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Abstract 

 
This paper is to summarize research done on the visualization of Ordinary 

Differential Equations, “ODE'(s)”, and Partial Differential Equations, “PDE'(s)”. 

It is separated into three sections: the first section will discuss chaotic systems 

such as the Lorenz attractor and how to analyze them, the second section will 

discuss the Legendre Polynomials with regards to how they are derived and their 

symmetry with the sphere, and the third section will explain how to use Paraview 

for plotting these kinds of functions. 
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1 Chaos Theory and Chaotic Plots 
 

1.1 The Definition of Chaos 

 

A chaotic system in mathematics can roughly be defined as a system of ODE's that 

shows extreme sensitivity to initial conditions. A more precise definition is for a 

system to be chaotic is must show sensitivity to initial conditions, it must be 

topologically mixing, and its orbits must be dense. These definitions can be 

cumbersome and do require some explanation. 

 

Several mathematical consequences arise from this reliance on initial data. One of 

the most notable is how quickly solutions will diverge from one another no matter 

how small the change is. For small time, the solutions will be nearly identical to 

one another. As time grows, the trajectories of the chaotic systems will suddenly 

have no correlation with the other. This raises several questions about the models 

for systems such as the weather. Weather is an extremely chaotic system and the 

tools used to measure the initial conditions given to these models are finitely 

accurate. This means that as time evolves the predictions made about the weather 

patterns will shortly be inaccurate. 

 

The idea of topological mixing is often omitted from texts on Chaos Theory, 

although sensitivity to initial conditions alone is far from sufficient to account 

for chaotic behavior. Having this mixing implies that the system will evolve over 

time such that every open set of its phase space will eventually intersect with 

every other open region. To provide a counter example, consider a dynamical system 

that is produced through doubling of the initial conditions. This system shows 

extreme sensitivity to initial conditions since points will begin to quickly 

separate. It is not chaotic though, so this clearly shows that for a system to be 

in chaos it requires more than sensitivity. 

 

The density of the orbits is also of importance to prove that a system is acting 

chaotically. The dynamical system must be arbitrarily close in all phase space to 

some periodic orbit. For those who have studied ODE's this will seem counter-

intuitive, because what we generally think of as an orbit is one that repeats 

itself. This is not the case in a chaotic system. Its orbitals may never come close 

to anything resembling repeating. Combine this idea with topological mixing and the 

true nature of chaos is revealed. For any small perturbation in the system this 

arbitrary distance between the dynamical system's solution and the periodic orbit 

will change and then something entirely unpredictable will occur. This is why 

mathematicians, even young ones such as myself, find this incredible. 

 

1.2 The Lorenz Attractor 

 

Perhaps the most famous example of a chaotic system is the Lorenz Attractor. Named 

for Edward N. Lorenz who defined the equations. These are a set of ODE's that 

define the chaotic behavior of the Lorenz Oscillator. They are: 

 

     dx/dt = sigma*(y-x) 

 

     dy/dt = x*(rho-z)-y 

 

     dz/dt = x*y-beta*z 

 

where beta, sigma, and rho are parameters which can vary. This system shows several 

types of behavior depending on the parameters. For some values the ODE is very well 

behaved and shows no signs of chaos. For values such as: 

 

     beta = 8/3 

 



     sigma = 10 

 

     rho = 28 

 

the Lorenz functions become strange attractors. What does this chaotic behavior 

imply? One way of observing the implications is in the form of what the solutions 

look like plotted. The following script in MATLAB will solve for any desired value 

of the parameters and provide a three dimensional plot over a specified time, and 

below are two examples of these plots. 

 

  function [T, X, Y, Z] = myLorenzSolver(tSpan, S0, sigma, rho, beta) 

  [T,S] = ode45(@myLorenz,tSpan,S0,[],sigma,rho,beta); 

  X = S(:,1); 

  Y = S(:,2); 

  Z = S(:,3); 

  end 

    

  function [dS] = myLorenz(t,S,sigma,rho,beta) 

  %x = S(1); 

  %y = S(2); 

  %z = S(3); 

    

  x = sigma*(S(2) - S(1)); 

  y = S(1)*(rho-S(3)) - S(2); 

  z = S(1)*S(2) - beta*S(3); 

  dS = [x;y;z]; 

  end 

  

  >>plot3(X,Y,Z,'b') 

(Lorenz Attractor 1 – MATLAB) 

The oscillatory trajectories of these plots illustrates the idea of orbital 

density, although they do not give light to how the initial conditions will 
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drastically change the path the solution follows. To illustrate this point, the 

initial conditions used to plot this trajectory were: 

 

x = .1 

y = .1 

z = .1 

 

these will all be increased to .2, and plotted on the same time interval. The path 

is now quite different. 

(Lorenz Attractor 2 – MATLAB) 

 

Although MATLAB does an excellent job of showing the overall appearance of the 

Lorenz Attractor, a more three dimensional view can help gain an appreciation for 

not only the complexity of this dynamical system but also its beauty. This will be 

discussed in further detail in section five. 

 

1.3 Poincaré Sections 

 

To further study these attractors the Poincaré section is often used. The section 

itself is simply a plane cutting into the trajectories of the attractor. When the 

plane cuts through the attractor it plots the points where they intersect on the 

plane’s surface. In most cases these maps cannot be defined explicitly so the use 

of a computer is required to create them. For our purposes, Paraview is the easiest 

tool to use in generating the section. Taking the Lorenz attractor and plotting it 

in Paraview results in the following graph. 
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Using Paraview to take a slice from this plot the Poincaré section can be 

extracted. The following image is the resulting section. 

 

 
(Poincaré Section – Paraview) 

 

This section has revealed a few different trends in the attractor for the time 

period it was plotted over. The density of the upper most orbital is much greater 

than the lower orbital, which implies that for these initial conditions the 

oscillator will spend more time in the upper orbital than it will in the lower. The 

lower orbital also seems to have a wider range of values it occupies than the upper 

orbital. The lower orbital also has a much wider gap than the upper orbital. This 

illustrates that quite a bit of information about how a particular dynamical system 

is behaving can be derived from these sections.  

 
1.4 Bifurcation Surfaces 

 

Those who are familiar with chaos theory are acquainted with the idea of a 

bifurcation and the logistic map. These parameterized ODE’s can go from having one 

stable point under certain parameters and then change to have two or more stable 

points. Most of the systems that a student is presented have one parameter. Things 

get a little more interesting when there are two or more parameters that can be 

varied. Instead of having bifurcation lines there are now bifurcation surfaces 

which can show incredibly interesting behavior, such as in the case of the cusp 

bifurcation catastrophe. 

 

One of the most common examples is the function: 

 

f(x) = f(x;a,b) = x^3 + a*x + b = 0 

 

Called the elementary cusp catastrophe this particular example has the following 

graph. 

 

 
(Cusp Bifurcation – Paraview) 



If we allow for one of the parameters to be held constant the reasons for this odd 

behavior from the surface can be observed. When the parameter a is held constant 

and b is allowed to vary results in the following graphs. 

 

 
(Cusp Bifurcation Cubic – Paraview) 

 

This portion of the surface is quite obviously a cubic, which helps explains the 

origin on the cusp, although to fully understand the evolution of the bifurcation 

surface b must now be held constant and a allowed to vary. When this happens the 

following graph occurs. 

 

 
(Cusp Bifurcation Pitchfork – Paraview) 

 

This portion of the surface shows the evolution of one stable point into what 

resembles a pitchfork bifurcation, except splitting into three possible stable 

points. Now with this is in mind the surface and the reason it appears as it does 

makes quite a bit of sense.  

 

 

 

1.5 Evolution of the Trajectories 

 

Going back to the Lorenz Attractor, another method of analyzing these systems is to 

watch the trajectories evolve over time. This will allow for comparison between 

different initial conditions in a way that Poincaré sections or visual analysis of 

the plots cannot supply. Watching two different set of initial conditions which are 

close to one another start out with the same trajectory then suddenly diverge from 

one another is fascinating experience. Using Paraview, it is possible to watch this 

happen between two different attractors in real time. 



 
(Trajectory 1 – Paraview) 

 

 

This plot shows the current difference between two trajectories with similar 

initial conditions. As demonstrated they are following very similar paths, although 

as time continues to evolve these attractors will begin their own separate paths. 

 

 
(Trajectory 2 – Paraview) 

 

At this point the two paths have diverged from one another, and the behavior of 

either path cannot be predicted from the other. 

 

2 The Legendre Polynomials 

 
2.1 Definitions and Derivation 

 

In mathematics there are some problems which have vast complexity, especially in 

Partial Differential Equations. The diffusivity equation, the wave equation, 

Laplace's equation, and Schrodinger's equation are classic examples of PDE's that 

are difficult to solve analytically. These problems can be further complicated by 

trying to evaluate them with some inherent symmetry. A prevalent example of this 

symmetry would be the sphere in the cases of an electron orbiting a Hydrogen atom, 

vibrations in a ball, and electric potential in two hemispheres. Although there may 

not be an analytical solution to these problems, as is seen in their 1-dimensional 

cases one can construct an answer from the Fourier series. 

 



 
 

Some of the properties of the Fourier Series: 

 

Property 1) 

  The coefficients a_n and b_n of the series are computed from 2*pi  

  periodic functions. 

 

Property 2) 

  If f is a 2*pi periodic odd function, a_n = 0 for all n 

 

Property 3) 

  If f is a 2*pi periodic even function, b_n = 0 for all n 

 

The Fourier series is a vector space constructed of sines and cosines which maps a 

function from L2 functional space to L2 functional space and is automorphic, since 

the series also maps a function from itself onto to itself. The summation and its 

coefficients can be thought of as a statement of how much of each sine and cosine 

wave is present in the function. It can also be shown that the series converges 

quickly so long as there are no discontinuities in the function. This means that 

there is no real need to have an analytic solution to compute these functions.  

In the case of a spherical coordinate system the same principle can be applied to 

solve any of these PDE's. The primary difference between the 1-D case and the 

spherical case is the presence of the Legendre Polynomials in the sum.  

 

The Legendre polynomials are solutions to the Legendre differential equation, which 

at first glance looks like a rather docile ODE: 

 

 
 

Looks can be deceiving though, because from the solutions to this ODE arise an 

orthogonal basis for the sphere. The solutions take the form of the recursive 

function: 

 

 
 

 

 

2.2 Symbolic Legendre Polynomials 

 

From the solution to the Legendre differential equation come the Legendre 

polynomials. These polynomials are what form the basis for the sphere and the 

following are the first ten Legendre polynomials. 

 

 
 

 
 

 
 

 
 

 



 
 

 
 

 
 

 
 

 
 

 
 

 

The polynomials have a unique symmetry on the interval [-1,1] as the following 

graphs show. 
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(P_5(x) Legendre – MATLAB) 
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(P_6(x) Legendre – MATLAB) 

 

 



These symmetries are part of what give the Legendre polynomials their spherical 

properties. As will be discussed in the further sections, the higher the order of 

the polynomial the more transformations of the surface of the sphere that will 

occur. These manipulations are what allow these polynomials to function like the 

sines and cosines in the Fourier series and construct solutions to functions that 

exist on the sphere. 

 

2.3 Legendre Polynomials on the Circle 

 

To demonstrate this symmetry, MATLAB will be used to plot the Legendre polynomials 

on the circle. There will be various plots using higher order polynomials to show 

case how the polynomials manipulate the edges of the circle. The first case is for 

the zeroth order polynomial. 
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(Legendre Circle Zero Order – MATLAB) 

 

 

 

 

This is obviously a circle, although to observe the more interesting 

transformations the next plots will be the first, second, and third order Legendre 

polynomials on the circle. 
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(Legendre Circle First Order – MATLAB) 
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(Legendre Circle Second Order – MATLAB) 
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(Legendre Circle Third Order – MATLAB) 

 



These transformation of the circle allow the Legendre polynomials to function like 

the sines and cosines in the Fourier sum. Any function that has circular symmetry 

can have its solution constructed by a similar sum of these circles. 

 

 

2.4 Legendre Polynomials on the Sphere 

 

This symmetry can now be expanded from the circle to the sphere in what are called 

the spherical harmonics. These harmonics have countless applications from video 

game design, solutions to the wave equation, to art. As has been discussed earlier 

these harmonics are constructed from a summation similar to the Fourier series 

taking the following form. 

 

 
 

Where, 

 

 
 

Putting the summation aside, the spherical harmonics have the same effect on the 

sphere that the Legendre polynomials had on the circle. They manipulate the sphere 

and allow them to sum together constructing solutions to functions with spherical 

symmetries. Several plots of these functions are below. 

 

 
(Spherical Harmonic Y^1_0 – MATLAB) 

 



 
(Spherical Harmonic Y^2_1 – MATLAB) 

 

 
(Spherical Harmonic Y^3_2 – MATLAB) 

 

Similar to how the coefficients of the Fourier series adjust the sines and cosines 

to satisfy a function, the Legendre polynomials adjust the sphere to satisfy a 

spherical function. 

 

3 Paraview 

 
3.1 What is Paraview 

 

Paraview is a visualization software kit that allows scientists, mathematicians, 

and engineers to demonstrate their system models in a three dimensional 

environment. It was developed in part by Sandia National Laboratories and is used 

extensively by research communities around the world. The mathematical explanations 

that have been given in this paper have meant to prepare the reader to use Paraview 

effectively for these chaotic functions, surfaces, and differential equations. 

 

The software is extremely versatile and can be used to map data over a period of 

time, solve contours, map particle paths, visualize collisions, and a myriad of 

other applications. Understanding how to use and apply this piece of software may 

be extremely beneficial to anyone wanting to demonstrate their theories visually. 

The following sections are meant to be a mixture of an instruction manual and a 

theoretical guide to how Paraview functions. This paper will discuss a few 



different file types that the program accepts and how to manipulate that data in a 

meaningful fashion. 

 

3.2 How Paraview Understands Data 
 

Paraview is capable of accepting and understanding a wide range of data files, 

which include CSV (Comma Separated Value), VTK polydata, mathematical functions, 

point sources, contoured equations, structured data sets, and a hundreds of others. 

This paper will focus on legacy VTK polydata, mathematical functions, contoured 

equations, and CSV files.  

 

For example, if one wants to plot the time series of a Lorenz Attractor as it 

evolves over time it is quite efficient to use a series of CSV files to input into 

Paraview. In Appendix A, the reader will find the scripts LorenzPlotter.m, 

LorenzPlotter.fig, and MyLorenzSolver.m. These scripts will allow the reader to 

build a set of CSV files ready for Paraview to read. 

 

The first step is to open MATLAB and input the following, 

 

 
(MATLAB Command Window) 

 

After running the program an input window will appear asking for the various values 

of rho, beta, and sigma. It will also ask for several initial conditions for each 

variable and the time period that is to be plotted over. 

 

 
(LorenzPlotter GUI - MATLAB) 

 

 



After accepting the values and running the script, the code will either generate 

one large CVS file containing all of the values of the Lorenz attractor or create a 

series of files each containing a single point of the attractor. The main 

difference is how Paraview will interpret the data. If the reader wishes to create 

a series of files then the user will pick, yes, under the time series toggle. If 

the user wants to make a large CSV file of each point then the reader will pick, 

no, under the time series toggle.  

 

Paraview can read these CSV files in two different ways, as either a static set of 

points or as a time series of points. If a large CSV table is uploaded into 

Paraview it has no way of understanding when these points came into existence, so 

it will plot them simultaneously. If a series of CSV files are uploaded, then 

Paraview can break them down into a time series which will allow for several 

different manipulations of the data. Namely in the Lorenz attractor example, the 

attractor’s trajectory as a function of time can be plotted in real time resulting 

in the graphs seen in section 1.5. 

 

The next major file type accepted in Paraview are VTK polydata files. Once again, 

in Appendix A the reader will find a set of files titled vect2str.m, 

VTKVolumeGenerator.m, and VTKVolumeGenerator.fig. The files are capable of building 

a VTK cube, which the reader will be able to perform a variety of operations on. 

The way Paraview understands these structures is as a volume of interconnected 

points that can be evaluated by functions and then contoured to find solutions 

against. To create one of these files using the provided scripts run the following 

in MATLAB. 

 

 
(VTKVolumeGenerator Command Window) 

 

This will once again bring up a form allowing the user to select from a variety of 

values. In this case, the desired input values are the overall dimensions of the 

cube which will determine how many data points exist inside the polydata and the 

range for it to plot in all three dimensions. 

 



 
(VTKVolumeGenerator Window) 

 

After running the script a legacy VTK polydata file will be automatically created 

in the same folder as the script. This file can be uploaded directly into Paraview. 

If there does happen to be an error when uploading it into Paraview, open the file 

with a text editor and ensure that there are no spaces at the beginning of each 

line of the code. This will cause Paraview to be unable to read the data. When 

opened with a text editor the file should look as follows. 

 

 
(VTK Polydata Example) 

 

If there are spaces at the beginning of the data, then Paraview will try to read 

those spaces as commands. It won’t be able to realize that the data is being 

presented as an ASCII file constructing a rectilinear grid with an associated set 

of x,y, and z data. So, if the file is opened and looks as follows 



 
(VTK Polydata Faulty Example) 

 

Then the user needs to remove the spaces from in front of each line and the file 

will load properly. Unfortunately, this issue seems to exist intermittently 

depending on the machine that the VTKVolumeGenerator is running on. This solution 

has been tested on dozens of machines that have the error and it has always 

resolved the issue. 

 

Once the file is successfully loaded into Paraview, the user will be able to apply 

several mathematical operations to the volume. Namely, the reader can input a 

function into Paraview to evaluate the volume against. Then that function can be 

used to make a contour map of the function. This creates images similar to the one 

seen in the Bifurcation surface seen earlier in the paper. 

 

This concludes the major file types and how Paraview will interpret them. The next 

step is to demonstrate how to actually make Paraview run them necessary steps to 

effectively plot these various kinds of data. 

 

3.3 How to use Paraview 

 

To begin using Paraview, the user must go to http://www.paraview.org/ and download 

the program. It is free to use and open source, so anyone may download and begin 

using it. Once the program is installed, the user should open the program and 

prepare some information to upload. 

 

The first example provided is a CSV table. In this case, the file that will upload 

is a time series CSV table. The table will represent the Lorenz Attractor as it 

evolves over time. The first step is to open the CSV time series. 

 

 
(Uploading a CSV Time Series) 

 

The reader may notice that while the folder containing the CSV files may have 

thousands of separate CSV files, but Paraview has recognized them as a time series 

can compressed them into a set of files. This is normal and nothing to worry about. 

http://www.paraview.org/


Once the files are uploaded, the user must apply the data. Before doing that, 

please ensure that the check box for, “Have Headers” is unchecked.  

 

 
(Object Inspector) 

 

After the time series is applied then the user must run what is called a “Filter” 

on the data. This will allow Paraview to understand more about the type of data is 

being upload. The first filter that is to be applied is, “Table to Points.” 

 

 
(Paraview Filter – Table to Points) 

 

Once the filter is selected it will open a new window in the object inspector. This 

will allow the user to configure how the data will be interpreted. In this case, 

the X-Column, Y-Column, and Z-Column should be set to Field 0, Field 1, and Field 2 

respectively. This just simply tells Paraview which column contains the respective 

x, y, and z data to plot. 

 

 

 

 

 

 



 
(Object Inspector – Table to Points) 

 

After applying this filter, the next filer to apply is Particle Pathlines, which 

will allow Paraview to map the trajectory of the attractor. Once the filter is 

loaded, it will also open a new window in the object inspector. The following 

settings are ideal for running this program. 

 

 
(Object Inspector – Particle Pathlines) 

 

After applying this filter, the program is ready to run. Press the 3D view button 

in the display window, then press the start button on the tool bar. You should get 

a plot that looks similar to this. 



 
(Example Plot – Lorenz Attractor) 

 

The next thing to learn how to load into Paraview is the VTK polydata. After using 

the MATLAB script to generate the polydata file upload it into Paraview. 

 

 
(Upload Example – VTK polydata) 

 

This time, the object inspector only requires the user to apply the changes from 

the VTK polydata. 

 

In this example, there will be a function applied to the polydata and then a 

contour applied to it. This will create a surface to observe. The first step is to 

apply the “calculator” filter to the polydata. The object inspector will now ask 

for the user to plug in an equation for it to evaluate. Please note, that the x, y, 

and z variables must be called coordsX, coordsY, and coordsZ respectively. The 

example will be the cusp bifurcation catastrophe. 

 



 
(Calculator Example) 

 

After applying the changes from the calculator the next filter to load is the 

“contour” filter. Once the filter is loaded the object inspector will ask for what 

values you wish to find, in this case we will ask the filter to find all the zeroes 

in the range. 

 

 
(Contour Example) 

 

After inputting the value to contour, check the box that says “Compute Gradients.” 

This will make the plot more colorful and easier to see. After applying the contour 

you should get a graph that looks like this, 

 



 
(Contour Example – Cusp) 

 

At this point, the last major tool to use is the slice tool which will allow the 

reader to make Poincaré sections and take slices of these surfaces. To use the 

slice tool simply click this button on the tool bar. 

 

 
 

(Tool bar – Slice) 

 

Pressing this will create a plane that you can move around with the mouse. Once the 

plane is in the desired position, simply apply it and Paraview will display the 

section taken. 

 

Everything past here in using Paraview is just modifications of what has been 

presented in this paper. As the reader has seen, this program is extremely 

versatile and if a little practice can make all the difference when trying to 

effectively present information. 

 

4 Appendixes 

 
A.1 MATLAB codes 

 

The following are the various scripts that have been used with the production of 

this paper. They are free to use to anyone who wishes to apply them. 

 

LorenzPlotter 

 

function varargout = LorenzPlotter(varargin) 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @LorenzPlotter_OpeningFcn, ... 
                   'gui_OutputFcn',  @LorenzPlotter_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 



                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 

  
% --- Executes just before LorenzPlotter is made visible. 
function LorenzPlotter_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% --- Outputs from this function are returned to the command line. 
function varargout = LorenzPlotter_OutputFcn(hObject, eventdata, handles)  

  
varargout{1} = handles.output; 

  

  

  
function Beta_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 

  
% --- Executes during object creation, after setting all properties. 
function Beta_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function Rho_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 

  
% --- Executes during object creation, after setting all properties. 
function Rho_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function Sigma_Callback(hObject, eventdata, handles) 

  



input = str2num(get(hObject,'String')); 

  
% --- Executes during object creation, after setting all properties. 
function Sigma_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function x0_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 

  
% --- Executes during object creation, after setting all properties. 
function x0_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function y0_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 

  
% --- Executes during object creation, after setting all properties. 
function y0_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function z0_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 

  
% --- Executes during object creation, after setting all properties. 
function z0_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function t0_Callback(hObject, eventdata, handles) 



  
input = str2num(get(hObject,'String')); 

  
% --- Executes during object creation, after setting all properties. 
function t0_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function tf_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 

  
% --- Executes during object creation, after setting all properties. 
function tf_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in TimeSeries1. 
function TimeSeries1_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'Value')); 

  
% --- Executes on button press in TimeSeries2. 
function TimeSeries2_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'Value')); 

  

  
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 

  
% --- Initializing variables for the ODE solver --- % 

  
t0    = get(handles.t0,'String'); 
tf    = get(handles.tf,'String'); 
x0    = get(handles.x0,'String'); 
y0    = get(handles.y0,'String'); 
z0    = get(handles.z0,'String'); 
Sigma = get(handles.Sigma,'String'); 
Rho   = get(handles.Rho,'String'); 
Beta  = get(handles.Beta,'String'); 
yes   = get(handles.TimeSeries1,'Value'); 
no    = get(handles.TimeSeries2,'Value'); 

  
tSpan = [str2num(t0) str2num(tf)]; 
S0    = [str2num(x0) str2num(y0) str2num(z0)]; 
sigma = [str2num(Sigma)]; 



rho   = [str2num(Rho)]; 
beta  = [str2num(Beta)]; 
Yes   = [yes]; 
No    = [no]; 

  
% --- Initialzing myLorenz Solver --- % 

  
[T, X, Y, Z] = myLorenzSolver(tSpan, S0, sigma, rho, beta); 

  
% --- Generating the CSV file(s) --- % 

  
CSVConstruct = [X Y Z]; 

  
if Yes == 0 & No == 0 
    sprintf('Please declare if this a Time Series or not\n') 
end 

  
if Yes == 1 & No == 1 
    sprintf('Please declare if this a Time Series or not\n') 
end 

  
if Yes == 0 & No == 1 
    csvwrite('lorenz_no_time.csv',CSVConstruct); 
end 

  
if Yes == 1 & No == 0 
    [m,n]=size(CSVConstruct); 
    for i = 1:m 
        j = CSVConstruct(i,:); 
        csvwrite(sprintf('Lorenz%.0f.csv',i),j); 
    end 
end 
 

MyLorenzSolver: 

 

function [T, X, Y, Z] = myLorenzSolver(tSpan, S0, sigma, rho, beta) 
[T,S] = ode45(@myLorenz,tSpan,S0,[],sigma,rho,beta); 
X = S(:,1); 
Y = S(:,2); 
Z = S(:,3); 
end 

  
function [dS] = myLorenz(t,S,sigma,rho,beta) 
%x = S(1); 
%y = S(2); 
%z = S(3); 

  
x = sigma*(S(2) - S(1)); 
y = S(1)*(rho-S(3)) - S(2); 
z = S(1)*S(2) - beta*S(3); 
dS = [x;y;z]; 
end 
 

 

CSV Writer: 

 

function s = vect2str(v,varargin) 



  
ip = inputParser; 
ip.FunctionName = mfilename; 
ip.CaseSensitive = false; 
ip.addRequired('v', @isvector); 
ip.addParamValue('formatString', '%f', @ischar); 
ip.addParamValue('openingDelimiter', '(', @ischar); 
ip.addParamValue('closingDelimiter', ')', @ischar); 
ip.addParamValue('separator', ', ', @ischar); 
ip.parse(v, varargin{:}); 
s = ip.Results.openingDelimiter; 

  
for k = 1 : numel(v) 
    s = [s sprintf([ip.Results.formatString],v(k))]; 
    if k<numel(v) 
        s = [s ip.Results.separator]; 
    end 
end 
s = [s ip.Results.closingDelimiter]; 

  
end 

 

VTK Volume Generator: 

 

function varargout = VTKVolumeGenerator(varargin) 

  
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @VTKVolumeGenerator_OpeningFcn, ... 
                   'gui_OutputFcn',  @VTKVolumeGenerator_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before VTKVolumeGenerator is made visible. 
function VTKVolumeGenerator_OpeningFcn(hObject, eventdata, handles, varargin) 

  
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% --- Outputs from this function are returned to the command line. 
function varargout = VTKVolumeGenerator_OutputFcn(hObject, eventdata, handles)  

  
varargout{1} = handles.output; 



  

  

  
function x_points_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 

  

  
% --- Executes during object creation, after setting all properties. 
function x_points_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function y_points_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 

  

  
% --- Executes during object creation, after setting all properties. 
function y_points_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function z_points_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 

  

  
% --- Executes during object creation, after setting all properties. 
function z_points_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function x_range1_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 

  
% --- Executes during object creation, after setting all properties. 
function x_range1_CreateFcn(hObject, eventdata, handles) 



  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function y_range1_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 

  

  
% --- Executes during object creation, after setting all properties. 
function y_range1_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function z_range1_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 

  

  
% --- Executes during object creation, after setting all properties. 
function z_range1_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
function x_range2_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 

  
% --- Executes during object creation, after setting all properties. 
function x_range2_CreateFcn(hObject, ~, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function y_range2_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 



  
% --- Executes during object creation, after setting all properties. 
function y_range2_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function z_range2_Callback(hObject, eventdata, handles) 

  
input = str2num(get(hObject,'String')); 

  
% --- Executes during object creation, after setting all properties. 
function z_range2_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 

  
% --- Finding the number of points per dimension. --- % 

  
l = get(handles.x_points,'String'); 
h = get(handles.y_points,'String'); 
w = get(handles.z_points,'String'); 

  
v = str2num(l)*str2num(h)*str2num(w); 
d = [str2num(l) str2num(h) str2num(w)] 

  
dx = str2num(l) 
dy = str2num(h) 
dz = str2num(w) 

  
% --- Finding the range values per dimension --- % 

  
x0 = get(handles.x_range1,'String'); 
xf = get(handles.x_range2,'String'); 

  
y0 = get(handles.y_range1,'String'); 
yf = get(handles.y_range2,'String'); 

  
z0 = get(handles.z_range1,'String'); 
zf = get(handles.z_range2,'String'); 

  
% --- Calculating the points in each dimension --- % 

  
l2 = linspace(str2num(x0),str2num(xf),str2num(l)); 
h2 = linspace(str2num(y0),str2num(yf),str2num(h)); 
w2 = linspace(str2num(z0),str2num(zf),str2num(w)); 



  
% --- Constructing the VTK Polydata --- % 

  
dimension = vect2str(d, 'formatstring', '%5.f', 'openingDelimiter', '', ... 
    'closingDelimiter', '', 'separator', ' ' ); 
dimenx= vect2str(dx, 'formatstring', '%5.f', 'openingDelimiter', '', ... 
    'closingDelimiter', '', 'separator', ' ' ); 
dimeny= vect2str(dy, 'formatstring', '%5.f', 'openingDelimiter', '', ... 
    'closingDelimiter', '', 'separator', ' ' ); 
dimenz= vect2str(dz, 'formatstring', '%5.f', 'openingDelimiter', '', ... 
    'closingDelimiter', '', 'separator', ' ' ); 
volume = vect2str(v, 'formatstring', '%15.f', 'openingDelimiter', '', ... 
    'closingDelimiter', '', 'separator', ' ' ); 
length = vect2str(l2, 'formatstring', '%5.4f', 'openingDelimiter', '', ... 
    'closingDelimiter', '', 'separator', ' ' ); 
height = vect2str(h2, 'formatstring', '%5.4f', 'openingDelimiter', '', ... 
    'closingDelimiter', '', 'separator', ' ' ); 
width  = vect2str(w2, 'formatstring', '%5.4f', 'openingDelimiter', '', ... 
    'closingDelimiter', '', 'separator', ' ' ); 

  
% --- Outputting the VTK Polydata to volume.vtk --- % 

  
fid = fopen('volume.vtk','wt'); 
fprintf(fid,'# vtk DataFile Version 2.0\n one scalar variable on a rectilinear 

grid\n ASCII\n DATASET RECTILINEAR_GRID\n DIMENSIONS %s\n X_COORDINATES %s float\n 

%s\n Y_COORDINATES %s float\n %s\n Z_COORDINATES %s float\n %s\n POINT_DATA %s\n 

SCALARS scalar_variable float 1\n LOOKUP_TABLE default',dimension, dimenx, length, 

dimeny, height, dimenz, width, volume); 
fclose(fid); 

 

SphericalHarmonics 

 

function [ output_args ] = SphericalHarmonics( n,m ) 

  
% Define constants. 
degree = n; 
order = m; 

  
% Create the grid 
delta = pi/40; 
theta = 0 : delta : pi; % altitude 
phi = 0 : 2*delta : 2*pi; % azimuth 
[phi,theta] = meshgrid(phi,theta); 

  
% Calculate the harmonic 
Ymn = legendre(degree,cos(theta(:,1))); 
Ymn = Ymn(order+1,:)'; 
yy = Ymn; 
for kk = 2: size(theta,1) 
    yy = [yy Ymn]; 
end; 
yy = yy.*cos(order*phi); 

  
order = max(max(abs(yy))); 
rho = 5 + 2*yy/order; 

  
% Apply spherical coordinate equations 
r = rho.*sin(theta); 



x = r.*cos(phi);    % spherical coordinate equations 
y = r.*sin(phi); 
z = rho.*cos(theta); 

  
% Plot the surface 
clf 
surf(x,y,z) 
light 
lighting phong 
axis tight equal off 
view(40,30) 
camzoom(1.5) 

 

 
 


