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Abstract  

HIV protease is fundamental in the replication of the human immunodeficiency virus in 

the organism and has thus been a target for the development of many drugs. HIV-PR 

inhibitors’ effectiveness is hampered by the emergence of resistant mutants. Thus 

understanding HIV-PR dynamics has become of utmost importance. We use the results 

from a molecular dynamics simulation of HIV-PR. The simulation gives the atoms’ 

positions at discrete, regular time intervals. We then perform scattered data 

approximations to examine displacements and deformations at uniformly spaced points 

on a regular grid. Our approximations show that regions of high deformation can be 

recognized at spatial scales comprising about ten inter-atomic distances. Thus it is 

possible to characterize some salient features of the HIV protease’s dynamics at scales 

in which the motion of individual atoms is not considered in full detail. This could offer 

some computational advantage as well as allowing to understand the role of the 

protease’s flexibility in its dynamics, and ultimately in functionality.  
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1) Introduction 

1.1) Background on HIV-PR 

The aspartic protease of human immunodeficiency virus (HIV-PR) is an enzyme critical 

for the replication of HIV virions. The function this enzyme performs is indispensable for 

the production of infectious viral particles; hence, if inhibited, the spread of HIV through 

the organism is halted (Pokorná et al, 2009). This situation has made HIV-PR an 

especially attractive target for the development of anti-HIV drugs, and the introduction of 

such drugs has helped foster a significant decrease in the mortality rates of HIV infected 

patients (figure 1) (Pokorná et al, 2009).  

 

Figure 1: From Pokorna et al. Trends in annual rates of death due to 7 leading causes among persons 25-44 years 
old in the United States during period 1987-2004. Dramatic decrease in the rate of deaths due to AIDS coincides 
with the introduction of HIV protease inhibitors.  
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Nonetheless, in spite of this initial success, the effectiveness of HIV-PR inhibitors 

is limited by the emergence of drug-resistant and cross resistant mutants (Brik and 

Wong 2003). Thus an understanding of the mechanisms through which HIV-PR 

performs its functions has become essential in order to create drugs that may be 

effective against a host of possible mutations. In particular, it has been noted that a 

greater understanding of the dynamics associated to the binding of inhibitors and 

substrates to HIV-PR is crucial (Hornak and Simmerling, 2007). Indeed, the enzyme 

undergoes significant conformational changes when binding to a substrate and its 

dynamics offer an explanation as to how inhibitors reach HIV-PR’s binding site (see 

figure 2) (Hornak and Simmerling, 2007). Thus it has been pointed out that the 

enzyme’s flexibility may play an important role in generating resistance to inhibitors 

(variations in flexibility can enhance the activity of the enzyme) (Hornak and Simmerling, 

2007).

 

Figure 2: From Hornak and Simmerling.  Images from molecular dynamics simulations showing three important 
conformations of HIV-PR.  Inhibitors may reach the active site when the enzyme is in the fully open 
configuration.  
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However, the roles of dynamics and flexibility have not received much attention on 

behalf of the modeling community (Wong and McCammon, 2003; Hornak and 

Simmerling, 2007). And, an additional complication arises as modeling and predicting 

the kinematics of large domains is still a significant challenge in computational drug 

design (Carlson and McCammon, 2000).  

 

1.2) Motivation for our approach 

As indicated in the preceding section the mechanical behavior of HIV-PR determines its 

functional properties to a large extent. Nonetheless, as even the simplest of 

microorganisms (viruses) are comprised by several thousands of atoms which arrange 

themselves as complex molecules; a detailed description which traces the kinematics of 

each single atom quickly grows in complexity.  Such complexity not only has a 

significant computational cost associated to it but it may also obscure the overall 

behavior of the system.  Thus in order to gain some insight, we may consider 

characterizing an enzyme’s average motions over length scales larger than the inter-

atomic distances. Furthermore we may seek to study the deformation of the molecule 

by looking at quantities commonly used in continuum mechanics to represent strains, 

deformation gradients and stresses.  

 Such an approach may facilitate the study of large deformations (and 

conformational changes) in HIV-PR as well as allowing the development of insight 

regarding the role of flexibility in the molecule’s dynamic behavior. This approach can 
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help establish a link between changes in flexibility, deformation, dynamics and 

ultimately drug resistance.  

 

1.3) Mathematical Statement of the Problem  

Considering the situation described above we formulate the following problem. 

Given Np (non uniform) data points with coordinate vectors                    and 

data values       at those points, we view        as sampled values of an underlying 

function       . That is, we would like to construct a function       , so that         is 

approximately      . Since we expect the motion of atoms in HIV-PR to have a mean 

component and fluctuations about a mean, we want to regard        as representing 

the mean. To extract the mean motion associated with a given length scale, we will 

examine        at a set of    uniformly distributed grid points.  

. Thus we look for a function that can be evaluated at any point in a domain 

which contains all data sites xp, and that is at least once differentiable (this serves the 

purpose of evaluating gradients in displacement). Moreover we would like to ensure that 

the smoothness of our resulting function is greater than that of the underlying function 

that generated the data originally.  
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2) A first approximation 

A first approximation to the problem stated above can be obtained by considering 

averaging a compact subset of the data values around a given grid point. We can 

reasonably propose a weighted average around a grid point where the weight function 

has a compact support, and decreases with increasing distance from the grid point.  

 Before attacking the problem of HIV-PR, let’s consider sampling a known 

function at a random set of data sites and trying to reconstruct the known function 

values at grid points from these scattered data.  

We can state the one dimensional problem as follows. Let           be the 

function whose values are known at a set of data points         , we approximate the 

values of   at regularly spaced points                         
 

  
, where      

is the number of grid elements into which we divide the set      . The approximated 

values at the grid points: 

(1)               
              

  
   

         
  
   

 

Where  

(2)                 
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Figure 3 illustrates the weight function   used in the examples below. Data from the two 

neighboring elements that surround a grid point are used to obtain       .  

 

Figure 3: Uniformly distributed 1-D grid points with linear weight functions with constant support. The support 
of the weight functions is given as twice the distance between the grid points.  

  A clear property of such approximation, called Shepard’s function due to its 

proposer (Shepard, 1968), is that it reproduces constants. That is, if        , then 

        also, where c is a constant. In fact for a given number of uniformly distributed 

random data points we see that the error of our approximation increases as the 

underlying function that generated the data deviates from constant (figure 4). In 

principle we could approximate a wide variety of functions just by considering a fine 
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enough grid. However, this is not feasible in practice as we consider the case of having 

a finite set of data points.  

 

 

In the examples in figure 4 we have used as weight functions the functions with 

compact support illustrated in figure 3.   

This idea can easily be generalized for arbitrary dimensions. Clearly there is no 

need to modify equation 1 above, so we are only left with the choice of weight function 

to consider. For this purpose we multiply linear weight functions of the form of equation 

Figure 4: Shepard’s function applied to one-dimensional examples. Note that the root mean squared errors increase as the 
approximated functions deviate from constant (in particular as their image spans a larger set). These examples were done 
using values Ng=4 and Np = 30.  
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2 for each of the orthogonal directions. Figure 5 illustrates the weight function in two 

dimensions. Thus we can express the weight function in higher dimensions as the 

product of weight function for its components, namely: 

(3)                         in 2D 

(4)                                in 3D 

 

Figure 5: weight function in 2D (equation 3) with compact support equal to a unit square around the origin. We 

see how the weight decreases away from the center and has 1-norm radial symmetry.  
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We may notice that the weight functions being considered here are radial weight 

functions. Namely they satisfy the following definition:  

A function is          is called radial provided there exists a univariate 

function           such that  

                 ,  where            

And        is some norm on   . (Fasshauer, 2007).  

In particular our weight functions are radial under the one norm (figure 6).  

 

Figure 6: Iso-contours for equation 3 centered at the origin. Notice that the contours denote regions where the 

sum of the x and y coordinates is constant.  

Figure 7 illustrates the use of Shepard’s function approximation in two dimensions. As 

before we can observe how our approximation reproduces a nonlinear function fairly 

well if the distribution of data points is dense enough.  



10 
 

 

 

Figure 7: 2D example of approximation using Shepard’s function. At the top we see the approximated values, the actual 
values of the function at the grid points and the distribution of data points. In the middle we see the original data and the 
approximations.  In the bottom we see a plot of the relative error which is about 10%. These examples were done using 
values Np = 400 and Ng =Ngx*Ngy =10*10 (where Ngx and Ngy are the number off grid cells in the x and y directions).  
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2.1) Application to Molecular Dynamics Simulation Data 

 We now want to apply Shepard’s method to scattered data for the HIV-PR. As 

our scattered data we use the results of molecular dynamics simulations courtesy of 

Carlos Simmerling’s Lab. Here our data sites are given by the atoms’ positions and the 

data at those sites by the velocities and displacements at those atoms. We are given 

trajectories of the atoms as a set of positions at regular time intervals of around 1 

microsecond. If the vector of the pth atom’s coordinates at time t is given by       and 

the time interval is given by    we can estimate the velocities and the displacements as 

follows:  

         
              

  
 is the velocity of the pth atom at time t. 

                       is the displacement of the pth atom at time t.   

 

Thus we get a set of scattered data points at regular time steps from which we 

want to approximate displacement and velocity fields which will be evaluated on our 

uniform grid (figure 8).  We use Matlab to implement Shepard’s method for our data set 

and visualize the results in paraview (See Appendix A and C).  

Thus we think of    and    as sampled values of velocity and displacement 

functions respectively,         , where      is a domain containing the atoms for 

all times of interest. We enclose the atoms in a box and thus,              

                          and        . And we apply Shepard’s function (equation 1) 
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with equation 4 as our weight function. Figure 9 shows an example of this procedure for 

approximating displacement vectors on a grid consisting 6x6x6 elements on the ninth 

time interval; the top images show the atoms’ and grid locations, and the bottom images 

show the displacement vectors colored by their magnitude at these locations.  

With such approximations in hand it is possible to use finite differences to 

estimate the value of the displacement gradient at the centers of our grid elements. For 

each grid cell, we introduce a local numbering of the grid points as indicated in figure 8. 

The cell center is    
 

 
   

 
   . 

 

Figure 8: Grid element with corners in blue and center in red. Derivatives are calculated at the center using values at the 
corners as a centered difference.  

We can approximate the value of derivatives at the center of a grid element by: 

(5) 
   

  
 

 

 
 
     

  
 

     

  
 

     

  
 

     

  
  

(6)  
   

  
 

 

 
 
     

  
 

     

  
 

     

  
 

     

  
  



13 
 

(7)  
   

  
 

 

 
 
     

  
 

     

  
 

     

  
 

     

  
 .  

  

 

Figure 9:  Top: atoms’ positions (left) and grid points positions (right); notice how much sparser our grid is 
compared to the original distribution of atoms. Bottom: displacement at atoms’ locations (left) and at grid 
points (right), the displacement vectors are colored by displacement magnitude.  

From these finite difference approximations of derivatives, we can construct 

various strain measures. In continuum mechanics        is the displacement at time t 

of a particle that started at position X at time t=0. Measures of deformation are given by 

(see Appendix B on strain): 
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Displacement gradient    ----------------------------------                 

Deformation gradient tensor      --------------------------             

Green strain Tensor  --------------------------------------   
 

 
        

Linear strain tensor  ----------------------------------------     
 

 
        

         

Where the derivatives are taken with respect to the components of X. These quantities 

are second order tensors.   

 Clearly we only want to consider deformations and not displacements related to 

solid body translations or rotations. Moreover, initially we only consider the “magnitude” 

of those deformations; hence we look for a suitable norm. The Frobenius norm for a 

matrix is defined as the square root of the sum of the squares of the values of its 

elements, namely: 

     
   

       
  

 

   

 

   

 

Figure 10 shows an example where grid point values are colored by the Frobenius norm 

of the linear strain, E. Higher values of linear strain are associated with regions of the 

enzyme having larger displacements (also shown in figure 10). We observe that even 

for length scales that are about ten times the inter-atomic distances we get regions of 

high deformation (particularly noticeable near the flaps and edges) corresponding to 

regions of high strain on our regular grid.  
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Figure 10: (Top) centers of grid elements are represented by the large spheres and are colored by the Frobenius norm of 
linear strain. The small spheres represent the atoms’ locations and colored by their displacement magnitude. Regions of high 
deformation on the flaps correspond to regions of high linear strain. (Bottom) Regions of high displacement in the molecule 
(atoms are shown as spheres) appear also as regions of high displacement in our sparse grid (displacement vectors colored 
by magnitude are shown for grid points). The results shown are for a grid consisting of 6x6x6 elements at the 50

th
 time 

interval.  
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Moreover for large regions within the enzyme the difference between the linear and 

Green strains is not too large at a variety of length scales (figure 11) which indicates 

that the deformation for the HIV-PR can be described by the linear strain for most of the 

HIV-PR. However Regions of high deformation become more noticeable as we consider 

scales closer to the inter-atomic distances, hence the relative difference (computed 

Figure 11: Ratio of the Frobenius norm of the difference of the linear strain and the Green strain to the Green strain norm. Here we present results for the 34
th

 
time interval with grids consisting of (going from top to bottom and from left to right) 5x5x5, 10x10x10, 20x20x20, 25x25x25 and 30x30x30 elements. Notice 
how as the grid becomes finer the highest relative difference (occurring at one or two points) becomes greater. 
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using the Frobenius norm) between the Linear and Green strains is greater the finer the 

grid used.   

 

3) Moving Least Squares 

3.1) Introduction to Moving Least Squares 

We can actually improve our approximation by looking for approximating functions that 

have reproducibility beyond constants. A common approach is to use a least squares 

approximation. However, there are several problems with implementing such an 

approach here, namely: we do not have an initial guess as to what sort of function could 

be our underlying function generating the data over the whole domain; secondly, we are 

dealing with around 3000 atoms (data points) so the system will be incredibly 

overdetermined for small basis (i.e. basis of polynomials of low order).   We can apply 

the ideas of a weighted least squares approximation locally. Hence, instead of dealing 

with one big linear system we deal with several smaller linear systems which individually 

are easier to solve, and we can generate a function which is a piecewise polynomial of 

lower order.  

 In general for the weighted least squares formulation we look to minimize the 

sum of the square of the difference between the approximated function and the original 

function at data sites, multiplied by the weight function at that site. Namely if we 

consider the space of polynomials of total degree m in d dimensions  we want to 

minimize: 
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(9) 

 

Where, as before,    is the approximating function and    is the value of data to be 

approximated at data point p. Moreover we take    to be of the form:  

(8)                   

Where                                    is the basis vector (in this case for the 

polynomial basis), and c(x) is a vector of unknown coefficients that we wish to minimize 

(Nealen, 2004). Thus, taking derivatives with respect to the elements of c and 

minimizing we get:  

(9)               
  

   
          

 
 
  

        
  

           

Thus we can evaluate our function at any point in our domain by solving the linear 

system above for that point.  

Concerning the moving least squares method there are two main choices we 

have to make for its implementation: choice of basis function and of weight functions. 

The choice of basis functions will determine the ability of our approximating function to 

reproduce the function that generated the data. On the other hand our choice of weight 

function determines the smoothness of our approximation (which we may want to be 

smoother than our original data). Indeed, the continuity of the approximation will be that 

of the weight function, even if the basis function has greater continuity than the weight 
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function (Dolbow and Belytschko, 1998). Thus, even when the choice of basis involves 

functions with continuity of low order (e.g. a basis of polynomials of low order, such as a 

linear basis) the approximants can acquire arbitrary continuity by a suitable choice of 

weight functions.  

 Moreover, we observe that the Shepard’s function can easily be recovered if we 

choose to use as our set of polynomials those of degree zero.  So we can consider 

Shepard’s function just a case of a moving least squares approximation.  

 For the purposes of implementing the moving least squares method we 

considered only polynomials as our basis functions. However, problems with 

conditioning arose quite quickly in the process as we tried using higher order polynomial 

basis. Indeed for second order polynomial basis the linear systems generated to 

approximate the values at most nodes had condition numbers greater than 1010. These 

conditioning issues have been noted in the literature and a variety of strategies have 

been suggested to overcome this problem; including dealing with ill conditioned linear 

systems using singular value decomposition (Gossler, 2001); and by using a carefully 

chosen basis (Li and Liu, 2002). Nonetheless it is important that conditioning problems 

may also arise from the characteristics of the data.  

 For the present project we limited ourselves to the use of polynomials with the 

monomial basis. For three spatial variables (x,y,z) this is:  

0-order     b(x) = (1) 

1st-order  b(x) = (1,x,y,z) 
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2nd-order b(x)= (1,x,x2,y,y2,z,z2) 

As mentioned above we only obtained reasonably well conditioned systems for the 

linear basis.  

 Concerning our choice of weight functions we considered cubic splines (figure 

12) and thin plate splines (figure 13). Both of these weight functions have higher 

continuity than the linear basis employed previously. A significant difference between 

the two is that in the case of cubic splines the weight increases towards the center (i.e. 

the grid point) while for the thin plate splines the value of the weight is zero at the center 

and increases radially away from it. For both of these functions the support extended 

over four grid element lengths in every direction (as opposed to the case for the 

Shepard’s function where we set the support to extend only two element lengths in 

every direction).  

Cubic splines are given by:  

       

 
 
 

 
 

 

 
                       

 

 
 

 
        

 

 
              

 

 
    

                                              

  

                           

Where 
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Whereas thin plate splines are given by : 

               ,  where        
    

    
  

In figure 12 we plot the cubic spline weight function in two dimensions and in figure 13 

we plot the thin plate spline in two dimensions.  

 

 

 

 

 

 

 

  

 

 

Figure 12: Cubic spline weight function with rectangular support centered at the 
origin.  

Figure 13: Thin plate spline weight function centered at the origin with unit 
square support centered at the origin. Note how the value of this weight 
function increases towards the edges of the support.  
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We consider some examples in one and two dimensions. As before we use a test 

function and compare the MLS approximations with the values of the test function at our 

grid points (figure 14).  

 

Figure 14: Examples of known functions being approximated using MLS approximants with polynomial basis of degree one. 
(Left) We approximate using a cubic spline as a weight function, we get a good approximation even in the case that the 
function to be approximated is not linear. (Right) We approximate using a thin plate spline as a weight function; notice how 
in the case of the quadratic function the error for this approximation grows dramatically. In both cases we reproduce linear 
functions (RMSE is near machine precision). These examples were done using values Ng=8 and Np = 100.  

 

We notice that unless the approximated function is almost linear the approximation 

using thin plate splines produces large errors. Thus approximations using such weight 

functions may provide indication as to how much the function to be approximated 
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deviates from a linear function. We see similar results for the 2D cases (figures 15 and 

16). In our case, if the function to be approximated is not close to linear the thin plate 

spline approximants will not yield good results.  

 

Figure 15: Example of known functions being approximated using MLS approximants with polynomial basis of degree one. 
We approximate using a cubic spline as a weight function, we get a good approximation even in the case that the function to 
be approximated is not linear.  Top: plot showing the approximated values in our grid (blue) the exact values at the grid 
points (green) and the data approximated (red). Bottom: relative error for our approximation. These examples were done 
using values Np = 1600 and Ng =Ngx*Ngy =10*10. 
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Figure 16: We approximate using a thin plate spline as a weight function; notice that the relative error for this approximation 
is significantly larger than the relative error for the approximation that uses cubic splines. Top: plot showing the 
approximated values in our grid (blue) the exact values at the grid points (green) and the data approximated (red). Bottom: 
relative error for our approximation. These examples were done using values Np = 1600 and Ng =Ngx*Ngy =10*10. 
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3.2)  MLS Application to Molecular Dynamics Simulation Data 

Again we consider dividing the domain spanned by HIV-PR by elements with a 

size of an order 10 times that of inter-atomic distances.  And we observe good 

correspondence between regions of high linear strain in our grid and high deformation in 

the molecule (figures 17) for approximations where a cubic spline was used as a weight 

function. This indicates that to a first degree, regions of high deformation can be 

identified and characterized at scales much coarser than the inter-atomic scale.   

 

 

(a) 
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(b) 

 

 

 

 

 

 

 

 

 

Nonetheless, we notice that there is not a good correspondence for approximations for 

which thin plate splines were used (figure 18). Which probably indicates that the 

underlying function that generates the data for the atoms’ displacement deviates from 

linear behavior at length scales of roughly ten times the inter-atomic distance.  

 

 

 

Figure 17:  Results using cubic splines weight functions, linear polynomial basis functions, a grid of 4X4X4 cells, for 
the 9

th
 time step. Atom locations are represented by the spheres and the surface is a result of a coloring 

interpolation performed by paraview based on the results for our grid.  (a) Magnitude of displacement in the grid vs 
magnitude of displacement at the atom’s locations. (b) Frobenius norm of the linear strain (in the background) 
compared to values of displacement at the atoms’ locations.  Here the results for displacement and deformation in 
our grid match the results for the atoms’ positions.  
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Figure 18: Figure 19:  Results using thin plate spline weight functions, linear polynomial basis functions, a grid of 4X4X4 cells, for the 9
th

 time step. Atom 
locations are represented by the spheres and the surface is a result of a coloring interpolation performed by paraview based on the results for our grid.  
(Top) Magnitude of displacement in the grid vs. magnitude of displacement at the atom’s locations. (Bottom) Frobenius norm of the linear strain (in the 
background) compared to values of displacement at the atoms’ locations.  Here the results for displacement and deformation in our grid are not in good 
correspondence the results for the atoms’ positions.  
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4) Concluding remarks 

We observed that the results in our grids reproduce the behavior of the data in a 

coarser scale. We observe regions of large deformations and displacements at the flaps 

and edges for all of our simulations. Such features are retained even when we consider 

scales (grid element dimensions) that are comparable to ten times the average inter-

atomic distance of HIV-PR atoms. Thus we can see that basic deformation features 

occurring in HIV-PR dynamics may be studied at larger scales than the atomic scale.  

Although we faced a number of problems with conditioning this problem may be 

overcome by a more adequate choice of basis functions. Also, there is an interesting 

possibility for exploring the use of a non-uniform grid, for example where the grid 

elements are shaped according to molecular structures found in the crystal structure of 

HIV-PR. Information for mechanical parameters maybe included by using information 

about the strength of chemical bonds and chemical composition, which could serve to 

parameterize rigidity and density respectively. Moreover, shorter time scales may be 

considered in the future to explore processes that may not be seen at the time scale set 

by the time steps of our data.  
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Appendix A 

The approximations performed for this project used as data the results of molecular 

dynamics simulations courtesy of Carlos Simmerling from the Department of Chemistry 

at the State University of New York. The values for the atomic positions at regular time 

steps of the order of 10 micro seconds were given as coordinates in a system where the 

unit is one angstrom. Such information was included in 2021 protein data base (.pdb) 

files. The atoms’ coordinates were read into Matlab and they were transformed into the 

centroid reference frame. Such transformation takes the origin (centroid’s position) to be 

equal to the average position of atoms, and then subtracts that position vector from the 

position vectors for the atoms. For the coordinate transformation the following code was 

implemented:  

function [R,X,Y,Z] = Ctrans(x,y,z) 
%[R,X,Y,Z] = Ctrans(m,x,y,z) 
% This function gives the centroid position R as a vector and 
% transforms the coordinates (x,y,z) to the centroid coordinates 
% (X,Y,Z).  
% Inputs:   x,y,z : column vectors containing the coordinates for all the 
%           particles.  
% Outputs:  R:  a vector containing the position of the center of mass (in 
%               original system coordinates).  
%           X,Y,Z:  vectors containing the coordinates of the particles'  
%                   postions in the CM frame.   

  
M = length(x); 
Rx = (1/M)*sum(x); 
Ry = (1/M)*sum(y); 
Rz = (1/M)*sum(z); 

  
R = [Rx Ry Rz]; 

  
X = x-Rx; 
Y = y-Ry; 
Z = z-Rz; 

  
end 
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Thus the atoms’ coordinates in the new coordinate system were stored as Matlab 

variables in .mat files.  

 We used the open source visualization application Paraview developed by 

Kitware, Sandia National Labs and CSimSoft to view our results. This application was 

capable of turning the vector components into vector data that can be visualized as 

arrows in a three dimensional representation. Matlab results were turned into 

visualization toolkit files (.vtk) files that could be opened in paraview as well as comma 

separated value files (.csv) for which paraview could read individual columns of values 

and then plot them as plots with coordinates specified by three of the value columns 

(see figure 15).  

 

We also used the Matlab class written by Michael Mallon of the University of 

Queensland Australia to write our vtk files. The package can be found at: 

http://www.rcc.uq.edu.au/download/VtkWriter/  

Figure 20 HIV-PR atoms’ and chemical bonds as visualized from pdb files (left) and atoms’ represented by spheres colored by displacement 
magnitude as visualized from .csv files.  

http://www.rcc.uq.edu.au/download/VtkWriter/
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Appendix B: Strain measures 

Strain can be thought of as being a way to describe deformation undergone by a solid. 

Consider a solid occupying a subset B of Euclidean space   ;  

 

Figure 21: taken from http://mechanik.tu-berlin.de/weinberg/Lehre/fem2/Chapter2.pdf lecture notes 

And let a particle’s original position be given by X, an element of B. At a later time let 

the body occupy a subset B’ of R3, and the particle’s position be given by x, an element 

of B’. We have a map   from B to B’ so that       . We define displacement by  

(B1)                  

Clearly such a displacement includes rigid body rotations and translations as well as 

deformations. We would like a quantity which is not affected by such rigid body motions, 

Define: 

          as the deformation gradient.  
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The    operator represents derivatives with respect to X. From B1 we see that:  

                  

The deformation gradient gives us information about how small segments deform. Let X 

and X+dX be two points in the original configuration. In the deformed configuration 

      ,              . For infinitesimal dX 

                                     

So a segment of length dX in the original configuration transforms to a segment of 

length dx in the deformed configuration under the action of F.  

 If we examine the square of the length of the segment dx, dxTdx, we see 

               

Define the Cauchy-Green Strain Tensor                   

                
 
                                                     

It can be shown (Gonzalez and Stuart, 2008) by the polar decomposition theorem that 

the deformation gradient tensor can be expressed as the product of an orthogonal 

tensor (R)  and a positive definite symmetric tensor (U).   

F = RU 

Where R is a tensor that describes a solid body rotation and U describes stretch.  
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Hence we observe that  

C = FTF = (RU)TRU = UTRTRU = UTU=U2  

since R is orthogonal.  

Moreover the infinitesimal strain tensor can be defined as  

           
 

 
        

   

Let  

  
 

 
          The Green strain tensor 

So we have 

    
 

 
   

     

Thus as the deformation approaches zero the difference between the infinitesimal strain 

tensor and the Green strain tensor approaches zero. 
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Appendix C: Coding a Moving Least Squares implementation in Matlab 

Coding a Moving Least Squares implementation in Matlab involves looping over the grid 

elements in order to setup the linear system to be solved for each grid point. Hence This 

also involves finding which data points are within a grid point’s weight function support. 

This can be achieved either via logical indexing (i.e. by searching which set of data 

points is inside a cube of a given length around a grid point) or by specifying in advance 

indices for the grid elements and grid points (thus data points in grid element I 

contribute to the grid points in that element’s corners) . The latter approach was used to 

implement Shepard’s method while the former approach was used to implement the 

moving least squares method for higher order basis (see attached codes).  

 


