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ABSTRACT

53 observations of 6.7 GHz methanol masers (microwave analogs of lasers) were
taken by the Allen Telescope Array between July 2010 and January 2011. Previous
research by Weisberg et al. (2005) has shown that maser variability on the order of
milliseconds can be caused by pulsar stimulation. We found short timescale variability
on the order of minutes or less in 3 of our observations. To analyze the structure of this
variability we are applying Continuous Wavelet Transforms (CWTs) to the two-
dimensional time series of each variable maser observation. Wavelet analysis can be
thought of as a generalization of Fourier analysis that allows us to examine changes in
signals over time [Lau and Weng 1995]. This paper will begin with a general overview
of astrophysical masers and why we study them. Following this, there will be a
description of the instrumentation used, data structure analyzed, and the techniques
employed to analyze the maser data. A step-by-step summary of the analysis of G12.68
will conclude the paper. An appendix is included for additional results, including the

response of CWTs to observation error.

MOTIVATION

MASER stands for Microwave Amplification by Stimulated Emission of
Radiation. Analogous to more familiar optical LASERs (Light Amplification by
Stimulated Emission of Radiation), masers can be created in both laboratory
settings and found naturally in space [Elitzur 1992, Harwit 2006]. Astrophysical
masers occur when there is a population inversion of an interstellar gas, resulting in

more excited molecules in the cloud than molecules in the ground state. This state



will cause more photons to be emitted from the gas than absorbed. A process like
this must be maintained by some kind of pumping action, like a source of
stimulating photons. The emitted radio waves from the maser will be of the same
frequency as the pumping source, as well as being coherent and of the same
polarization. As a result, astrophysical masers are very powerful, with the number
of emitted photons exponentially increasing with distance traveled through the
source. Masers can be found in many environments, ranging from interstellar dust
clouds to the so called “megamasers” at the core of active galaxies [Harwit 2006].

Masers can display variability on a wide variety of timescales: on the order of
months all the way down to milliseconds [Harwit 2006, Weisberg et al. 2005]. Little
is known about the cause of maser variability, though Weisberg et al. (2005)
observed millisecond timescale pulsation in a hydroxyl maser. They confirmed that
stimulating light from a pulsar caused this regular variability. Pulsars are extremely
small, massive, and incredibly dense balls of degenerate neutrons left over after the
death of a star. Due to conservation of momentum from the death of the parent star,
their small size, and high mass allow for extremely fast rotation with periods of less
than ten seconds to as low as several milliseconds. This also causes a powerful
magnetic field that “beams” radiation from an off-axis pole, causing the observed
pulsation [Harwit 2006].

Additionally, the ability of masers to greatly amplify microwaves with such
fine regularity is of interest to Search for Extraterrestrial Intelligence (SETI)

research. In 1993, Dr. Jim Cordes suggested that masers could be used to amplify



interstellar signal strength, and would therefore be interesting targets for SETI

searches [Cordes 1993].

INTENT

53 radio observations of methanol masers were taken by the SETI Institute’s
radio telescope, the Allen Telescope Array (ATA), between July of 2010 and January
of 2011. The intent was to find short-term variability (caused by pulsars or other
pumping mechanisms), so observation lengths range from about ten minutes to as
long as one hour. Of these 53 observations, only three were found to be variable.
The three variable masers are G49.49, G23.01, and G12.68. G49.49 and G23.01 were
found to be variable in the summer of 2010 by Dr. Barrot's previous REU student.
(G12.68 was found to be variable in the summer of 2011 by Dr. Barrot and [, and a
later observation of G49.49 was confirmed to be variable as well. Only one
observation of G23.01 is available for study, and a previous observation of G12.68 is
questionably variable. Due to funding problems, the ATA was shut down shortly
before research for this project began in the summer of 2011, and follow up

observations have not been taken.

ANALYSIS TECHNIQUES
Fourier Analysis

In order to study the structure and periodicity of masers, we use several
techniques that have been developed to analyze time series data. Initially, we used
Fourier analysis, which works with the knowledge that any aperiodic continuous
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time series x(t) can be expressed in terms of an infinite number of sinusoidal

functions of frequency f such that:

x(2) = j () e2tdf (1)

Where X(f) is some function of frequency [Brigham and Morrow 1967]. Due to the
orthonormality of e"*2™/1t and e®?™2¢ for all frequencies f; and f,, we can take the

Fourier Transform of x(t) such that:

2(f) = f ) x(t)e~2mtde  (2)

thus finding the Fourier Coefficient for every frequency f [Brigham and Morrow
1967, Woyczynski 2011]. For the purposes of computation, we can take a
discretized time series x,, with N time steps t,, such that the Discrete Fourier

Transform (DFT) is formulated as follows:
N-1
By =0t ) e BTN (3)
n'=0

where 6t = %’ is the length of one time step. The power at a given frequency tl is
N

given by |%,,|?, allowing us to create a periodogram of the transform [Brigham and
Morrow 1967, Woyczynski 2011]. This periodogram is made using a Fast Fourier
Transform (FFT) in MATLAB (the FFT being a more efficient method of computing a

DFT) [Sauer 2006]. An example of the use of this method is given in Figure 1.
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Figure 1: Here the DFT is computed for a finite-length time series consisting of a function with two
summed periodic components. Notice the spectral leakage around the two main frequencies in the
periodogram.

Fourier analysis, however, has its limitations. One notable problem concerns
a phenomenon known as spectral leakage, which is well illustrated in Figure 1. Due
to the fact that we are sampling a finite number of frequencies and have a finite
amount of data, most frequencies will not be periodic within the given “data
window.” As a result, frequencies tend to be smeared in the periodogram (even if
there are only a finite number of frequencies present, as is the case in Figure 1)
[Harris 1978, Scargle 1982]. In practice, Fourier analysis allows for quick
identification of variability in a time series, but provides no information concerning
the location of that frequency in time. This problem can be solved, in part, by the
use of Windowed Fourier Transforms (WFTs), in which we only look at successive
windows of a given time series, allowing us some insight into the dynamics of the
variability. However, WFTs have their own inherent problems introduced by the

window itself, such as the size of the window ultimately determining those



frequencies that are accurately analyzed. WFTs will preferentially pick out higher
frequency variability due to the low number of cycles of low variability in a short

window [Lau and Weng 1995]. For these maser analyses, we made no use of WFTs.

Wavelet Analysis

The advantage of Continuous Wavelet Transforms (CWTSs) over both of the
previous techniques lies in the fact that they are more localized in time and
frequency [Torrence and Compo 1998]. In the analysis of variable masers,
variability can be on timescales as short as milliseconds and as long as significant
fractions of the observation time (which, in this case, tends to be around 1 hour for
the best observations). A WFT would struggle to pick out these frequencies at the
extremes of sampling frequency and observation length, making the use of CWTs
ideal.

“A (CWT) uses generalized local base functions (wavelets) that can be
stretched and translated with a flexible resolution in both frequency and time [Lau
and Weng 1995].” By dilating the wavelet and shifting its location along the time
series, we are able to extract information both about frequencies present in the time
series and how they change in time [Torrence and Compo 1998]. The Heisenberg
Uncertainty Principle states:

0,0 = C (4)
where o, and gy are the variance of the position and frequency of some periodic

function, respectively, and C is some constant. Consequently, the better we know

the location of a particular frequency in a time series, the less certain we are about
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its actual frequency [Selig 1995]. When using a CWT, higher frequencies have less
localization in frequency, whereas low frequencies have less localization in time [Le
and Argoul 2003, Lau and Weng 1995].

While many wavelets can be used, for the purposes of maser analysis we will
use the “Morlet” wavelet (a sinusoid modulated by a Gaussian), which is described

as follows:

-1 -n?
Yo(m) =mae®le 2 (5)

The constant w,, is equal to 6 to ensure that the wavelet has “zero mean and (is)
localized in both time and frequency space” [Torrence and Compo 1998]. The
Morlet wavelet is ideal for our analysis due to its periodic nature, and our
knowledge that periodic behavior has been oberserved in masers. See Figure 2 for a

sample Morlet Wavelet.
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Figure 2: A sample Morlet wavelet.



The CWT itself is shown in equations 6 and 7, where x,,/ is the time series,
Y4 (n) is the complex conjugate of the Morlet wavelet, s is the scale, and 6t is the
length of one time step in a time series containing N time steps [Grinsted et al. 2004,
Torrence and Compo 1998, Lau and Weng 1995]. The term in front of the integral
and summation, respectively, normalizes the wavelet so that its integral with
respect to frequency is equal to 1. For the purposes of computation the latter

discrete formulation is used (equation 7).

1 n—n
Wa(s) =< | wa( )dn' ©)

S

N-1

1) 6
W) == Y s [ -wS] @)

n'=0

It is faster to compute the CWT if we take the DFT of the time series and
wavelet. In equation 81, £, is the DFT of the time series, and 1), is the normalized

DFT of the wavelet such that it follows equation 9 [Torrence and Compo 1998].

N-1

Wals) = ) %y Gwdel ™t (@)

=0

&

| totnfae =1 )

Edge effects still must be taken into account. To indicate where discontinuities at

each end of the time series play a significant role in the CWT, a cone of influence

1 Equation 1 may also be formulated as follows: x(t) = %f_woo £(w)e*tdw [Brigham

and Morrow 1967].
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(COI) is shown in each CWT plot (the shaded region in Figure 3). This is calculated
using what is known as the e-folding time, where “the wavelet power for a
discontinuity at the edge drops by a factor e~2 and ensures that the edge effects are
negligible beyond this point [Torrence and Compo 1998].” For the Morlet wavelet,
the e-folding time is sv/2 [Torrence and Compo 1998]. See Figure 3 for a

demonstration of the CWT.

Time Series Continuous Wavelet Transform
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Figure 3: The CWT of a time series containing periodicity of increasing frequency. The shaded area in the
CWT is the COL

Wavelet Coherence

Another useful tool for the study of variable masers is called Wavelet
Coherence (WC). Displayed in a similar way to a CWT, WC quantifies the level of
correlation between two time series. Frequencies that are exactly in phase and
perfectly out of phase will show the same power in the W(, so the relative phase is
computed as well to make the correlation more clear. This method utilizes the cross
wavelet spectrum (CWS) (showing high common power between two time series

[Grinsted et al. 2004]), which is defined by the equation:
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Wi (s) = Wi ()W, (s) (10)

The star again indicates the complex conjugate. WC is defined as:

|.S'(s‘1WnXY(s))|2
SCIWESD Scmr R Y

RA(s) =

where we square the CWT and normalize it by the square of each transform
[Grinsted et al. 2004, Torrence and Compo 1998]. Grinsted et al. (2004) note that
this function looks very much like a correlation coefficient. The operator S smooths
the given transform across time and scale. This is necessary, otherwise R2(s) would
equal 1 everywhere [Torrence and Compo 1998]. The smoothing operators depend
entirely on the wavelet used, and, using the rectangle function II, those for the

Morlet wavelet are given in the following equations [Grinsted et al. 2004]:

SW) = Sycate (Seime (Wa(S))) (12)

—t2
Stime(W)ls = (Wn(S) * C18252>

(13)

S

Sscale(W)ls = (VVn(S) * CZH(O-6S))|S (14)

The constants c¢; and ¢, normalize the equations such that they “have a total weight
of unity” [Torrence and Webster 1998]. The scalar 0.6 was empirically determined
for scale averaging and is known as the “scale decorrelation length” [Torrence and

Compo 1998, Torrence and Webster 1998]. WC is demonstrated in Figure 4. All
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CWT and WC plots were made using Dr. Aslak Grinsted’s MATLAB wavelet analysis

package (http://www.pol.ac.uk/home/research/waveletcoherence/).
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Figure 4: WC is applied to two time series containing the same periodic variability seen in Figure 2, yet
different patterns of noise. The more to the right an arrow is pointing, the more in phase the two time
series are at that point in time and scale. Had the time series been identical, the WC plot would have
been red at all times and scales, in addition to being completely in phase.

APPLICATION OF WAVELET ANALYSIS TO THE STUDY OF METHANOL MASERS
In order to demonstrate how variability is found in maser observations, the

step-by-step process for the variable maser G12.68 will now be illustrated. Results

for the other two variable masers (G49.49 and G23.01) are included in the appendix.
Data gathered from the ATA is collected in extremely large binary files (about

10-50 GB in size), which are reduced in MATLAB to matrices whose file size
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depends upon the desired resolution. All observation matrices in this paper were
reduced to 1-second resolution with 8000 microwave emission frequency channels.
Emission frequency and wavelength are directly analogous for electromagnetic
radiation, since all light travels at a constant velocity in a vacuum. For clarity, these
channels will be referred to as wavelength channels, in order to avoid confusion
when referring to changes in time series periodicity.

After reduction, the observation is visually inspected at a single interval in
time. Should the maser signal be powerful enough for short integration times (1
second or less), the maser is selected for further analysis. Using a plot called a
“Waterfall,” we can construct the two dimensional time series for the entire
observation. Both the power versus wavelength plot and waterfall for G12.68 are

shown in Figure 5 and Figure 6, respectively.

Maser G12.68, integrated for 1/8 second
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Figure 5: While the analysis of G12.68 was conducted at 1 second time-resolution, this plot useda 1/8
second integration time rather than 1 second (for clarity).
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Waterfall for Maser G12.68
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Figure 6: A waterfall is the two dimensional time series for a given observation. Redder coloration
shows higher power. A time series at a specific wavelength (emission frequency) is called a “channel.”
This particular observation contains several “maser lines,” which we will later show to be coherent. The
horizontal line across wavelengths near 3000 seconds is an observation error, and the increase in power
across wavelengths starting at around second 2250 is likely natural. The sun rising during the
observation could cause this power change.

Inspection of the waterfall reveals which channels the maser is located in. The
maser is frequently split between multiple lines, as is the case for G12.68. This
phenomenon can be caused by observation of multiple masers or magnetic fields
(this is known as Zeeman splitting) [Harwit 2006]. Visual inspection of the waterfall
can also show variability, as is evident in the “stratification” of the maser lines in the
waterfall in Figure 6.

Additionally, we may take the Signal Plus Noise-to-Noise Ratio (SNNR) of
several binned channels and visually inspect the resulting time series. “Binning”
channels involves adding sequential channels together in order to amplify any

variability that may be present. The SNNR is then taken in the following manner:
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St + Nl,t

SNNR, = (15)

2t
where S, is a time series consisting of several binned maser channels (from a single

maser line), and N; ; and N, , are time series consisting of different sequentially

binned noise channels taken from the observation. See Figure 7 for the SNNR of

G12.68.
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Figure 7: SNNR of binned channels from G12.68. The function in red is a filter (the MATLAB filter
function filter.m) using a window of 20 seconds. The fluctuations of the maser line are much larger than
that of the noise channels.

Additionally, we compute the FFT along each channel and plot the resultant two-
dimensional periodogram (see Figures 8 and 9). Inspection of both the time series

and the FFT reveals variability in the maser.
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Periodogram of Maser (Blue) and Noise (Green) from Observation of G12.68
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Figure 8: This periodogram of the maser and observation noise from G12.68 clearly shows variability
that is inherent to the maser line. Both periodograms were calculated from the FFT of a single noise or
maser channel.
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Figure 9: The 2-dimensional periodogram of G12.68 illustrates that variability is present in multiple
maser lines.
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Application of the CWT will reveal the structure of that variability. We apply the
CWT to several binned masers channels and noise channels. If there is a significant
difference in variability between the two, the variability found using the FFT and

SNNR is confirmed. Figure 10 is the CWT of one maser line from G12.68.

CWT of Binned Maser Channels (Top) and Binned Noise Channels (Bottom)
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Figure 10: Significant change in maser variability is clear, particularly at Period 64 between 200 and 400
seconds into the observation. It is also clear from the bottom CWT that this variability is not caused by
noise.

If variability is confirmed with the CWT, WC is applied. Either one maser line is split
down the center, binning those two sets of channels from the same line, or two
different binned maser lines are compared. In the case of G12.68, two maser lines

were analyzed.
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Wavelet Coherence between 2 Sels of Binned Noise Channels
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Figure 11: Maser-Noise and Noise-Maser WC shows low-frequency coherent variability, likely due to the
large power change across frequency present at the end of the observation. Maser-Maser WC shows
significant coherence down to a wavelet period of ~16 seconds, illustrating that the two maser lines are
variable, coherent, and possibly pumped by the same source. You may have noticed that neither the CWT
from figure 10 nor WC was applied to the entire length of the observation. This is due to the error in the
observation, and will be discussed in the appendix.

CONCLUSIONS

While variability has been previously confirmed, it has been restricted to
studies of highly periodic, high frequency variability, or extremely long term
variability. This is the first time Wavelet Analysis has been applied to the study of
masers, confirming our observations of variability on the order of minutes or less in

3 of our observations. If one’s goal were to construct a catalog of variable masers,

FFTs and SNNR techniques would likely be sufficient. However, CWTs are
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invaluable for examining the structure of the variability present in the maser lines.
Additionally, WC is incredibly useful for verifying that multiple maser lines are
coherent, provided that their respective observations are co-temporal. Additionally,
WC provides insight into the broad-spectrum variability of a maser, again, provided
that we have co-temporal coherent time series. Due to these two conclusions
concerning the use of the WC method, the WC is a more useful tool than the CWT
alone.

Future work hopefully involves further observations with the ATA, which has
since been taken out of hibernation via public donations. We wish to catalog as
many variable masers as we can in order to facilitate further study of this
phenomenon. It may be possible that Wavelet Analysis, and particularly Wavelet
Coherence, can be applied to observations of both a maser and possible pumping
sources associated with that maser. This would be an invaluable technique for the

identification of aperiodic pumping sources.
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APPENDIX

WAVELET COHERENCE RESPONSE TO OBSERVATION ERROR

Observation error presents a unique challenge when using CWTs and WC.
Near second 2900 of the observation for G12.68, there is a sudden drop in power,
across wavelengths, for a few seconds. Additionally, the power during this interval
is not constant. In practice, one can account for this by placing appropriately
averaged values in the time series. Unfortunately, some information, however
insignificant, is still preserved in this power change. Since this observation of
G12.68 is long, and only contains one error, it is appropriate to just ignore the last
800 seconds of the observation. However, some observations contain two or more
errors spread out through the entire observation, necessitating a different method
for compensation.

The effects of the power change on the CWT and WC are illustrated in Figures
12 and 13, respectively. Smaller scale wavelets will not pick up the power change
unless they are very close to it, while larger wavelets pick it up farther away.
Consequently, observation errors tend to obscure possible variability at lower

frequencies.
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CWT of Binned Noise from G12.68
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Figure 12: CWT of noise from G12.68 easily picks out the observation error.
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Figure 13: The effects of observation error are more pronounced with WC, where coherence at lower
frequencies, or a lack thereof, could be hidden.
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WAVELET ANALYSIS RESULTS FOR MASER G49.49
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Wavelet Coherence between 2 Sets of Binned Noise Channels
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