ n, then Tεei =∑
(Tε)ilel = (Tε)

l
iel, where summation over l is understood. This allows us to write

T−1ε [Tεei, Tεej ] = T−1ε [(Tε)
l
iel, (Tε)

m
j em]

= (Tε)
l
i(Tε)

m
j T
−1
ε [el, em]

= (Tε)
l
i(Tε)

m
j T
−1
ε (cklmek)

= (Tε)
l
i(Tε)

m
j c

k
lmT

−1
ε ek

= (Tε)
l
i(Tε)

m
j c

k
lmT

−1
ε ek

= (Tε)
l
i(Tε)

m
j (T−1ε )rkc

k
lmer.
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We can now define the new structure coefficients in the limit as ε goes to zero:

lim
ε→0+

(Tε)
l
i(Tε)

m
j (T−1ε )rkc

k
lm = ĉrij ,

where the
v
c
r

ij are the components of the new structure coefficient tensor. This is well-defined
since the new coefficients will satisfy

ĉkij + ĉkji = ĉkii = 0∑n
k=1(ĉkij ĉ

q
kp + ĉkjpĉ

q
kp + ĉkpiĉ

q
kj) = 0.

whenever the cklm do[12].

Subclasses of Contractions

Contractions first arose in the study of the limits of bases defining groups of operators in
mechanical systems[12]. Often in physical applications, it is useful and even necessary to
restrict the form that the contraction matrix Tε is allowed to take. The Saletan contractions
are given by matrices of the form

Tε = T0 + εT1,

where T0 and T1 are constant matrices, so the individual components of Tε are linear with
repsect to the contraction parameter.

Another class of contractions that are useful in physics are the generalized Inönü-Wigner-
contractions, or generalized IW-contractions for short[10]. The linearity condition is replaced
with the condition

(Tε)ij = εpδij ,

where δij is the Kronecker delta and p ε Z. In the case of the 3-dimensional Lie algebras, all
contractions are known and can be realized as generalized IW-contractions with non-negative
integer exponents. This is not in general true for algebras of dimension 4 or higher.

Typically, there will exist many different specific contractions from a given Lie algebra to
another, so it is useful to define the notion of equivalent contractions. Let g be isomorphic
to g0, let g′ be isomorphic to g′0, and let

g
Tε−→ g0 and g′

T ′
ε−→ g′0

be contractions. Then
Tε−→ and

T ′
ε−→ are loosely equivalent contractions. This definition is

perfectly adequate in the sense that in order to demonstrate that g contracts to g0, we need
only find one contraction between algebras that are isomorphic to g and g0 respectively.

Given a contraction g
Tε−→ g0 and A,B ε Aut(V) (the set of automorphisms of V), suppose

there exists another contraction matrix given by

Sε = ATεB
−1.

Then the contractions g
Tε−→ g0 and g

Sε−→ g0 are called strictly equivalent contractions.
For the purposes of this paper, we will be concerned only with loosely equivalent contrac-
tions, and we will use the term equivalent to mean loosely equivalent.
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Though we shall not use it, there is a general class of contractions that is widely known,
and we mention it here for the sake of completeness. Let δ: N −→ (0,1] be a strictly
decreasing function. Then given a continuous family of non-singular matrices T : (0,1] −→
GL(n,R), we have that Tδ(n) is a function from N to GL(n,R), where

lim
n→∞

T−1δ(n)[Tδ(n)y, Tδ(n)y] = [x, y]0

defines a contraction whenever T does. More generally, let n = 0,1,2,... and define a function
U: N −→ GL(n,R). If

lim
n→∞

[x, y]n = lim
n→∞

U−1n [Unx, Uny] = [x, y]0

exists, then we call g0 the sequential contraction of g.

3.2 Some Non-Trivial Examples of Contractions

In general, every abelian algebra can be contracted to itself. This is the special case where
a contraction is both trivial and improper. Since every 1-dimensional Lie algebra is iso-
morphic to the abelian algebra, this is the only contraction that exists up to equivalence.
In 2 dimensions, we know that there is only one non-abelian algebra. It can of course be
contracted both to itself and to the abelian algebra, and it is obvious that up to equivalence,
these are the only 2-dimensional contractions.

For some i,j, note that unless Tε is diagonal, we cannot in general infer [Tεei,Tεej ] = 0
from the fact that [ei,ej ] = 0, for any ε. So in general, we must compute the limit of each
bracket [e1,e2], [e1,e3], [e2,e3] of basis vectors in g to obtain the brackets in the contraction
g0, though recall from Section 2.2 that these brackets suffice to determine any 3-dimensional
Lie algebra.

Examples in 3 Dimensions: Contractions to H

Recall that the algebra sl(2,R) with the canonical basis is determined by the brackets [e1,e2]
= e3, [e1,e3] = -2e1, and [e2,e3] = 2e2. Define the contraction matrix by

Tε =

0 1 0
0 0 ε
ε 0 0


with the inverse

T−1ε =

 0 0 1
ε

−1 0 0
0 1

ε 0.


We can now compute

T−1ε [Tεe1, Tεe2] = T−1ε [εe3, e1]

= −εT−1ε [e1, e3]

= 2εT−1ε e1

= −2εe2
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so that

lim
ε→0+

T−1ε [Tεe1, Tεe2] = lim
ε→0+

−2εe2 = 0.

Similarly, we can compute that limε→0+ T
−1
ε [Tεe1,Tεe3] = -2εe3 = 0. Lastly, we see that

T−1ε [Tεe2, Tεe3] = T−1ε [e1, εe2]

= εT−1ε [e1, e2]

= εT−1ε e3

= ε(
1

ε
e1)

= e1,

so that limε→0+ T
−1
ε [Tεe2,Tεe3] = e1. This demonstrates that sl(2,R) can be contracted

to the algebra given by the single bracket [e2,e3] = e1, which is the Heisenberg algebra H
encountered in Section 2.6.

The characteristic polynomial for Tε is T −λIn = λ3−ε2, which does not split over R for
any ε, so Tε is not diagonalizable. Thus the contraction just given is not a generalized IW-
contraction—however, since each entry is linear with respect to the contraction parameter
ε, we can write Tε = T0 + εT1 where

T0 =

0 1 0
0 0 0
0 0 0

 T1 =

0 0 0
0 0 1
1 0 0


which shows that sl(2,R)

Tε−→ H is a Saletan contraction.
Now consider o(3,R), and define the contraction matrix Sε by

Sε =

ε2 0 0
0 ε 0
0 0 ε

 .

The inverse is clearly the diagonal matrix A with (A)ii = ((Sε)ii)
−1. This will give a gen-

eralized IW-contraction if we can demonstrate that the limit exists. Consider the structure
coefficients of o(3,R):

c312 = c123 = c231 = 1.

We can now write

ĉ312 = (Tε)
1
1(Tε)

2
2(T−1ε )33c

3
12

= ε2 · ε · 1

ε

= ε2,

so in the limit as ε goes to zero,
v
c
3

12 = 0. Similarly, we find that

ĉ231 = (Tε)
3
3(Tε)

1
1(T−1ε )22c

2
31

= ε · ε2 · 1

ε

= ε2
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and

ĉ123 = (Tε)
2
2(Tε)

3
3(T−1ε )11c

1
23

= ε · ε · 1

ε2

= 1

so that in the limit as ε goes to zero, we have
v
c
2

31 = 0 and
v
c
1

23 = 1, which is the only
non-zero structure coefficient in the contraction. Thus, the only remaining non-zero bracket
is [e2,e3] = e1, and the contraction is once again the Heisenberg algebra H. Therefore, we

have that o(3,R)
Sε−→ H is a generalized IW-contraction.

3.3 Necessary Contraction Criteria and Deformations

Examples of Necessary Conditions for Contractions

As noted in Section 3.2, every Lie algebra can be contracted both to the abelian algebra of
the same dimension and to an algebra isomorphic to itself. These cases are uninteresing. In
light of the Bianchi classification (Section 2.6), what we want to know is which 3-dimensional
algebras are contractions of one or more of the others. Sufficient conditions for a contraction
to exist are difficult to obtain, but since there is a managable number of 3-dimensional
algebras, we can find all contractions up to equivalency by the following procedure[12]: (1)
generate a list of necessary conditions that concern invariant and semi-invariant quantites
of Lie algebras; (2) test all pairs of 3-dimensional Lie algebras that could provide a proper
contraction against these conditions; (3) for any pair that satisfy every condition on the list,
explicitly construct a contraction matrix or demonstrate that no such matrix can exist.

This procedure is much more efficient than simply attempting to apply (3) across all
cases, but the number of necessary conditions is very large[12], and it is impractical here to
attempt to demonstrate every one. We list several here, but omit the proofs. Suppose that
g −→ g0 is a proper contraction. Then we have:

(1) dim(gk0) ≤ dim(g(k));
(2) dim(gk0) ≤ dim(gk);
(3) tr(adx) = 0 for all x in g implies tr(adx0

) = 0 for all x0 in g0.

These conditions imply that if g is solvable, nilpotent, or unimodular, then so is g0. As
an example of the above procedure, note that since H is the only nilpotent 3-dimensional
algebra, it has no proper contractions at all.

Deformations

We end with some brief comments on deformations of Lie algebras. Note that is presented
here is generalized to n dimensions. Denote the set of all real Lie algebras of dimension n
by Ln. Define the group action Φ: GL(n,R) × Ln −→ Ln by

Φ(T, g) = g0

where g0 is the Lie algebra given by

T−1[Tx, Ty].
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This is well-defined, since we have that Φ(In,g) gives back g, and that Φ(T1T2,g) and
Φ(T1,Φ(T2,g)) both yield the same algebra by the relation (T1T2)−1 = T−12 T−11 . The orbits
of Φ are nothing more than the isomorphism classes of Ln, which we shall denote by O(g),
where g is any representative of the isomorphism class.

We can identify an element g of Ln via its structure constants ckij with respect to a

given basis {ei} with an ordered n3-tuple in Rn3

. A change in basis will clearly give an
algebra isomorphic to g. This corresponds to the contraction matrix yielding an improper
contraction[13].

We can now write Ln ⊂ Rn3

, impose the standard Euclidean (or Zariski—[3] for this
similar, but different, approach) topology on Ln, and speak of the closure of O(g), denoted
by O(g) of g. It can be shown that a contraction of g is proper if and only if it lies in O(g)
of g.

Broadly speaking, a deformation of a Lie algebra is a continous path ε ε [0,1] 7−→
Ln. However, for our purposes, we are concerned only with the following restriction: A
deformation of plateau type is a deformation defined by

ζε : [0, 1] −→ O(g)

where ζ0 is not isomorphic to ζ1, but ζε ' ζ1 for all ε in [0,1]. In other words, a deformation
of plateau type is restricted to the orbit of g. We can assume without loss of generality that
the path ζε begins on the vector of structure constants defining g the canonical basis, so
long as it ends in the closure of the orbit, yielding a non-isomorphic algebra. We denote a

deformation by g0
ζε−→ g.

The motivation for the restricted definition in the previous paragraph is given by the

following remarks. Suppose that g
Tε−→ g0 is a contraction and g′

ζε−→ g′0 is a deformation of
plateau type. If g ' g′0, g0 ' g′, and

ζε = ζTε

for 0 < ε ≤ 1, then we call g
Tε−→ g0 the inverse of g′

ζε−→ g′0, and vice versa. In terms
of the necessary contraction criteria seen in the previous section, we can now give a much
stronger equivalence between contractions and deformations of plateau type. We conclude
by presenting the following theorem:

Given any continuous contraction g
Tε−→ g, there exists a deformation of plateau type g′

ζε−→ g′0 that is inverse to it, and vice versa.[13].
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