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Chapter 1

Introduction

Most people are familiar with the Heisenberg Uncertainty Principle, which states that it is
impossible to know for certain both a particle's momentum and its position. This uncertainty
principle is actually just the most well-known of numerous uncertainty principles, including
an uncertainty principle for supports of functions on groups.

The proof of the Heisenberg Uncertainty Principle involves Fourier analysis on the real
number line, or classical Fourier analysis as we will refer to it. We will �rst review basic
concepts from classical Fourier theory before we develop analogs to those same principles for
Fourier analysis on �nite abelian groups. When developing a Fourier theory on groups, we
will begin with the very basics: �rst, we will develop analogs to integration and an inner-
product vector space of functions from our group into the complex numbers. After that, we
will develop a dual group, which will contain elements that play the same role as trigono-
metric functions do in classical Fourier analysis. We will then de�ne the Fourier transform
of elements in our dual group. From there, we will be free to �nd analogs to classical results
in traditional Fourier theory such as Plancherel's identity, the Fourier inversion formula, and
a partial time-frequency dictionary.

After we have developed a thorough theory for Fourier analysis on our groups, we will
them provide proofs for both the classical and group versions of the uncertainty principles.
The discrete uncertainty principle states |suppf ||suppf̂ | ≥ |G|, where suppf denotes the
set of elements in our group for which our function is nonzero. We will also prove that
the only functions that make those inequalities sharp are the Gaussians in R and transla-
tions, modulations, or scalar multiples of indicator or characteristic functions of subgroups
in groups.

We will then take a small detour from the uncertainty principle to prove another in-
equality, the entropy uncertainty principle. This inequality can actually be used to prove
the uncertainty principle for groups, although that result is beyond the scope of this paper.
As with most of the ideas presented in this paper, we will look at the analog to the group
version of the entropy uncertainty principle, the Shannon Entropy Inequality over the real
line.

After that, we will return to the idea of the uncertainty principle and prove a re�nement
of the group version by Terence Tao. This re�nement applies to cyclic groups of prime order.
Tao's re�nement states |suppf |+ |suppf̂ | ≥ p, where p is the order of our group, which must
be a prime number for this re�nement.
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CHAPTER 1. INTRODUCTION 5

Finally, we will look brie�y at a couple of the applications of the idea of Fourier analysis
on groups. The �rst application is the Green-Tao theorem, which says that for any positive
integer k, there exists an arithmetic progression of primes of length k. This result, along
with other work, earned Terence Tao the Fields Medal in 2006. While proving the Green-
Tao theorem is far beyond the scope of this text, we mention it as an application to Tao's
re�nement because the re�nement is used in the proof of the theorem.

The second application is the idea of compressed sensing, which allows comprehensive
images to be constructed from limited data. Compressed sensing is a very popular area of
research today, and its applications are wide-spread. The methods of compressed sensing are
used in medical imaging and image compression, and the United States military has even
used it. Again, going into detail of compressed sensing is beyond this text, but we will prove
a theorem that gives us certain conditions where we can reconstruct a function from partial
frequency information.

To begin, we will review classical Fourier analysis on the real line.



Chapter 2

Fourier Analysis on R

Before we begin to develop our Fourier theory on �nite abelian groups, let us �rst review
some main ideas from classical Fourier analysis. These ideas and theorems will also play
a role when we prove the Heisenberg Uncertainty Principle later on in this paper. The
following de�nitions and theorems can be found in most Fourier analysis books.

2.1 The Schwartz Class

In order to develop the idea of Fourier analysis, we must �rst have a space of functions to
work in. The space we will work in is called the Schwartz class, which is an inner-product
vector space.

De�nition 1. The Schwartz class S(R) is the collection of in�nitely di�erentiable functions
f : R→ C that decrease faster than any polynomial increases, as do all of their derivatives.
That is, for all non-negative integers k and l,

lim
|x|→∞

|xk||f (l)(x)| = 0

Lemma 2. The Schwartz class is a vector space.

Proof. To be a vector space, S(R) must be closed, be associative under addition and scalar
multiplication, be commutative under addition, have an additive identity as well as additive
inverses for every element, have a scalar multiplicative identity, and have a distributive law.

Since we are dealing with functions in C, we know that addition of functions is commu-
tative and associative, and the scalar multiplication is associative. We also know that for all
c1, c2 ∈ C and functions f, g : R→ C, c1(f +g) = c1f + c2g and (c1 + c2)f = c1f + c2f. So we
need only check that S(R) is closed under addition and scalar multiplication, has an identity
element, and has an inverse for each element. Let f, g ∈ S(R), then let h(x) = f(x) + g(x).
The nth derivative h(n)(x) = f (n)(x)+g(n)(x). Then by limit laws and the triangle inequality,
0 ≤ lim|x|→∞ |x|k|h(l)(x)| ≤ lim|x|→∞ |x|k|f (l)(x)| + lim|x|→∞ |x|k|g(l)(x)| = 0 + 0 = 0. Thus,
lim|x|→∞ |x|k|h(l)(x)| = 0, so the Schwartz class is closed under addition.

If c ∈ C, then |cf(x)| = |c||f(x)| and any nthderivative of cf(x) will be equal to c×f (n)(x).
Again using limit laws, lim|x|→∞ |x|k|cf (l)(x)| = c× lim|x|→∞ |x|k|f (l)(x)| = |c|×0 = 0, so the
Schwartz class is closed under scalar multiplication as well.
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CHAPTER 2. FOURIER ANALYSIS ON R 7

Let b : R → C be de�ned as b(x) := 0 for all x ∈ R. This function is in S(R) since
lim|x|→∞ |x|k|b(l)(x)| = lim|x|→∞ |x|k×0 = 0. Then for all f ∈ S(R), f(x)+ b(x) = f(x)+0 =
f(x) for all x ∈ R. Thus, b(x) is the zero element of S(R). The scalar 1 is the multiplicative
identity since 1× f(x) = f(x) for all f in S(R) and x in R.

For every g ∈ S(R), consider the function −g, where −g(x) = (−1)× g(x) ∀x ∈ R. Then
g(x) + (−g(x)) = 0 for all g ∈ S(R), so each element has an additive inverse. We can thus
conclude that S(R) is indeed a vector space.

Lemma 3. The Schwartz class has an inner product. For all f, g ∈ S(R),

〈f, g〉 :=

ˆ
R
f(x)g(x)dx (2.1.1)

Proof. First, it is clear that, because f, g are in S(R), that the inner product as de�ned in
equation 2.1.1 is convergent. To prove that equation 2.1.1 de�nes an inner product, we must
show four things for all f, g, h ∈ S(R) and c ∈ R: 1)〈f, g〉 = 〈g, f〉, 2)〈f, f〉 ≥ 0 with equality
only when f := 0, 3)〈cf, g〉 = c〈f, g〉, and 4)〈f + g, h〉 = 〈f, h〉+ 〈g, h〉.

To start with,
´
R f(x)g(x)dx =

´
R f(x)g(x)dx =

´
R g(x)f(x)dx. So 〈g, f〉 = 〈f, g〉.

Second, we can see that 〈f, f〉 =
´
R f(x)f(x)dx =

´
R |f(x)|2dx. Hence |f(x)|2 ≥ 0 for

all x in R, so
´
R |f(x)|2dx ≥ 0. Since f is an element of the Schwartz class, we know that

f is continuous. If f is not identically equal to zero, there must exist an x0 in R such that
f(x0) 6= 0. By the de�nition of continuity, there exists a δ > 0 so that, for all |x− x0| < δ, f

is bounded away from zero, thus |f(x)| > |f(x0)|
2

. We can now write

ˆ
R
|f(x)|2dx ≥

ˆ x0+δ

x0−δ
|f(x)|2dx ≥ |f(x0)|2

4
× 2δ > 0.

Thus, if f is not identically equal to zero, then 〈f, f〉 6= 0. Also, we know that
´
R 0dx = 0,

so we can now say that 〈f, f〉 = 0 if and only if f is identically equal to zero.
Third, 〈cf, g〉 =

´
R cf(x)g(x)dx = c

´
R f(x)g(x)dx = c〈f, g〉.

Finally, 〈f + g, h〉 =
´
R(f(x) + g(x))h(x)dx =

´
R f(x)h(x)dx+

´
R g(x)h(x)dx = 〈f, h〉+

〈g, h〉.
Thus, equation 2.1.1 de�nes an inner product on S(R).

De�nition 4. The induced norm of S(R) is de�ned as:

‖ f ‖2:=

√ˆ
R
|f(x)|2dx (2.1.2)

Remark. The 2 subscript of the induced norm of S(R) refers to the fact that this induced
norm coincides with the norm in L2(R), which is the space of square-integrable functions.
L2(R) is a complete inner-product vector space, also known as a Hilbert space. The inner-
product is de�ned as in equation 2.1.1, where the integral is the Lebesgue integral, which is
beyond the scope of this thesis.

All inner-product vector spaces, including S(R) with the L2 − norm, obey the Cauchy-
Schwarz inequality.
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Lemma 5. (Cauchy-Schwarz Inequality): For f, g ∈ L2(R),

| 〈f, g〉 |≤‖ f ‖2‖ g ‖2 .

Lemma 6. The Schwartz class is closed under multiplication.

Proof. Let f and g be functions in S(R).
Consider the function h : R→ C such that h(x) = f(x)g(x) for all x in R. We can then

write the lth derivative of h(x) as

h(l)(x) =
l∑

m=0

(
l

m

)
f (m)(x)g(l−m)(x) (2.1.3)

Then, using the limit laws and the triangle inequality,

lim
|x|→∞

|x|k|h(l)(x)| ≤ lim
|x|→∞

l∑
m=0

|x|k
(
l

m

)
|f (m)(x)g(l−m)(x)|

=
l∑

m=0

[(
lim
|x|→∞

|x|k|f (m)(x)|
)((

l

m

)
lim
|x|→∞

|g(l−m)(x)|
)]

Since f, g ∈ S(R), lim|x|→∞ |x|k|f (m)(x)| = 0 for all k,m ≥ 0, k,m ∈ Z. Similarly,
lim|x|→∞ |g(n)(x)| = 0 for all n ≥ 0, n ∈ Z. Thus, lim|x|→∞ |x|k|h(l)(x)| = 0, so h ∈ S(R).
Thus, the Schwartz class is closed under multiplication.

Lemma 7. The Schwartz class is closed under multiplication by trigonometric functions.

Proof. Let a function f ∈ S(R), and let h(x) := e2πixf(x) ∀x ∈ R. The lth derivative of h(x)
will be given by equation 2.1.3, with g(l−m)(x) = (2πi)l−me2πix. So by limit laws and the
triangle inequality,

lim
|x|→∞

|x|k|h(l)(x)| ≤
l∑

m=0

[(
lim
|x|→∞

|x|k|f (m)(x)|
)(

l

m

)
lim
|x|→∞

|(2πi)l−m|e2πix|
]

≤
l∑

m=0

[(
lim
|x|→∞

|x|k|f (m)(x)|
)(

l

m

)
lim
|x|→∞

(2π)l−m
]

=
l∑

m=0

[
0×

(
l

m

)
(2π)l−m

]
= 0

Thus, h(x) ∈ S(R), so the Schwartz class is closed under multiplication by trigonometric
functions.
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2.2 The Fourier Transform

We will now go over a few basic de�nitions and theorems from classical Fourier analysis that
we will later �nd analogs to in the group setting.

De�nition 8. The Fourier transform f̂ : R → C of a Schwartz function for ξ ∈ R is
de�ned by

f̂(ξ) :=

ˆ
R
f(x)e−2πiξxdx.

The Riemann-Lebesgue Lemma tells us that lim|ξ|→∞ f̂(ξ) = 0, so using that and Lemma
7, we know that the Fourier transform of a Schwartz function is also a Schwartz function.

The next few lemmas are part of the time-frequency dictionary, which relates the con-
volution, translation, derivative, and many other operations of functions and their Fourier
transforms.

Lemma 9. For f ∈ S(R), f̂ ′(ξ) = 2πiξf̂(ξ).

Proof. Consider the Fourier transform of the derivative of f, f̂ ′(ξ) =
´
R f
′(x)e−2πiξxdx.

We will use integration by parts, letting u = e−2πiξx and dv = f ′(x)dx. We know that

du = −2πiξe−2πiξxdx and v = f(x). Using the integration by parts formula, f̂ ′(ξ) =

f(x)e−2πiξx|∞−∞−
´
R−2πiξe−2πiξxf(x)dx. Since f ∈ S(R), f(x)e−2πiξx|∞−∞ = 0. Thus, f̂ ′(ξ) =´

R 2πiξe−2πiξxf(x)dx = 2πiξf̂(ξ).

De�nition 10. The convolution of two functions, f and g, is de�ned as

f ∗ g(x) =

ˆ
R
f(x− y)g(y)dy

Lemma 11. For f, g ∈ S(R), f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

Proof. By de�nition of the Fourier transform and convolution, f̂ ∗ g(ξ) =
´
R(
´
R f(x −

y)g(y)dy)e−2πiξxdx. Let u = x − y, so du = dx and x = u + y. Then after interchanging
the order of integration, we get the desired result:

f̂ ∗ g(ξ) =

ˆ
R

( ˆ
f(u)g(y)dy

)
e−2πiξ(u+y)du =

ˆ
R
f(u)e−2πiξudu

ˆ
R
g(y)e−2πiξydy

= f̂(ξ)ĝ(ξ).

De�nition 12. The translation of a function f by a scalar h is de�ned as τhf(x) := f(x−h).

De�nition 13. The modulation of a function f by a scalar h is de�ned as Mhf(x) :=
e2πihxf(x).
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Lemma 14. For f ∈ S(R), M̂hf(ξ) = τhf̂(ξ).

Proof. Consider the function M̂hf(ξ) =
´
R e

2πihxf(x)e−2πixξdx =
´
R f(x)e−2πix(ξ−h)dx =

f̂(ξ − h) = τhf̂(ξ).

The Fourier transform creates a bijective map from S(R) onto itself. Because of this fact,
we can recover the original function from its Fourier transform using the Fourier Inversion
Formula.

Theorem 15. (Fourier Inversion Formula): If f ∈ S(R), then for all x ∈ R,

f(x) =

ˆ
R
f̂(ξ)e2πiξxdξ.

Remark. For a proof of the above formula, see [14], pg. 180.

Theorem 16. (Plancherel's Identity): If f ∈ S(R), then

‖ f ‖2=‖ f̂ ‖2 .

Remark. The proof to this identity involves the time-frequency dictionary, the Fourier Inver-
sion Formula, and the multiplication formula, which states that

´
R f(x)ĝ(x)dx =

´
R f̂(x)g(x)dx

for all f, g ∈ S(R).



Chapter 3

Fourier Analysis on Finite Abelian

Groups

In this chapter, we will develop a Fourier theory on �nite abelian groups. In order to have
a well-developed theory, we will need analogs to key ideas in classical Fourier analysis, like
integration, induced norms, and trigonometric functions. Before we do this though, we will
need to review some key concepts of group theory.

3.1 Group Theory

De�nition 17. A �nite abelian group, denoted 〈G, ∗〉, is a set G closed under a binary
operation ∗ such that the following properties are satis�ed:

• ∀a, b, c ∈ G,(a ∗ b) ∗ c = a ∗ (b ∗ c), associativity of ∗

• ∃e ∈ G such that a ∗ e = e ∗ a = a ∀a ∈ G, identity element

• ∀a ∈ G, ∃a′ ∈ G such that a ∗ a′ = a′ ∗ a = e, inverse elements

• ∀a, b ∈ G, a ∗ b = b ∗ a, commutativity of ∗

• the set G has a �nite number of elements

De�nition 18. The order of a group G, denoted |G|, is the number of elements in the set
G.

Example 19. Examples of �nite abelian groups include the cyclic group 〈Zn,+〉, the integers
modulo n under addition, and 〈Un, ∗〉, the nth roots of unity under multiplication. [10]

Example 20. An example of a �nite abelian group that is not cyclic is the Klein 4-group.
This group is isomorphic to 〈Z2 × Z2〉, with each nontrivial element having order 2. Its
multiplication table is as follows:

11
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* e a b ab
e e a b ab
a a e ab b
b b ab e a
ab ab b a e

We will remember that two groups are said to be isomorphic if there is a bijective function
between the two groups that preserves the group operation.

De�nition 21. [10]Let 〈G, ∗〉 and 〈G′, ∗′〉 be two groups. G and G′ are isomorphic if there
exists a bijective function φ mapping G onto G′ such that φ(a ∗ b) = φ(a) ∗′ φ(b) for all
a, b ∈ G. We denote this as G ' G′.

Example 22. The previous example of the Klein 4-group is isomorphic to the group Z2×Z2,
where the × denotes the direct product. Elements of this group are ordered pairs of the
form (a, b), where a, b ∈ {0, 1}. This is just one particular case of groups of the form Zn2 =
Z2 × Z2 × · · · × Z2. These groups are used in Boolean algebra, which is where the values of
the variables can be only one of two things.

Remark 23. It can be shown that all �nite abelian groups are isomorphic to the direct product
of cyclic groups. A cyclic group is a group that can be generated by a single element, i.e.
G = {an|n ∈ Z}. Since every cyclic group of order n is isomorphic to 〈Zn,+〉, we can say
that every �nite abelian group is isomorphic to the group ZN1 × ZN2 × · · · × ZNk , where
N1, N2, . . . , Nk are positive integers, [12], Theorem 0.1.

Remark. Unless otherwise stated, 〈G, ∗〉 will be a �nite abelian group of order n under
addition.

3.2 L2(G)

Since we are trying to create an analog to Fourier analysis on the real number line, we will
need a space that takes the place of L2(R). We will call this space L2(G), which is the space
of functions mapping elements of G into C. Since we are only considering �nite groups, we
will always be dealing with �nite groups; thus, we do not need a special, restricted space of
functions like we did with the Schwartz class in R. The analog to S(R) will therefore be the
space of all functions from our group into the complex numbers, L2(G) = {f : G→ C}. Let
|G| = n. For each a ∈ G de�ne a function δa : G→ C by

δa(x) =

{
0 x 6= a
√
n x = a

Normally it is customary to de�ne δa(a) := 1, but we make δa(a) =
√
n so that, when we

later de�ne an inner product for L2(G), the δas can form an orthonormal basis for L2(G).
The next couple of lemmas will help us prove that the δas do in fact form a basis for

L2(G).
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Lemma 24. If f ∈ L2(G), then for all x in G

f(x) =
1√
n

∑
a∈G

f(a)δa(x) (3.2.1)

Proof. Assume G = {a1, a2, . . . , x, . . . , an−1, an}.Then
1√
n

∑
a∈G

f(a)δa(x) =
1√
n

[f(a1)× δa1(x) + · · ·+ f(x)× δx(x) + · · ·+ f(an)× δan(x)]

=
1√
n

[f(a1)× 0 + · · ·+ f(x)×
√
n+ · · ·+ f(an)× 0]

= f(x)

Lemma 25. The functions {δa}a∈G are linearly independent.

Proof. Let G = {a1, a2, . . . , an} and ba ∈ C for all a in G. Assume
∑

a∈G baδa(x) = 0, for all
x ∈ G. By equation 3.2.1, we know

∑
a∈G baδa(x) =

√
nbx for all x ∈ G. This implies that

bx = 0 for all x ∈ G. By de�nition of linear independence, this implies {δa}a∈G are linearly
independent.

Remark. Since {δa}a∈G are linearly independent and are elements of L2(G), and since every
element in L2(G) can be written as a linear combination of {δa}a∈G, then by de�nition,
{δa}a∈G form a basis for L2(G). The dimension of L2(G) is n, the order of G.

3.2.1 Integration on L2(G)

Again, in the interest of creating an analog to classical Fourier analysis, we will need a form
of integration of our functions over our group.

De�nition 26. For U ⊂ G and f ∈ L2(G), we de�ne the integral of f over U to be:ˆ
U

f =
∑
a∈U

f(a) (3.2.2)

Lemma 27. The integral as de�ned by equation 3.2.2 is linear.

Proof. Let α, β ∈ C, U ⊂ G, and f, g ∈ L2(G). Thenˆ
U

αf + βg =
∑
a∈U

αf(a) + βg(a)

=
∑
a∈U

αf(a) +
∑
a∈U

βg(a)

=α
∑
a∈U

f(a) + β
∑
a∈U

g(a)

=α

ˆ
U

f + β

ˆ
U

g
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Lemma 28. If U1 and U2 are disjoint subsets of G, then
´
U1∪U2

f =
´
U1
f +
´
U2
f.

Proof. Let U1 = {a1, a2, . . . , am} and U2 = {b1, b2, . . . , bk}.
ˆ
U1∪U2

f =
∑

a∈U1∪U2

f(a)

=f(a1) + f(a2) + · · ·+ f(am) + f(b1) + f(b2) + · · ·+ f(bk)

=
∑
a∈U1

f(a) +
∑
a∈U2

f(a)

=

ˆ
U1

f +

ˆ
U2

f

3.2.2 The Inner Product of L2(G)

Since our goal is to develop a Fourier theory on groups, we obviously need to develop the
idea of a Fourier transform on groups. To do this, we will need an inner product in our
vector space, L2(G).

De�ne a mapping 〈∗, ∗〉 : L2(G)× L2(G)→ C with the formula

〈f, g〉 =
1

|G|

ˆ
G

fg =
1

|G|
∑
a∈G

f(a)g(a) (3.2.3)

Lemma 29. The mapping de�ned by equation 3.2.3 de�nes an inner product in L2(G).

Proof. This time, there is no doubt that 〈f, g〉 is in C since we are dealing with �nite sums.
To be an inner product, 〈∗, ∗〉 must satisfy these four properties for all f, g, h ∈ L2(G)
and α, β ∈ C: 1)〈f, g〉 = 〈g, f〉, 2) 〈αf + βg, h〉 = α〈f, h〉 + β〈g, h〉, 3) 〈f, f〉 ≥ 0, 4)
〈f, f〉 = 0 ⇐⇒ f = 0.

First, 〈f, g〉 = 1
|G|
∑

a∈G f(a)g(a) = 1
|G|
∑

a∈G f(a)g(a) = 〈g, f〉.
Second,

〈αf + βg, h〉 =
1

|G|
∑
a∈G

(αf(a) + βg(a))h(a)

=
1

|G|
∑
a∈G

αf(a)h(a) + βg(a)h(a)

=
1

|G|
∑
a∈G

αf(a)h(a) +
1

|G|
∑
a∈G

βg(a)h(a)

=
1

|G|
α
∑
a∈G

f(a)h(a) +
1

|G|
β
∑

g(a)h(a)

= α〈f, h〉+ β〈g, h〉
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Third, 〈f, f〉 = 1
|G|
∑

a∈G f(a)f(a) ≥ 0

Fourth, assume 〈f, f〉 = 0. Since 1
|G|
∑

a∈G f(a)f(a) is simply adding up positive real

numbers, if 〈f, f〉 = 0, this has to imply that |f(a)| = 0 for all a in G. But this implies
that f(a) = 0 for all a in G. Assume f(a) = 0 for all a ∈ G. Then 1

|G|
∑

a∈G f(a)f(a) =

0 + 0 + · · ·+ 0 = 0. Thus, 〈f, f〉 = 0 if and only if f(a) = 0 for all a in G.
Thus, 〈∗, ∗〉 de�nes an inner product on L2(G).

De�nition 30. For any f ∈ L2(G), the induced norm is de�ned as

‖ f ‖L2(G)=
√
〈f, f〉 =

√
1

|G|
∑
a∈G

f(a)f(a) (3.2.4)

Lemma 31. The set {δa}a∈G form an orthonormal basis for L2(G).

Proof. We have already shown that {δa}a∈G form a basis for L2(G).We need only show that
{δa}a∈G are orthonormal.

Let us �rst assume aj, ak ∈ G and j 6= k. Then

〈δaj , δak〉 =
1

|G|
∑
a∈G

δaj(a)δak(a)

= 0× 0 + 0× 0 + · · ·+ δaj(aj)× 0 + · · ·+ 0× δak(ak) + · · ·+ 0× 0

= 0

Next, let us assume aj, ak ∈ G and j = k. Then

〈δaj , δak〉 =
1

|G|
∑
a∈G

δaj(a)δaj(a)

=
1

|G|
[0× 0 + 0× 0 + · · ·+ δaj(aj)× δaj(aj) + · · ·+ 0× 0]

=
1

|G|
×
√
|G| ×

√
|G|

= 1

Thus, by de�nition, {δa}a∈G form an orthonormal basis for L2(G).

Remark. The L2− norm is not the only norm associated with our group. For any p ≥ 1, we
can de�ne the Lp − norm as

‖ f ‖Lp(G)=

(
1

|G|
∑
x∈G

|f(x)|p
) 1

p

We have now built a group analog to the Schwarz class. The next step will be to �nd
functions that can take the place of the trigonometric functions used in classical Fourier
analysis.
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3.3 Characters, Dual Group Ĝ, and L2(Ĝ)

In our Fourier analysis on groups, characters will play a role analogous to the role of trigono-
metric functions in classical Fourier analysis. The characters will map elements from G into
the unit circle, just like the trigonometric functions take elements from R into the unit circle
in C. The characters form another group, the dual group, Ĝ. In this section, we will also
de�ne an inner product and an induced norm in the space L2(Ĝ). Finally we will prove some
additional lemmas for the characters needed to build the Fourier theory on groups.

De�nition 32. A character of G is a group homomorphism χ : G→ S1, where S1 denotes
the unit circle, i.e. S1 = {z ∈ C : |z| = 1}.

De�nition 33. χ is a group homomorphism if for all a, b ∈ G, χ(a+ b) = χ(a)χ(b).

Lemma 34. The set of characters, denoted by Ĝ, is a group with the binary operation
(χ1χ2)(a) = χ1(a)χ2(a) for all χ1, χ2 ∈ Ĝ and a ∈ G.

Proof. 1) We �rst need to show that Ĝ is closed under our binary operation. Take any

two elements χ1, χ2 ∈ Ĝ. Then χ1χ2(a) = χ1(a)χ2(a), but χ1(a) and χ2(a) are in S1,
and any two elements in S1, when multiplied together, produce another element in S1.
Furthermore, χ1χ2 is a character since χ1χ2(a+ b) = χ1(a+ b)χ2(a+ b) by the de�nition of
our binary operation. Indeed, since χ1 and χ2 are group homomorphisms, χ1(a+b)χ2(a+b) =
χ1(a)χ1(b)χ2(a)χ2(b). Because χ1(a) and χ2(b) are elements of C for all a, b in G, and because
we know that multiplication is commutative in C, we can write χ1(a)χ1(b)χ2(a)χ2(b) =
χ1(a)χ2(a)χ1(b)χ2(b) = χ1χ2(a)χ1χ2(b). So χ1χ2(a+b) = χ1χ2(a)χ1χ2(b), which implies that

χ1χ2 is a group homomorphism. Thus, our group Ĝ is closed under our binary operation.
2. We now must show that our binary operation is associative. Let χ1, χ2, χ3 ∈ Ĝ and

a ∈ G.

((χ1χ2)(χ3))(a) =(χ1χ2)(a)χ3(a)

=χ1(a)χ2(a)χ3(a)

=χ1(a)(χ2χ3)(a)

=(χ1(χ2χ3))(a)

3. We now need an identity element in Ĝ. Let us de�ne χ0(a) = 1 ∀a ∈ G. This element is
in S1 since 1 ∈ S1. It is also a group homomorphism since χ0(a+b) = 1 = 1×1 = χ0(a)χ0(b).
For any χ ∈ G, (χχ0)(a) = χ(a)χ0(a) = χ(a) × 1 = χ(a). Similarly (χ0χ)(a) = χ(a). Thus,

χ0 is an identity element for Ĝ.
4. We will note that, for any χ ∈ Ĝ, χ(0) = 1: Note that χ(a) 6= 0 for any a in G since χ

maps elements onto the unit circle. Therefore, for any a in G, χ(a)χ(0) = χ(a+ 0) = χ(a).
Since we know χ(a) 6= 0, we can use the cancellation law, and we get that χ(0) = 1.

5. We also need an inverse for each element in Ĝ. De�ne χ−1(a) = χ(−a), for all a ∈ G.
Since −a ∈ G, our new element χ−1 will be in S1 since χ : G → S1. This element is
also a group homomorphism: if we consider χ−1(a + b) = χ((a + b)−1) = χ(−a − b). But
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χ(−a−b) = χ(−a)χ(−b) = χ−1(a)χ−1(b). So χ−1 is in fact a group homomorphism. We now
need to show that χ−1 is actually an inverse element. Consider (χ−1χ)(a) = χ−1(a)χ(a) =
χ(−a)χ(a) = χ(−a+ a) = χ(0) = 1. Similarly, we can show (χχ−1)(a) = 1.

Numbers 1 through 5 imply that Ĝ is indeed a group. Ĝ is called the dual group of
G.

Example 35. If our group is equal to Zn, then the dual group can be identi�ed with Un,
the nth roots of unity. For n = 3, we can create multiplication tables for Z3 and U3, as well
as a character table:

For Z3, the multiplication table is as follows:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

A similar multiplication table is shown for U3 :

* 1 e2πi/3 e4πi/3

1 1 e2πi/3 e4πi/3

e2πi/3 e2πi/3 e4πi/3 1
e4πi/3 e4πi/3 1 e2πi/3

Notice that the above group tables have the same structure. In fact, Z3 ' U3. To see
how the each character acts on each element of the group, we have a character table:

* 0 1 2
χ0 1 1 1
χ1 1 e2πi/3 e4πi/3

χ2 1 e4πi/3 e2πi/3

The multiplication table for the characters of Z3 follows:

* χ0 χ1 χ2

χ0 χ0 χ1 χ2

χ1 χ1 χ2 χ0

χ2 χ2 χ0 χ1

Example 36. We can also create a character table for the Klein 4-group [1]:

* e a b ab
χ0 1 1 1 1
χ1 1 -1 1 -1
χ2 1 -1 -1 1
χ3 1 1 -1 -1
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From this character table, we can build the multiplication table for the characters of the
Klein 4-group as well:

* χ0 χ1 χ2 χ3

χ0 χ0 χ1 χ2 χ3

χ1 χ1 χ0 χ3 χ2

χ2 χ2 χ3 χ0 χ1

χ3 χ3 χ2 χ1 χ0

Remark. In the two examples above, we observed that G ' Ĝ. This is not just a coincidence.
For �nite abelian groups, it is true that G ' Ĝ, [12, Theorem 1.4]. Because of this fact, we

can then relate elements in G to elements in Ĝ. For every a in G, we can relate a to a χa in
Ĝ. In general, there is no canonical isomorphism between the G and Ĝ.

Now that we have another group, we will need to de�ne a similar space to L2(G), called

L2(Ĝ), which will be the space of functions from Ĝ to C. This space is called the dual space

of L2(G). We can show in a similar way to what we did with L2(G) that L2(Ĝ) is an inner-
product vector space, so we will therefore need to de�ne the inner product and induced norm
of L2(Ĝ).

De�nition 37. We will also de�ne an inner product in L2(Ĝ), for f̂ , ĝ ∈ Ĝ, as:

〈f̂ , ĝ〉 :=
∑
χ∈Ĝ

f̂(χ)ĝ(χ) (3.3.1)

De�nition 38. The induced norm in L2(Ĝ) is de�ned as:

‖ f̂ ‖L2(Ĝ):=

√∑
χ∈Ĝ

f̂(χ)f̂(χ) (3.3.2)

Remark. We can similarly de�ne an Lp − norm for the space Lp(Ĝ) as

‖ f̂ ‖Lp(Ĝ)=

∑
ξ∈Ĝ

|f̂(ξ)|p
 1

p

Remark. Note that we do not normalize the inner product nor the Lp-norms.

Remark. We can de�ne conjugation in Ĝ by χ(a) = χ(a). Since χ(a) ∈ S1, we know that
χ−1(a) = χ(a).

The next few lemmas will give us some building blocks so we can later de�ne things like
the Fourier transform and the Fourier Inversion Formula.
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Lemma 39. If χ ∈ Ĝ, then
∑

a∈G χ(a) =

{
0 χ 6= χ0

n χ = χ0

where n = |G|.

Proof. [6]: First, let us assume χ = χ0. Then
∑

a∈G χ(a) =
∑

a∈G χ0(a) =
∑

a∈G(1) = n.
Next, let us assume χ 6= χ0; hence, there exists a0 ∈ G such that χ(a0) 6= 1. If we let the b
be the arbitrary element b = a0 + a for any a in G, then

χ(a0)
∑
a∈G

χ(a) =
∑
a∈G

χ(a0 + a)

=
∑
b∈G

χ(b)

Since χ(a0) 6= 1, then
∑

a∈G χ(a) = 0.

Lemma 40. If a ∈ G, then
∑

χ∈Ĝ χ(a) =

{
0 a 6= 0

n a = 0
where n = |Ĝ|.

Proof. First, let us assume a = 0. Then
∑

χ∈Ĝ χ(a) =
∑

χ∈Ĝ χ(0) =
∑

χ∈Ĝ 1 = n. Next, let

us assume a 6= 0, then there exists χ1 ∈ Ĝ such that χ1(a) 6= 1. Then

χ1(a)
∑
χ∈Ĝ

χ(a) =
∑

χ1(a)χ(a)

=
∑
χ∈Ĝ

(χ1χ)(a)

Let β be the arbitrary element β = χ1χ for any χ ∈ Ĝ. Then

χ1(a)
∑
χ∈Ĝ

χ(a) =
∑
β∈Ĝ

β(a)

Since χ1(a) 6= 1, this implies that
∑

χ∈Ĝ χ(a) = 0.

Lemma 41. If χ1, χ2 ∈ Ĝ, then
∑

a∈G χ1(a)χ2(a) =

{
0 χ1 6= χ2

n χ1 = χ2

where n = |G|.

Proof. [6]: First, let us assume χ1 = χ2. This implies χ1χ2 = χ0. We can then appeal
to Lemma 39, which implies

∑
a∈G χ1(a)χ2(a) = n. Now, we will assume χ1 6= χ2. Since

inverses in groups are unique, we know that χ1χ2 6= χ0. Again, by Lemma 39, this implies∑
a∈G χ1(a)χ2(a) = 0.

Lemma 42. If a, b ∈ G, then
∑

χ∈Ĝ χ(a)χ(b) =

{
0 a 6= b

n a = b
where n = |Ĝ|.

Proof. First, let us note that χ(a)χ(b) = χ(a)χ(−b) = χ(a − b). We will �rst consider
the case where a = b. Then χ(a)χ(b) = χ(a − b) = χ(0). By Lemma 40, this implies∑

χ∈Ĝ χ(a)χ(b) = n. Next, we will consider the case where a 6= b. Since inverses in groups
are unique, a− b 6= 0, so by Lemma 40 again,

∑
χ∈Ĝ χ(a)χ(b) = 0.
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3.4 Fourier Transforms

We are now ready to actually de�ne the Fourier transform on our group. In addition, we
will prove the analogs to well-known theorems in classical Fourier analysis like the Fourier
Inversion Formula and Plancherel's Identity.

De�nition 43. The Fourier transform of f ∈ L2(G) is the function f̂ ∈ L2(Ĝ), de�ned

as the inner product with a character in Ĝ, that is:

f̂(χ) = 〈f, χ〉 =
1

|G|
∑
a∈G

f(a)χ(a) (3.4.1)

Lemma 44. The Fourier transform as de�ned by equation 3.4.1 is linear.

Proof. For α, β ∈ C, f, g ∈ G, and χ ∈ Ĝ,

̂αf + βg(χ) =
1

|G|
∑
a∈G

(αf(a) + βg(a))χ(a)

=
1

|G|
∑
a∈G

αf(a)χ(a) +
1

|G|
∑
a∈G

βg(a)χ(a)

= α
1

|G|
∑
a∈G

f(a)χ(a) + β
1

|G|
∑
a∈G

g(a)χ(a)

= αf̂(χ) + βĝ(χ)

Just as in classical Fourier analysis, the Fourier transform forms a bijection from G to
Ĝ. We can use this fact to prove the Fourier Inversion Formula.

Theorem 45. (Fourier Inversion Formula): If f ∈ L2(G), then f =
∑

χ∈Ĝ f̂(χ)χ.

Proof. [6]: From Lemma 42, we can see that
∑

χ∈Ĝ χ(b)χ(a) =
√
nδa(b) for a, b ∈ G. By

equation 3.2.1, we know

f(x) =
1√
n

∑
a∈G

f(a)δa(x)

=
1√
n

∑
a∈G

f(a)
1√
n

∑
χ∈Ĝ

χ(x)χ(a)

=
1

n

∑
a∈G

∑
χ∈Ĝ

f(a)χ(x)χ(a)

=
∑
χ∈Ĝ

1

n

∑
a∈G

f(a)χ(a)χ(x)

=
∑
χ∈Ĝ

f̂(χ)χ(x)
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Theorem 46. (Plancherel's Identity): If f ∈ L2(G) and |G| = n, then ‖ f ‖L2(G)=‖ f̂ ‖L2(Ĝ)

.

Proof. Consider

‖ f̂ ‖L2(Ĝ)=

√∑
χ∈Ĝ

f̂(χ)f̂(χ)

=

√√√√∑
χ∈Ĝ

(
1

n

∑
a∈G

f(a)χ(a))(
1

n

∑
b∈G

f(b)χ(b))

=

√√√√∑
χ∈Ĝ

1

n

∑
a∈G

f(a)χ(a)
1

n

∑
b∈G

f(b)χ(b)

=
1

n

√∑
χ∈Ĝ

∑
a∈G

∑
b∈G

f(a)f(b)χ(a)χ(b)

By Lemma 42, we know that
∑

χ∈Ĝ χ(a)χ(b) = 0 unless a = b, then it equals n. Thus

‖ f̂ ‖L2(Ĝ)=

√
n

n

√∑
f(a)f(a)

= ‖ f ‖L2(G)

In the next couple of subsections, we will partially build the time-frequency dictionary
for our Fourier group theory.

3.4.1 Translation

De�nition 47. We will de�ne the translation by a ∈ G of the function f ∈ L2(G) by

τaf(x) = f(x− a) (3.4.2)

Lemma 48. For a ∈ G and f ∈ L2(G), τ̂af(χ) = χ(a)f̂(χ).

Proof. Consider

τ̂af(χ) =
∑
x∈G

τaf(x)χ(x)

=
∑
x∈G

f(x− a)χ(x)χ(−a)χ(−a)

=
(∑
x∈G

f(x− a)χ(x− a)
)
χ(−a)

=χ(−a)f̂(χ)

=χ(a)f̂(χ)
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3.4.2 Convolution

De�nition 49. For f, g ∈ L2(G), we will de�ne convolution as

(f ∗ g)(x) =
∑
a∈G

τ−xf(−a)g(a) (3.4.3)

Lemma 50. The convolution as de�ned in equation 3.4.3 is commutative.

Proof. Consider

(f ∗ g)(x) =
∑
a∈G

f(x− a)g(a)

Let x− a = b, then a = x− b. Then

(f ∗ g)(x) =
∑
b∈G

f(b)g(x− b)

=(g ∗ f)(x)

Lemma 51. For f, g ∈ L2(G) f̂ ∗ g = f̂ ĝ.

Proof. Consider

f̂ ∗ g(χ) =
∑
x∈G

(f ∗ g)(x)χ(x)

=
∑
x∈G

(∑
a∈G

f(x− a)g(a)
)
χ(x)

Note that χ(x) = χ(a)χ(x− a). Let b = x− a. Then we get

f̂ ∗ g(χ) =
∑
b∈G

∑
a∈G

f(b)g(a)χ(a)χ(b)

=
(∑
b∈G

f(b)χ(b)
)(∑

a∈G

g(a)χ(a)
)

= f̂(χ)ĝ(χ)

3.4.3 Modulation

De�nition 52. Themodulation of a function f ∈ L2(G) by α ∈ Ĝ is de�ned asMαf(x) =
α(x)f(x).

Lemma 53. For f ∈ L2(G) and α ∈ Ĝ, M̂αf(ξ) = f̂(α−1ξ).
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Proof. Recall that for any ξ, α ∈ Ĝ, ξ−1 = ξ and (αξ)−1 = α−1ξ−1 since we are dealing with
an abelian group. We will use these facts in the following list of equalities:

M̂αf(ξ) =
1

|G|
∑
x∈G

α(x)f(x)ξ(x)

=
1

|G|
∑
x∈G

f(x)α(x)ξ−1(x)

=
1

|G|
∑
x∈G

f(x)(αξ−1(x))

=
1

|G|
∑
x∈G

f(x)(α−1ξ)(x)

= f̂(α−1ξ)

Remark. Note that, because the binary operation in Ĝ is multiplication, we can de�ne the
translation by α ∈ Ĝ of f̂ ∈ L2(Ĝ) as ταf̂(ξ) = f̂(ξα−1). With this de�nition, and the

one for modulation, we can rewrite Lemma 48 as τ̂af(ξ) = M−af̂(ξ) and Lemma 53 as

M̂αf(ξ) = ταf̂(ξ).



Chapter 4

Uncertainty Principles

Now that we have the basic building blocks in both group and classical Fourier theory, we can
prove both versions of the uncertainty principle. While the classical and discrete versions of
the uncertainty principles look quite di�erent, they actually both encode information about
the supports of functions in space and frequency. In this section, we will also identify the
extremal functions which change the inequalities to equalities in both settings.

4.1 Uncertainty Principle in R
The Heisenberg Uncertainty Principle was proved by Werner Heisenberg, a German theo-
retical physicist, in 1927. The uncertainty principle says that it is impossible to know a
subatomic particle's position and momentum at the same time. The more precisely the po-
sition of a particle is known, the less precisely the momentum can be known, and vice versa.
Here is the mathematical statement of Heisenberg's Uncertainty Principle:

Theorem 54. (Heisenberg Uncertainty Principle): Suppose that ψ ∈ S(R) and that ψ is
normalized in L2(R), i.e. ‖ ψ ‖2= 1. Then(ˆ

R
x2|ψ(x)|2dx

)(ˆ
R
ξ2|ψ̂(ξ)|2dξ

)
≥ 1/(16π2).

Proof. [14]: We know that ‖ ψ ‖2= 1. By the de�nition of the L2-norm, this implies´
R |ψ(x)|2dx = 1. If we use integration by parts, with u = |ψ(x)|2 and dv = dx, we get
that v = x and

du =
d

dx
(|ψ(x)|2)

=
d

dx
(ψ(x)ψ(x))

= ψ′(x)ψ(x) + ψ(x)ψ′(x)

= ψ′(x)ψ(x) + ψ′(x)ψ(x)

= 2Re(ψ′(x)ψ(x))

24
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Using the formula for integration by parts, we get that

1 = (|ψ(x)|2x)|∞−∞ −
ˆ
R

2xRe
(
ψ′(x)ψ(x)

)
dx.

Since ψ ∈ S(R), (|ψ(x)|2x)|∞−∞ = 0, so we are left with

1 = −
ˆ
R

2xRe(ψ′(x)ψ(x)dx (4.1.1)

Since | z |≥ |Re(z)| and since |
´
f | ≤

´
|f |, we can rewrite equation (4.1.1) as

1 ≤ 2

ˆ
R
|x||ψ(x)||ψ′(x)|dx (4.1.2)

By the Cauchy-Schwarz Inequality, Lemma 5, equation 4.1.2 becomes

1 ≤ 2

(ˆ
R
x2|ψ(x)|2dx

) 1
2
(ˆ

R
|ψ′(x)|2dx

) 1
2

By Plancherel's Identity, Theorem 16, we get

1 ≤ 2

(ˆ
R
|xψ(x)|2dx

) 1
2
(ˆ

R
|ψ̂′(ξ)|2dξ

) 1
2

(4.1.3)

From Lemma 9, we know that M̂ ′(ξ) = (2πiξ)M̂(ξ). Thus, equation 4.1.3 becomes

1 ≤ 2

(ˆ
R
|xψ(x)|2dx

) 1
2
(ˆ

R
|4π2ξ2||ψ̂(ξ)|2dξ

) 1
2

(4.1.4)

Squaring both sides of equation 4.1.4 yields

1 ≤ 4

(ˆ
R
|xψ(x)|2dx

)
4π2

(ˆ
R
|ξψ̂(ξ)|2dξ

)
This implies

1

16π2
≤
(ˆ

R
|xψ(x)|2dx

)(ˆ
R
|ξψ̂(ξ)|2dξ

)

4.2 Uncertainty Principle in G

We will now present an analog to the Heisenberg Uncertainty Principle for �nite abelian
groups. Before we do that, though, we must �rst de�ne the support of a function.

De�nition 55. For a function f in L2(G), the support of f , denoted suppf , is the set of
all a in G such that f(a) 6= 0. We denote the cardinality of the support by |suppf |. We can

similarly de�ne the support of a function f̂ in Ĝ as the set of all χ ∈ Ĝ such that f̂(χ) 6= 0.
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Theorem 56. (Discrete Uncertainty Principle): For f ∈ L2(G), |suppf | |suppf̂ | ≥ |G|.

Proof. [6]: By the Fourier Inversion Formula, Theorem 45, we know that for all a ∈ G

f(a) =
∑
χ∈Ĝ

f̂(χ)χ(a)

This implies that

|f(a)| = |
∑
χ∈Ĝ

f̂(χ)χ(a)|

Since χ(a) is an element of S1 for all a ∈ G and χ ∈ Ĝ, then |χ(a)| = 1. Using this fact
and the triangle inequality, we get that

|f(a)| ≤
∑
χ∈Ĝ

|f̂(χ)||χ(a)| =
∑
χ∈Ĝ

|f̂(χ)| (4.2.1)

By the de�nition of the Fourier transform, equation 3.4.1, and the triangle inequality, we
know

|f̂(χ)| ≤ 1

|G|
∑
a∈G

|f(a)χ(a)| = 1

|G|
∑
a∈G

|f(a)|

Let N = maxa∈G |f(a)|. We can then say∑
a∈G

|f(a)| ≤ |suppf | ×N (4.2.2)

Thus, for all χ ∈ Ĝ,
|f̂(χ)| ≤ 1

|G|
|suppf | ×N

Substituting this into equation 4.2.1, we get

|f(a)| ≤
∑
χ∈Ĝ

1

|G|
|suppf | ×N =

1

|G|
× |suppf̂ | × |suppf | ×N (4.2.3)

Since equation 4.2.1 applied to every a ∈ G, it will apply to a′ ∈ G such that f(a′) = N.
Combining equation 4.2.1 and equation 4.2.3, we get

N ≤ 1

|G|
× |suppf̂ | × |suppf | ×N

Rearranging and canceling, we get

|suppf̂ | × |suppf | ≥ |G|

In this context, it is clear that both the supports of f and f̂ cannot be too small since
the product of their cardinalities must be greater than or equal to the order of the group G.
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4.3 The �Gaussians�

In Fourier analysis in both R and G, there are speci�c functions that give us sharpness in
the uncertainty principle. In classical Fourier analysis, these functions are Gaussians, while
in the group setting, they are the translations, modulations, and scalar multiples of the
indicator functions of subgroups of G. These are the functions for which equality is attained
in the inequalities; these functions are also called extremal functions.

4.3.1 The Gaussians in R
Recall that a Gaussian is a function of the form Ga(x) = e−ax

2
. Before we prove that the

classical version of the uncertainty principle is an equality if and only if our function is a
Gaussian, we �rst need to recall some preliminary calculations.

Lemma 57. The integral
´
R e
−ax2dx =

√
π
a
.

Proof. Consider
(´

R e
−ax2dx

)2

=
(´

R e
−ax2dx

)(´
R e
−ay2dy

)
=
´∞
−∞

´∞
−∞ e

−a(x2+y2)dxdy. Chang-

ing this integral to polar coordinates, we get(ˆ
R
e−ax

2

dx

)2

=

ˆ 2π

0

ˆ ∞
0

e−ar
2

rdrdθ

=

ˆ 2π

0

(
− 1

2a
[e−∞ − e0]

)
=

π

a

Thus,
´
R e
−ax2dx =

√
π
a
.

In particular, this calculation shows that ‖ Ga ‖L2(R)=
(´

R e
−ax2dx

) 1
2

= (π
a
)
1
4 . If a = π,

then ‖ Gπ ‖L2(R)= 1.

Lemma 58. The integral
´
R x

2e−ax
2
dx =

√
π

2a3/2
.

Proof. Let us evaluate the above integral using integration by parts, letting u = x and
dv = xe−ax

2
dx. We then get that du = dx and v = − 1

2a
e−ax

2
. Using the formula for integra-

tion by parts, we get
´
R x

2e−ax
2
dx = − 1

2a
xe−ax

2|∞−∞ + 1
2a

´
R e
−ax2dx. Using L'Hopital's rule,

limx→±∞−xe−ax
2

= limx→±∞
1

xeax2
= 0. Thus, − 1

2a
xe−ax

2 |∞−∞ = 0. We know from Lemma 57

that
´
R e
−ax2 =

√
π
a
, so
´
R x

2e−x
2
dx =

√
π

2a3/2
.

Lemma 59. The Fourier transform of a Gaussian is another Gaussian.

Proof. Consider the Gaussian function GB(x) = e−Bx
2
. Then

ĜB(ξ) =

ˆ
R

√
2B/πe−Bx

2

e−2πixξdx

=

ˆ
R

√
2B/πe−B(x2+2πixξ/B)dx
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Completing the square of x2 + 2πixξ/B gives us (x + πiξ
B

)2 + (πξ
B

)2. Our integral then
becomes

ĜB(ξ) =

ˆ
R
e−π

2ξ2/Be−B(x+πiξ/B)2dx

= e−π
2ξ2/B

ˆ
R
e−B(x+πiξ/B)2dx

By Lemma 57, we can conclude that
´
R e
−B(x+πiξ/B)2dx = 1√

B

√
π. Thus, ĜB(ξ) =

e−π
2ξ2/B

√
π
B
. But this is simply another Gaussian with a constant in front of it. Thus,

the Fourier transform of a Gaussian is a Gaussian.

Theorem 60. The uncertainty principle, Theorem 54, is sharp if and only if ψ(x) =√
2B/πe−Bx

2
for some B > 0.

Proof. (⇐=) Assume ψ(x) =
√

2B/πGB(x). From Lemma 59, we know that

ψ̂(ξ) =
√

2B/πe−π
2ξ2/B

√
π/B

=
√

2e−π
2ξ2/B

Plugging our values of ψ(x) and ψ̂(ξ) into the left hand side of Theorem 54 and using Lemma
58, we get(ˆ

R

2B

π
x2e−2Bx2dx

)(ˆ
R

2ξ2e−2π2ξ2/Bdξ

)
=

2B

π

√
π

2(2B)3/2

2
√
πB3/2

2(2π2)3/2
(4.3.1)

Simplifying the right hand side of equation 4.3.1, we get B
8π3 . Setting this equal to

1
16π2 ,we

see that B = 1
2
π. Thus, the Gaussian Gπ/2(x) = e−

1
2
πx2 is an extremal function for the

uncertainty principle.
(=⇒) Let us now assume that there exists some function ψ(x) that makes Theorem 54

sharp. We will go through the proof of the Heisenberg Uncertainty Principle, making sure
that each inequality is sharp. From the hypothesis, we know that 1 =

´
R |ψ(x)|2dx. Using

integration by parts, we get 1 = 2
´
R xRe[ψ(x)ψ′(x)]dx. Re(z) = z if and only if z ∈ R, so

let us assume that ψ(x)ψ′(x) is real for all x ∈ R. Since 1 > 0, we can say that

1 = 2|
ˆ
R
xψ(x)ψ′(x)dx| (4.3.2)

Since |
´
f | =

´
|f | only if f is always positive or always negative, let us assume xψ(x)ψ′(x) ≥

0 for all x ∈ R or xψ(x)ψ′(x) ≤ 0 for all x ∈ R. Then equation 4.3.2 becomes

1 = 2

ˆ
R
|xψ(x)||ψ′(x)|dx (4.3.3)

The next step in the proof of the Uncertainty Principle was to apply the Cauchy-Schwarz
inequality, which is only an equality if the two functions are multiples of each other. So let
us assume that xψ(x) = Cψ′(x) for some C ∈ C. This implies that ψ(x) = C1e

−ax2 for some
a, C1 ∈ C. Note that xψ(x)ψ′(x) = −2ax2e−2ax2 , so it does in fact satisfy the requirement
that xψ(x)ψ′(x) ≤ 0 for all x ∈ R. From the proof in the other direction, we know that in
order to achieve equality, we need a = 1

2
π and |C1| = 1. But |C1| = 1 implies that C1 is on

the unit circle. Thus, ψ(x) = |C1|e−
π
2
x2 for C1 ∈ S1.
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4.3.2 The Gaussians in G

In this section, we will prove that, for cyclic groups, |G| = |suppf ||suppf̂ | if and only if f is
the translation, modulation, and/or scalar multiple of the indicator function, 1H , where H
is a subgroup of G.

To prove that the translations, modulations, and scalar multiplies of the indicator func-
tions of subgroups are the only functions that give us sharpness with our group uncertainty
principle, we will �rst need some more de�nitions and lemmas from group theory.

De�nition 61. An indicator function is de�ned, for A ⊆ G, as

1A(a) =

{
1 a ∈ A
0 a 6∈ A

De�nition 62. [12]: The orthogonal complement of a set S ⊆ G, denoted S⊥, is de�ned

as S⊥ := {α ∈ Ĝ : α(x) = 1 ∀x ∈ S}.

Remark. Note that the orthogonal complement is a subset of the dual group Ĝ and consists
of the characters of G that are trivial on S. If S is a subgroup of G, then S⊥ will be a
subgroup of Ĝ that is isomorphic to G

S
.

Lemma 63. If H is a subgroup of G, then for every α ∈ Ĝ,

1̂H(α) =

{
|H|
|G| α ∈ H⊥

0 α 6∈ H⊥

Proof. [12]: If α ∈ H⊥,

1̂H(α) = 〈1H , α〉

=
1

|G|
∑
x∈G

1H(x)α(x)

=
1

|G|
∑
x∈H

α(x)

If α ∈ H⊥, then α(x) = 1 for all x ∈ H. So,

1̂H(α) =
1

|G|
∑
x∈H

1

=
|H|
|G|

If α 6∈ H⊥, then there exists a y ∈ H such that α(y) 6= 1. Let z = x− y for each x ∈ H.
Then ∑

x∈H

α(x) = α(y)
∑
x∈H

α(x− y)

= α(y)
∑
z∈H

α(z)
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Since H is a subgroup,
∑

x∈H α(x− y) =
∑

z∈H α(z) when y ∈ H. This implies that∑
x∈H α(x) = 0.
So if α 6∈ H⊥, then

1̂H(α) =
∑
x∈G

1H(x)α(x)

=
∑
x∈H

α(x)

= 0

Lemma 64. If H ⊆ G is a subgroup, then

|H||H⊥| = |G|.

Proof. [12]:
We know that

|H| =
∑
x∈G

1H(x)

=
∑
x∈G

|1H(x)|2

= |G| ‖ 1H ‖2
2

From Plancherel's Identity, we know that ‖ 1H ‖2
2=‖ 1̂H ‖2

2 . Thus,

|H| = |G|
∑
x∈G

|1̂H(x)|2.

From Lemma 63, we know that

1̂H(α) =

{
|H|
|G| α ∈ H⊥

0 α 6∈ H⊥
.

Thus,

|G|
∑
x∈G

|1̂H(x)|2 = |G|
∑
α∈H⊥

(
|H|
|G|

)2

= |G||H⊥|
(
|H|
|G|

)2

.

Therefore, |H| = |G||H⊥|
(
|H|
|G|

)2

. Rearranging, we get |H||H⊥| = |G|.
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The next lemma involves translations and modulations, which were introduced in sections
3.4.1 and 3.4.3. Recall that for a ∈ G and α ∈ Ĝ, and for f ∈ L2(G) and f̂ ∈ Ĝ, that

τaf(x) := f(x−a) and Mαf(x) := α(x)f(x). Furthermore, ταf̂(ξ) = f̂(ξα−1) and Maf̂(ξ) =

ξ(a)f̂(ξ). Also, τ̂af = M−af̂ and M̂αf = ταf̂ . Now note that |suppf | = |suppτaf | for all
a ∈ G. Also, suppf = suppMαf for all α ∈ Ĝ.

Lemma 65. If f 6≡ 0, then 0 ∈ supp
(
τ−x0Mα−1

0
f
)
, and 1G = χ0 ∈ supp

(
τ−x0Mα−1

0
f )̂ for

some x0 ∈ G and α0 ∈ Ĝ.

Proof. If f 6≡ 0, then there exists x0 ∈ G such that f(x0) 6= 0 and ∃α0 ∈ Ĝ such that

f̂(α0) 6= 0.
Consider τ−x0Mα−1

0
f(x) = τ−x0(α

−1
0 (x)f(x)) = α−1

0 (x+ x0)f(x+ x0).

Then τ−x0Mα−1
0
f(0) = α−1

0 (x0)f(x0) 6= 0. Thus, 0 ∈ supp
(
τ−x0Mα−1

0
f
)
.

Now consider ξ ∈ Ĝ(
τ−x0Mα−1

0
f )̂(ξ) =

1

|G|
∑
x∈G

τ−x0Mα−1
0
f(x)ξ(x)

=
1

|G|
∑
x∈G

α−1
0 (x+ x0)f(x+ x0)ξ(x)

=
1

|G|
∑
x∈G

f(x+ x0)α0(x+ x0)ξ(x)

=
1

|G|
∑
x∈G

f(x)α0(x)ξ(x− x0)

=
1

|G|
ξ(x0)

∑
x∈G

f(x)α0(x)ξ(x)

= ξ(x0)f̂(α0ξ).

So
(
τ−x0Mα−1

0
f )̂(χ0) = χ0(x0)f̂(χ0α0) = f̂(α0) 6= 0, so χ0 ∈ supp

(
τ−x0Mα−1

0
f )̂.

We are now ready to prove the main theorem of this subsection.

Theorem 66. If 0 ∈ suppf and χ0 ∈ suppf̂ , then |suppf ||suppf̂ | = |G| if and only if
f = c1H , where H is a subgroup of a cyclic group G and c is a nonzero constant.

Proof. [2]: (⇒) Let us assume |suppf ||suppf̂ | = |G|, and that N = |G|. This assumption

implies that f is not identically equal to zero. By our hypothesis, 0 ∈ suppf and χ0 ∈ suppf̂ .
We need only show that suppf is a subgroup. If suppf = B is a subgroup, we know from
Lemma 64 that |B||B⊥| = |G|, so |suppf̂ | = |B⊥|. Since B⊥ = {α ∈ Ĝ : α(x) = 1 ∀x ∈ B},
we can show that for any α ∈ Ĝ and β ∈ B⊥,

f̂(αβ) =
1

|G|
∑
x∈G

f(x)αβ(x)
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Since f is supported on B, we can write

f̂(αβ) =
1

|G|
∑
x∈B

f(x)α(x)β(x)

Also, since β ∈ B⊥, β(x) = 1 for all x ∈ B, which would imply that β(x) = 1 for

all x ∈ B. Thus, f̂(αβ) = 1
|G|
∑

x∈B f(x)α(x). But since f is supported on B, we can
sum over all elements in G since we would just be adding zeros for x not in B. Thus,
f̂(αβ) = 1

|G|
∑

x∈G f(x)α(x) = f̂(α). Note that χ0(a) = 1 for all a ∈ B, so χ0 is in B
⊥. Thus,

if we let α = χ0 in the above equation, we would get that f̂(β) = f̂(χ0) for all β ∈ B⊥. This
proves that f̂ is constant on B⊥.

We know that α = χ0 ∈ suppf̂, and this implies that f̂(χ0) 6= 0. This implies that f̂ is a

nonzero constant on B⊥, which implies that B⊥ ⊆ suppf̂ . But from our assumption that B
is a subgroup of G, we know that |suppf̂ | = |B⊥|, so suppf̂ = B⊥. Since f̂ is supported and

constant on B⊥ we can say that f̂ = C1B⊥ . By Lemma 63, we know that, for g = 1B, then
ĝ = 1B⊥ . The Fourier Inversion Formula tells us that the Fourier transform forms a bijection
from G onto Ĝ; this implies that f = c1B for c∈ C and c 6= 0. We now just need to prove
that suppf is a subgroup of G.

Let |suppf̂ | = M. Let r1, r2, . . . , rM ∈ G be such that αrj ∈ suppf̂ for 1 ≤ j ≤M. Because

we are assuming that G is cyclic, we can relate each element αj ∈ Ĝ to an element in the

group Un, where n = |G| and αj(k) = e2πijk/n. Let 0 ≤ p ≤ N −M. De�ne ω
(p)
k = f(p + k),

with 1 ≤ k ≤M. By the Fourier Inversion formula, we know that

ω
(p)
k =

∑
ξ∈Ĝ

f̂(ξ)ξ(p+ k)

=
∑

αr∈suppf̂

f̂(αr)αr(p+ k)

=
M∑
j=1

f̂(αrj)αrj(p+ k)

Let αrj = zj, let u =
(
f̂(z1), f̂(z2), . . . , f̂(zM)

)
, and let ω(p) =

(
ω

(p)
1 , ω

(p)
2 , . . . , ω

(p)
M

)
. Then

ω(p) = Zu, where Z is an MxM matrix where zk,j = zp+kj . We want to show that ω(p) 6= 0,

which will show that f does not haveM consecutive zeros. Since u =
(
f̂(z1), f̂(z2), . . . , f̂(zM)

)
,

and zj ∈ suppf̂, we know u 6= 0. To show that ω(p) 6= 0, we just have to show that detZ 6= 0.

Z =


zp+1

1 zp+1
2 · · · zp+1

M

zp+2
1 zp+2

2 · · · zp+2
M

...
...

. . .
...

zp+M1 zp+M2 · · · zp+MM


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detZ = zp+1
1 zp+1

2 · · · zp+1
M det


1 1 · · · 1
z1 z2 · · · zM
...

...
. . .

...
zM−1

1 zM−1
2 · · · zM−1

M

 = zp+1
1 zp+1

2 · · · zp+1
M det(V ).

But V is a Vandermonde matrix, so

detZ = zp+1
1 zp+1

2 · · · zp+1
M

∏
1≤j<k≤M

(zj − zk).

Since zj 6= zk if j 6= k, detZ 6= 0, thus ω(p) 6= 0 for 0 ≤ p ≤ N − M. This implies
that f does not have M consecutive zeros, or in other words, there are no elements in
suppf that are M elements apart. Suppose there were elements in suppf that were less than
M − 1 elements apart. But since |suppf | = N/M, this implies that there are at least two
elements in suppf that are M or more elements apart. This is a contradiction. Hence, the
elements in suppf must be exactly M − 1 elements apart. By our assumption 0 ∈ suppf,
then suppf = {0,M, 2M, . . . , N −M}, which is a subgroup of G. So f = c1H where H is a
subgroup of G.

(⇐) Now assume f = 1H where H is a subgroup of G. Obviously, |suppf | = H. By
Lemma 63, we know

1̂H(a) =

{
|H|
|G| a ∈ H⊥

0 a 6∈ H⊥

Thus, |suppχ̂H | = |H⊥|, and by Lemma 64, we know |H||H⊥| = |G|.

Remark. Note that Theorem 66 and Lemma 65 imply that, if g 6≡ 0, then |suppg|+|suppf̂ | ≥
|G| if and only if g is the modulation, translation, or nonzero scalar multiple of the indicator
function 1H , where H is a subgroup of G and G is cyclic.

This statement is actually true even if G is not cyclic. For a proof of the more general
version, see [13], Proposition 2.2.



Chapter 5

The Entropy Uncertainty Principle

While the uncertainty principle is one of the most well-known inequalities in Fourier analysis
on groups, there are other inequalities that can be very useful. One of them, the entropy
uncertainty principle, can even be used to prove the uncertainty principle. However, in order
to prove that inequality, we will need some more basic ideas, including the notion of tensor
powers. We will use these ideas to prove a few analogs to classical inequalities on R, like
the Hausdor�-Young inequality, which will give us the tools we need to prove the entropy
uncertainty principle.

5.1 Entropy Uncertainty Principle

The entropy uncertainty principle relates a function on the group, its Fourier transform on
the dual group, and the logarithms of their absolute values. Mathematically, the statement
is as follows:

Theorem 67. Entropy Uncertainty Principle: Let f ∈ L(G) such that ‖ f ‖L2(G)= 1. Then

1

2|G|
∑
a∈G

|f(a)|2 log |f(a)|+ 1

2

∑
ξ∈Ĝ

|f̂(ξ)|2 log |f̂(ξ)| ≤ 0.

Remark. Note that L(G) is the space of functions which map elements ofG into C. Depending
on the norm one uses, this space becomes L2(G), or more generally, Lp(G) for p ≥ 1. If f is
in L(G), then it is also in Lp(G) for p ≥ 1.

To prove the Entropy Uncertainty Principle, we will need a number of lemmas which we
will state, and then prove in the following section.

Lemma 68. (Young's Inequality). Let a, b > 0 and p, q ∈ [1,∞] with 1
p

+ 1
q

= 1. Then

ab ≤ ap

p
+ bq

q
.

Lemma 69. (Hölder's Inequality). Let 1
p

+ 1
q

= 1, p, q ≥ 1, with f ∈ Lp(G) and g ∈ Lq(G).
Then

‖ fg ‖L1(G)≤‖ f ‖Lp(G)‖ g ‖Lq(G) .

34
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Lemma 70. (Hausdor�-Young Inequality). Let 1
p

+ 1
q

= 1, with 1 ≤ p ≤ 2, and f ∈ Lp(G)

and ‖ f ‖Lp(G)= 1. Then

‖ f ‖Lp(G)≥‖ f̂ ‖Lq(Ĝ) .

Proof. (Proof of Entropy Uncertainty Principle)[2]: If 1
p

+ 1
q

= 1, then q = p
p−1

. By the

Hausdor�-Young Inequality, we know for f ∈ L(G), 1 ≤ p ≤ 2,

‖ f̂ ‖Lq(Ĝ)≤‖ f ‖Lp(G) .

Let us de�ne A(p) :=‖ f ‖Lp(G) − ‖ f̂ ‖Lp/(p−1)(Ĝ), then A(p) ≥ 0 for 1 ≤ p ≤ 2.

Recall that Lp(G) and Lp(Ĝ) have di�erent normalizations: for the Lp(G) space, we divide

by |G|p, but we do not in the Lp(Ĝ) space. By the de�nition of an Lp norm on L(G),

‖ f ‖Lp(G)=
1

|G|1/p
(∑

a∈G |f(a)|p
)1/p

. Similarly, ‖ f̂ ‖Lp(Ĝ)=
(∑

ξ∈Ĝ |f̂(ξ)|p
)1/p

. Thus, we

can rewrite A(p) :

A(p) =
1

|G|1/p

(∑
a∈G

|f(a)|p
)1/p

−

∑
ξ∈Ĝ

|f̂(a)|p/(p−1)

(p−1)/p

.

Let us de�ne B(p) := 1
|G|1/p

(∑
a∈G |f(a)|p

)1/p
and C(p) :=

(∑
ξ∈Ĝ |f̂(ξ)|p/(p−1)

)(p−1)/p

.

Then A(p) = B(p)− C(p).
Consider

log(B(p)) = log

 1

|G|1/p

(∑
a∈G

|f(a)|p
)1/p


= log(|G|−1/p) + log

(∑
a∈G

|f(a)|p
)1/p


=
−1

p
log(|G|) +

1

p
log

(∑
a∈G

|f(a)|p
)
.

Now consider

B′(p)

B(p)
=

d

dp
(log(B(p))

=
1

p2
log(|G|)− 1

p2
log

(∑
a∈G

|f(a)|p
)

+
1

p

d

dp
log

(∑
a∈G

|f(a)|p
)

=
1

p2
log(|G|)− 1

p2
log

(∑
a∈G

|f(a)|p
)

+
1

p

(
1∑

a∈G |f(a)|p
∑
a∈G

(|f(a)|p log |f(a)|)

)
.
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Since ‖ f ‖L2(G)= 1, then B(2) = 1 and B′(2) = B′(2)
B(2)

. Also, since ‖ f ‖L2(G)= 1, then∑
|f(a)|2 = |G|. Therefore,

B′(2) =
log(|G|)

4
− 1

4
log

(∑
a∈G

|f(a)|2
)

+
1

2

(
1∑

a∈G |f(a|2
∑
a∈G

(
|f(a)|2 log(|f(a)|)

))

=
log(|G|)

4
− 1

4
log(|G|) +

1

2

(
1

|G|
∑
a∈G

(
|f(a)|2 log(|f(a)|)

))

=
1

2|G|
∑
a∈G

|f(a)|2 log(|f(a)|).

Similarly,

log(C(p)) =
p− 1

p
log

∑
ξ∈Ĝ

|f̂(ξ)|p/(p−1)


Note:
Consider y = ap/(p−1). Then log(y) = p

p−1
log(a). Then 1

y
dy = log(a) ∗ p−1−p

(p−1)2
dp =

−1
(p−1)2

log(a)dp. This then implies that dy
dp

= −y
(p−1)2

log(a) = −ap/(p−1) log(a)
(p−1)2

.
Also,

C ′(p)

C(p)
=

d

dp
log(C(p))

=
1

p2
log

∑
ξ∈Ĝ

|f̂(ξ)|p/(p−1)

+

(
p− 1

p

)
d

dp
log

∑
ξ∈Ĝ

|f̂(ξ)|p/(p−1)


=

1

p2
log

∑
ξ∈Ĝ

|f̂(ξ)|p/(p−1)

+
p− 1

p

1∑
ξ∈Ĝ| |f̂(ξ)|p/(p−1)

−
∑

ξ∈Ĝ |f̂(ξ)|p/(p−1) log(|f̂(ξ)|)
(p− 1)2

=
1

p2
log

∑
ξ∈Ĝ

|f̂(ξ)|p/(p−1)

− 1

p(p− 1)

∑
ξ∈Ĝ |f̂(ξ)|p/(p−1) log(|f̂(ξ)|)∑

ξ∈Ĝ |f̂(ξ)|p/(p−1)
.

We know that ‖ f ‖L2(G)= 1, so by Plancherel's Identity, ‖ f ‖L2(G)=‖ f̂ ‖L2(Ĝ)= 1. By

de�nition, C(2) = 1. So C′(2)
C(2)

= C ′(2).

C ′(2) =
1

4
log

∑
ξ∈Ĝ

|f̂(ξ)|2
− 1

2

∑
ξ∈Ĝ |f̂(ξ)|2 log(|f̂(ξ)|)∑

ξ∈Ĝ |f̂(ξ)|2

Since
√∑

ξ∈Ĝ |f̂(ξ)|2 = 1, then
∑

ξ∈Ĝ |f̂(ξ)|2 = 1. Thus,

C ′(2) =
1

4
log(1)− 1

2

∑
ξ∈Ĝ

|f̂(ξ)|2 log(|f̂(ξ)|

=
−1

2

∑
ξ∈Ĝ

|f̂(ξ)|2 log(|f̂(ξ)|.
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So by de�nition, A′(2) = B′(2)−C ′(2). By Plancherel's Identity, A(2) = 0. Since A(p) ≥ 0
for 1 ≤ p ≤ 2 and A(2) = 0, then A′(2) ≤ 0. Thus,

1

2|G|
∑
a∈G

|f(a)|2 log |f(a)|+ 1

2

∑
ξ∈Ĝ

|f̂(ξ)|2 log |f̂(ξ)| ≤ 0.

One might wonder why the above inequality is called the entropy uncertainty principle.
By de�nition [2], the entropy of |f |2 is

h(|f |2) := − 1

|G|
∑
x∈G

|f(x)|2 log |f(x)|2.

Similarly, the entropy of |f̂ |2 is de�ned as

h(|f̂ |2) := −
∑
ξ∈Ĝ

|f̂(ξ)|2 log |f̂(ξ)|2.

With this notation, the discrete entropy uncertainty principle reads h(|f |2)+h(|f̂ |2) ≥ 0.

5.2 Shannon Entropy Inequality

The reader might wonder if there is an analog to the entropy uncertainty principle in classical
Fourier analysis. There is, in fact, an analog, called the Shannon Entropy Inequality.

De�nition 71. The de�nition of entropy for functions in S(R) is similar to that for functions
in G.

H(|f |2) = −
ˆ ∞
−∞
|f(x)|2 log |f(x)|2dx

Theorem 72. (Shannon Entropy Bound) [9]: For f ∈ S(R) and g = f̂ , then

H(|f |2) +H(|g|2) ≥ log
e

2
.

In 1957, Isidore Hirschman proved that H(|f |2) + H(|g|2) ≥ 0, yielding a very similar
result to our discrete entropy uncertainty principle. In 1975, William Beckner proved the
above tighter bound, and that equality holds when f and g are Gaussians. This result is
very similar to the Heisenberg Uncertainty Principle, which also attains equality in the case
that the functions are Gaussians.
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5.3 Proofs of Lemmas

We will now provide the proofs of the lemmas we needed to obtain the entropy uncertainty
principle.
Young's Inequality (Lemma 68): Let a, b > 0 and p, q ∈ [1,∞] with 1

p
+ 1

q
= 1. Then

ab ≤ ap

p
+ bq

q
.

Proof. [7]: Consider the function f : (0,∞) → R, where f(x) = ln(x). We know that
f ′′(x) = −1

x2
. Since f ′′(x) > 0 ∀x ∈ R, we know that f(x) is concave. By de�nition [8], this

implies that ln((1− λ)x+ λy) ≥ (1− λ) ln(x) + λ ln(y) for λ ∈ [0, 1] and x, y ∈ (0,∞).
Let t = 1

p
. Since p ∈ [1,∞], t ∈ [0, 1]. Note that 1

q
= 1− t.

Consider

ln(
ap

p
+
bq

q
) = ln(tap + (1− t)bq)

≥ t ln(ap) + (1− t) ln(bq)

= tp ln(a) + (1− t)q ln(b)

= ln(a) + ln(b)

= ln(ab)

If we take each side of the inequality as powers of e, we conclude that ab ≤ ap

p
+ bq

q
.

Hölder's Inequality (Lemma 69): Let 1
p

+ 1
q

= 1, p, q ≥ 1, with f ∈ Lp(G) and

g ∈ Lq(G). Then
‖ fg ‖L1(G)≤‖ f ‖Lp(G)‖ g ‖Lq(G) .

Proof. By Lemma 68, we know that, for all a ∈ G,

|f(a)g(a)| ≤ |f(a)|p

p
+
|g(a)|q

q

This implies

1

|G|
∑
a∈G

|f(a)g(a)| ≤ 1

|G|
∑
a∈G

|f(a)|p

p
+

1

|G|
∑
a∈G

|g(a)|q

q

=
1

p|G|
∑
a∈G

|f(a)|p +
1

|G|q
∑
a∈G

|g(a)|q

Taking the natural logarithm of both sides yields

ln

(
1

|G|
∑
a∈G

|f(a)g(a)|

)
≤ ln

(
1

|G|p
∑
a∈G

|f(a)|p +
1

q|G|
∑
a∈G

|g(a)|q
)
.
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By the concavity of the logarithm, we get

ln

(
1

|G|
∑
a∈G

|f(a)g(a)|

)
≤ 1

p
ln

(
1

|G|
∑
a∈G

|f(a)|p
)

+
1

q
ln

(
1

|G|
∑
a∈G

|g(a)|q
)

= ln

(
1

|G|
∑
a∈G

|f(a)|p
)1/p

+ ln

(
1

|G|
∑
a∈G

|g(a)|q
)1/q

= ln
(
‖ f ‖Lp(G)

)
+ ln

(
‖ g ‖Lq(G)

)
= ln

(
‖ f ‖Lp(G)‖ g ‖Lq(G)

)
By making both sides of the inequality powers of e, we get

‖ fg ‖L1(G)≤‖ f ‖Lp(G)‖ g ‖Lq(G) .

Next we present a non-traditional proof of the Hausdor�-Young Inequality based on Tao's
�tensor-power trick� instead of on the more traditional Marcinkiewicz Interpolation Theorem.
We �rst need to de�ne tensor powers and prove a lemma relating the tensor powers and their
Fourier transforms.

De�nition 73. Let f : G → C. Let us de�ne the M th tensor power of f, denoted f⊗M ,
as f⊗M : GM → C, with f⊗M(a1, a2, . . . , aM) = f(a1)f(a2) · · · f(aM).

We not that ĜM =
(
Ĝ
)M

. So, for ξ ∈ ĜM and a ∈ GM , we de�ne ξ(a) := ξ1(a1)ξ2(a2) · · · ξM(aM)

where a = (a1, a2, . . . , aM).

Lemma 74. The tensor power of the Fourier transform of f is equal to the Fourier transform
of the tensor power of f.

Proof. Consider the Fourier transform of f⊗M . By the de�nition of the Fourier transform,

for every ξ ∈ ĜM ,

f̂⊗M(ξ) =
1

|G|M
∑
a∈GM

f⊗M(a)ξ(a)

=
1

|G|M
∑
a1∈G

∑
a2∈G

· · ·
∑
aM∈G

f(a1)f(a2) · · · f(aM)ξ1(a1)ξ2(a2) · · · ξM(aM)

=

(
1

|G|
∑
a1∈G

f(a1)ξ1(a1)

)(
1

|G|
∑
a2∈G

f(a2)ξ2(a2)

)
· · ·

(
1

|G|
∑
aM∈G

f(aM)ξM(aM)

)
= f̂(ξ1)f̂(ξ2) · · · f̂(ξM)
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Hausdor�-Young Inequality(Lemma 70): Let 1
p

+ 1
q

= 1, with 1 ≤ p ≤ 2, and

f ∈ Lp(G) and ‖ f ‖Lp(G)= 1. Then

‖ f ‖Lp(G)≥‖ f̂ ‖Lq(Ĝ) .

Proof. [17]: Note that, by the de�nition of the Fourier transform and the triangle inequality,

|f̂(ξ)| = | 1

|G|
∑
a∈G

f(a)ξ(a)| ≤ 1

|G|
∑
a∈G

|f(a)ξ(a)| = 1

|G|
∑
a∈G

|f(a)| =‖ f ‖L1(G)

for all ξ ∈ Ĝ. Since ‖ f̂ ‖L∞(Ĝ)= supξ∈Ĝ |f̂(ξ)|, so ‖ f̂ ‖L∞(Ĝ)≤‖ f ‖L1(G) .
Also, from Plancherel's Identity, , we know∑

ξ∈Ĝ

|f̂(ξ)|2
 1

2

=

(
1

|G|
∑
a∈G

|f(a)|2
) 1

2

.

Let us assume that f is supported on some subset A ⊂ G and that for a ∈ A = suppf,
2m ≤ |f(a)| ≤ 2m+1 for some m ∈ Z.

Consider the inequality

sup
ξ∈Ĝ
|f̂(ξ)| ≤ 1

|G|
∑
a∈G

|f(a)|

≤ 1

|G|
∑
a∈A

2m+1

=
|A|
|G|

2m+1

This implies

sup
ξ∈Ĝ
|f̂(ξ)| ≤ |A|

|G|
2m+1 (5.3.1)

From Plancherel's identity, we know∑
ξ∈Ĝ

|f̂(ξ)|2
 1

2

=

(
1

|G|
∑
a∈G

|f(a)|2
) 1

2

≤

(
1

|G|
∑
a∈A

(2m+1)2

) 1
2

=

(
|A|
|G|

(2m+1)2

) 1
2

=

(
|A|
|G|

) 1
2

2m+1



CHAPTER 5. THE ENTROPY UNCERTAINTY PRINCIPLE 41

Thus, ∑
ξ∈Ĝ

|f̂(ξ)|2
 1

2

≤
(
|A|
|G|

) 1
2

2m+1 (5.3.2)

Since 1 ≤ p ≤ 2, we know that q ≥ 2, and so q − 2 ≥ 0. Now consider∑
ξ∈Ĝ

|f̂(ξ)|q
 1

q

=

∑
ξ∈Ĝ

|f̂(ξ)|2|f̂(ξ)|q−2

 1
q

Using equation 5.3.1, we can say∑
ξ∈Ĝ

|f̂(ξ)|q
 1

q

≤

∑
ξ∈Ĝ

|f̂(ξ)|2
(
|A|
|G|

2m+1

)q−2
 1

q

=

( |A|
|G|

2m+1

)q−2∑
ξ∈Ĝ

|f̂(ξ)|2
 1

q

=

(
|A|
|G|

2m+1

) q−2
q


∑
ξ∈Ĝ

|f̂(ξ)|2
 1

2


2
q

Using equation 5.3.2, we know∑
ξ∈Ĝ

|f̂(ξ)|q
 1

q

≤
(
|A|
|G|

2m+1

)1− 2
q

((
|A|
|G|

) 1
2

2m+1

) 2
q

=

(
|A|
|G|

)1− 1
q
− 1
q
(
|A|
|G|

) 1
q (

2m+1
)1− 2

q
(
2m+1

) 2
q

=

(
|A|
|G|

)1− 1
q (

2m+1
)

=

(
|A|
|G|

) 1
p

2m+1

Since we are assuming that 2m ≤ |f(a)| ≤ 2m+1, we know(
|A|
|G|

) 1
p

2m+1 = 2

(
|A|
|G|

) 1
p

2m

≤ 2

(
1

|G|
∑
a∈G

|f(a)|p
) 1

p



CHAPTER 5. THE ENTROPY UNCERTAINTY PRINCIPLE 42

We then get that
‖ f̂ ‖Lq(Ĝ)≤ 2 ‖ f ‖Lp(G) (5.3.3)

For the above inequalities, we have assumed that 2m ≤ |f(a)| < 2m+1 for all a in suppf.
Even though there are an in�nite number of dyadic intervals, if we normalize the Lp norm

so that (
∑

a∈G |f(a)|p)
1
p = 1, we need only consider the intervals between |G|−100 and |G|100.

Here's why:
Suppose there exists an x ∈ G such that |f(x)| ≥ |G|100. Even if for all other a ∈ G,

|f(a)| = 0, ‖ f ‖Lp(G)≥
(

1
|G|(|G|

100)p
) 1
p
. This implies that ‖ f ‖Lp(G)≥ (|G|100p−1)

1
p = |G|100

|G|
1
p
.

Unless |G| = 1, this implies that ‖ f ‖Lp(G)> 1, which is a contradiction. We still need an
argument as to why we can assume |G|−100 ≤ |f(x)| for all x ∈ G. However, we will just
accept this as fact for now.

Let A = suppf. If a ∈ A, then, from the above argument, we know that |G|−100 ≤
|f(a)| ≤ |G|100 for all a ∈ A. But |G|−100 = 2−100 log2 |G| and |G|100 = 2100 log2 |G|. This yields
the new inequality

2−100 log2 |G| ≤ |f(a)| ≤ 2100 log2 |G| (5.3.4)

By the Archimedian Principle, we know that there exists some k, l ∈ Z such that k ≤
−100 log2 |G| < k + 1 and l ≤ 100 log2 |G| < l + 1. We can then rewrite equation 5.3.4 as
2k ≤ |f(a)| < 2l+1 for all a ∈ A. It is obvious that k < l + 1, so subtracting k from l + 1
should give us a positive number. Furthermore, l − k ≈ 200 log2 |G|. This is the number of
dyadic intervals that our function can take values in.

For k ≤ m ≤ l, let us de�ne Am = {a ∈ A|2m ≤ |f(a)| < 2m+1}. Notice that A =⋃l
m=k Am and that all Ams are disjoint. Let us also de�ne fm = fχAm . Then, since the

Ams are disjoint, f =
∑l

m=k fm. But since the Fourier transform is linear, we also get that

f̂ =
∑l

m=k f̂m. From equation 5.3.3, we know that ‖ f̂m ‖Lq(Ĝ)≤ 2 ‖ fm ‖Lp(G) for all m.
Thus,

‖ f̂ ‖Lq(Ĝ)=‖
l∑

m=k

f̂m ‖Lq(Ĝ)

By the triangle inequality, we get that

‖ f̂ ‖Lq(Ĝ) ≤
l∑

m=k

‖ f̂m ‖Lq(Ĝ)

≤
l∑

m=k

2 ‖ fm ‖Lp(G)

≤ 2(l + 1− k) ‖ f ‖Lp(G)

= 2(1 + 200 log2 |G|) ‖ f ‖Lp(G)

≤ 400(1 + log2 |G|) ‖ f ‖Lp(G)

So, for all �nite abelian groups G and for all f ∈ L2(G), we have ‖ f̂ ‖Lq(Ĝ)≤ 400(1 +

log2 |G|) ‖ f ‖Lp(G) . In particular, this is true for the group GM , where |GM | = |G|M , and
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for the function F ∈ L2(GM) where F = f⊗M . Plugging these values into the inequality, we
get

‖ (f⊗M )̂ ‖
Lq(ĜM )

≤ 400(1 + log2 |GM |) ‖ f⊗M ‖Lp(GM )

Using the tensor power trick, we get

‖ f̂ ‖M
Lq(Ĝ)
≤ 400(1 +M log2 |G|) ‖ f ‖MLp(G)

Now taking the M th root,

‖ f̂ ‖Lq(Ĝ)≤
M
√

400(1 +M log2 |G| ‖ f ‖Lp(G)

Finally, taking the limit as M goes to in�nity yields

‖ f̂ ‖Lq(Ĝ)≤‖ f ‖Lp(G)



Chapter 6

Tao's Re�nement

6.1 Tao's Re�nement

Terence Tao has proved a re�nement to Theorem 56. We will prove his result, but we will
need a number of preliminary lemmas to do so. Again, we will �rst state these lemmas and
then provide proofs for them in a later section. Notice that this re�nement applies to cyclic
groups.

Theorem 75. (Tao's Re�nement): Let p be a prime number. If f : Z/pZ→ C is a nonzero
function, then

|suppf |+ |suppf̂ | ≥ p+ 1.

Conversely, if A and B are two non-empty subsets of Z/pZ such that |A|+ |B| ≥ p+ 1,

then there exists a function f such that suppf = A and suppf̂ = B.

6.1.1 Why is this a Re�nement?

Before we provide the lemmas and proofs, let us �rst examine why this result is an improve-
ment of the uncertainty principle. To do this, we will show that, from Tao's re�nement, we
can recover our original uncertainty principle.

Lemma 76. If a+ b ≥ p+ 1 for a, b, p positive integers, then a× b ≥ p.

Proof. We know that a + b ≥ p + 1. We will obtain our result by contradiction, so let us
assume that ab < p. Let us consider two cases: b = 1 and b > 1.

Case 1: Assume b = 1, then ab < p implies that a < p, but a + b ≥ p + 1 implies that
a = ab ≥ p. So we have a contradiction.

Case 2: Assume b > 1. Then ab < p implies that a < p
b
. But a + b ≥ p + 1 implies

that a ≥ p + 1− b. Combining the two inequalities, we get that p + 1− b < p
b
. Multiplying

through by b, we get bp + b − b2 < p. Subtracting bp from both sides and factoring, we get
that b(1− b) < p(1− b). Since b > 1, we know 1− b < 0, so our inequality reduces to b > p.
Since a is a positive integer, ab ≥ b, so we get that ab > p, which is a contradiction.

Thus, if a+b ≥ p+1, this implies that ab ≥ p. Tao's re�nement is indeed an improvement
on the uncertainty principle.

44
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6.1.2 Lemmas for the Re�nement

Lemma 77. [19]: Let p be a prime, let n be a positive integer, and let P (z1, z2, . . . , zn) be a
polynomial with integer coe�cients. If ω1, ω2, . . . , ωn are pth roots of unity, not necessarily
distinct, and P (ω1, ω2, . . . , ωn) = 0, then P (1, 1, . . . , 1) is a multiple of p.

Lemma 78. The nth derivative of the polynomial
∏

1≤i<j≤n(zj − zi) yields:

d(n−1)

dz
(n−1)
n

∏
1≤i<j≤n

(zj − zi) = (n− 1)!
∏

1≤i<j≤n−1

(zj − zi).

The following Lemma says that all minors of the Fourier matrix are invertible.

Lemma 79. Let p be a prime and let 1 ≤ n ≤ p. Let x1, x2, . . . , xn be distinct ele-
ments of Z/pZ and let y1, y2, . . . , yn also be distinct elements of Z/pZ. Then the matrix(
e2πixjyk/p

)
1≤j,k≤n has a non-zero determinant.

Corollary 80. If p is a prime, and A, Ã are non-empty subsets of Z/pZ such that |A| = |Ã|,
then the linear transformation T : l2(A)→ l2(Ã) de�ned by Tf = f̂ |Ã (the restriction of the
Fourier transform of f to Ã) is invertible. Here, l2(A) denotes the functions f : G → C
which are equal to zero outside of A.

6.1.3 Proof of the Re�nement

Tao's Re�nement (Theorem 75): Let p be a prime number. If f : Z/pZ→ C is a nonzero
function, then

|suppf |+ |suppf̂ | ≥ p+ 1.

Conversely, if A and B are two non-empty subsets of Z/pZ such that |A|+ |B| ≥ p+ 1,

then there exists a function f such that suppf = A and suppf̂ = B.

Proof. [16]: Let us prove the �rst statement by contradiction. Assume|suppf |+ |suppf̂ | ≤ p.

Let A := supp(f).We can then �nd a set Ã ⊆ Z/pZ such that Ã∩supp(f̂) = ∅ with |Ã| = |A|.
If Tf |A = f̂ |Ã, then by Corollary 80 we know that T is invertible. Since Ã is disjoint from

supp(f̂), we know f̂ |Ã = 0. Because T is invertible, this implies that f |A = 0. But f |A 6= 0

by de�nition, so this is a contradiction. Therefore, |suppf |+ |suppf̂ | ≥ p+ 1.
To prove the second statement, let us assume A and B are two non-empty subsets of

Z/pZ such that |A|+ |B| ≥ p+ 1. First, let us assume that |A|+ |B| = p+ 1. Let us pick a
subset Ã ∈ Z/pZ such that |Ã| = |A| = n and let the intersection of Ã and B contain just
one element, say ξ. Because the linear map T de�ned in Corollary 80 is invertible, we can
�nd a non-zero function f ∈ l2(A) such that f̂ is zero on Ã\{ξ} but f̂(ξ) 6= 0. But since
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Ã ∩ B = {ξ} and f̂ is zero on Ã\{ξ}, this implies that suppf̂ ⊆ B. Also, since f ∈ l2(A),

suppf ⊆ A. But by the �rst part of the theorem, suppf = A and suppf̂ = B.
When we consider the case where |A|+|B| > p+1, we can �nd subsets A′ and B′ of A and

B respectively, such that |A′| + |B′| = p + 1. We can then take generic linear combinations
as A′ and B′ vary. We will eventually conclude that for all A′ ⊆ A, if x ∈ A′ then x ∈ suppf
for some f ∈ l2(A). Similarly, for all B′ ⊆ B, if y ∈ B′ then y ∈ suppf̂ . Thus, A = suppf

and B = suppf̂ .

Remark. Note that if our group did not have prime order, then this result would not be
true. For example, consider the group Z6. If our function was the indicator function of the
subgroup H = {0, 2, 4}, then |suppf | = 3. From Lemma 63 and Lemma 64, we know that

|suppf̂ | = |G|
|H| = 2. Then |suppf | + |suppf̂ | = 5 < 7. We could also consider our repeating

example of the Klein 4-group. Obviously, |G| = 4, and we have a subgroup of order 2,

H = {e, a}. Then |suppf | = 2, and again by the two lemmas mentioned above, |suppf̂ | = 2.

So |suppf |+ |suppf̂ | = 4 < 5, so our re�nement cannot be applied to groups without prime
order.

6.2 Proofs of Lemmas

Here we prove the three lemmas we used to prove Tao's Re�nement of the uncertainty
principle.

Proof. (Proof of Lemma 77): Let p be a prime, let n be a positive integer, and let P (z1, z2, . . . , zn)
be a polynomial with integer coe�cients. Our goal is to show that if ω1, ω2, . . . , ωn are pth

roots of unity, not necessarily distinct, and P (ω1, ω2, . . . , ωn) = 0, then P (1, 1, . . . , 1) is a
multiple of p. Consider

P (z1, z2, . . . , zn) :=
∑

1≤i1,i2,...,in≤r

ai1i2···inz
i1
1 z

i2
2 · · · zinn ,

where ai1i2···in ∈ Z.
Then

P (zk1 , zk2 , . . . , zkn) =
∑

1≤i1,i2...,in≤r

ai1i2···inz
(k1i1+k2i2+···+knin).

Let us divide P (zk1 , zk2 , . . . , zkn) by zp−1. Then P (zk1 , zk2 , . . . , zkn) = Q(z)(zp−1)+R(z),
where deg(R(z)) ≤ p− 1. The Q(z) and R(z) depend on our choice of kis, so let use choose
the kis so that R(z) will be of the form R(z) =

∑p−1
i=0 αiz

i with αi ∈ Z.
Let ω = e2πi/p, and ωj(k) = ωkj . We know P (ω1, ω2, . . . , ωn) = 0, and ωp − 1 = 0. This

implies that R(ω) = 0. Consider f(x) = 1 + x + x2 + · · · + xp−1, then f(x) is irreducible
over Q ([10], pg.216, Corollary 23.17). But since ω is a root of f(x) and f(x) is irreducible,
f(x) = qR(x), q ∈ Q since irreducible polynomials for α over C are unique up to a constant
factor, ([10], pg. 269, Theorem 29.13). But since R(x) has integer coe�cients, and so does
f(x), this implies that the constant multiple k = 1

q
∈ Z, since 1

q
f(x) = R(x).
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Consider P (1, 1, . . . , 1) = P (1k1 , 1k2 , . . . , 1kn) = Q(1)(1p − 1) + R(1). Since 1p − 1 = 0,
this implies that P (1, 1, . . . , 1) = R(1). But R(1) = k(1 + 1 + 12 + · · · + 1p−1) = pk, some
k ∈ Z. Thus, P (1, 1, . . . , 1) = pk, and P (1, 1, . . . , 1) is a multiple of p.

Proof. (Proof of Lemma 78): Consider∏
1≤i<j≤n

(zj − zi) = (zn − zn−1)(zn − zn−2) · · · (zn − z1)
∏

1≤i<j≤n−1

(zj − zi).

Then we want to calculate its nth derivative:

d(n−1)

dz
(n−1)
n

∏
1≤i<j≤n

(zj − zi) =
d(n−1)

dz
(n−1)
n

(
(zn − zn−1)(zn − zn−2) · · · (zn − z1)

∏
1≤i<j≤n−1

(zj − zi)

)

Since
∏

1≤i<j≤n−1(zj − zi) does not depend on zn, we can pull it out front. Using the
product rule, we get

=
d(n−1)

dz
(n−1)
n

∏
1≤i<j≤n

(zj − zi)

=

( ∏
1≤i<j≤n−1

(zj − zi)

)
d(n−1)

dz
(n−2)
n

[(zn − zn−2)(zn − zn−3) · · · (zn − z1) + · · ·

· · ·+ (zn − zn−1)(zn − zn−2) · · · (zn − z2)]

Since we started with n − 1 linear terms multiplied together, we get n − 1 terms, each
with n − 2 linear terms once we apply the product rule. Since we are taking the (n − 1)th
derivative, we will eventually end up taking the �rst derivative of (n−1)! linear terms. Thus,

d

dzn

(n−1) ∏
1≤i<j≤n

(zj − zi) = (n− 1)!
∏

1≤i<j≤n−1

(zj − zi).

Proof. (Proof of Lemma 79) [16]: Let p be a prime and let 1 ≤ n ≤ p. Let x1, x2, . . . , xn be
distinct elements of Z/pZ and let y1, y2, . . . , yn also be distinct elements of Z/pZ. Our goal is
to show that the matrix

(
e2πixjyk/p

)
1≤j,k≤n has a non-zero determinant. De�ne ωj := e2πixj/p.

Each ωj is a distinct root of unity, and we need to show that

det(ωykj )1≤j,k≤n 6= 0,

where y1, y2, . . . , yn are also distinct elements of Zp.
Let us de�ne a polynomial D(z1, z2, . . . , zn) of n variables as

D(z1, z2, . . . , zn) := det(zykj )1≤j,k≤n.
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D(z1, z2, . . . , zn) is obviously a polynomial with integer coe�cients.
If zj = zj′ , we would have two identical rows of our matrix, so D(z1, z2, . . . , zn) = 0.

Thus, we can factorize D to get

D(z1, z2, . . . , zn) = P (z1, z2, . . . , zn)
∏

1≤j<j′≤n

(zj − zj′)

where P (z1, z2, . . . , zn) is some polynomial with n variables and integer coe�cients. Note

that there are

(
n
2

)
= n!

(n−2)!2!
= n(n−1)

2
linear factors in D in the product.

We will try to show that P (1, 1, . . . , 1) is not a multiple of p, which Lemma 77 will then tell
us that P (ω1, ω2, . . . , ωn) is non-zero. This will prove our claim, since

∏
1≤j<j′≤n(ωj−ωj′) 6= 0,

since ωjs are all distinct.
In order to compute P (1, 1, . . . , 1), we will di�erentiate D a number of times.
Consider the expression(

z1
d

dz1

)0(
z2

d

dz2

)1(
z3

d

dz3

)2

· · ·
(
zn

d

dzn

)n−1

D(z1, z2, . . . , zn) (6.2.1)

Now note that there are 0+1+2+ · · ·+(n−1) = n(n−1)
2

di�erentiation operators applied
to D, which is the same as the number of linear factors in D. Moreover, there are n − k
linear factors involving zn−k+1.

When we take the derivative of D, we will need to use the product rule n(n−1)
2

times. We
will end up adding numerous terms together, with each term having a combination of linear
factors multiplied by various derivatives of P (z1, z2, . . . , zn). The only term that will have no
linear factors will be P (z1, z2, . . . , zn), multiplied by z1z2 · · · zn and(

z1
d
dz1

)0 (
z2

d
dz2

)1 (
z2

d
dz3

)2

· · ·
(
zn

d
dzn

)n−1∏
1≤j<j′≤n(zj − zj′), which we can calculate us-

ing Lemma 78. This will be the only term that matters, since when we plug in 1 for all the
zi, that will be the only term that doesn't equal zero because all other terms will have at
least one linear factor. We can see this if we just consider taking the �rst few derivatives.
To begin with, let's compute zn

d
dzn

(
D(z1, z2, . . . , zn)

)
. Let's call P (z1, z2, . . . , zn) = f and∏

1≤j<j′≤n(zj − zj′) = g. Then D(z1, z2, . . . , zn) = fg, and

zn
d

dzn

(
D(z1, z2, . . . , zn)

)
= zn

(
f
dg

dzn
+ g

df

dzn

)
.

Now consider

zn
d

dzn

(
zn

d

dzn
(fg)

)
= zn

(
f
dg

dzn
+ zn

dg

dzn

df

dzn
+ znf

d2g

dz2
n

+ g
df

dzn
+ zn

dg

dzn

df

dzn
+ zng

d2f

dz2
n

)
If we continue until we take the nth derivative, we will end up with a term znnf

dng
dznn
. All of the

other terms will be of the form

zkn
djf

dzjn

dig

dzin

where 0 ≤ k ≤ n, 0 ≤ j ≤ n, and 0 ≤ i ≤ n−1.We can write dng
dznn

as (n−1)!
∏

1≤i<j≤n−1(zj−
zi) by Lemma 78. We can do the same process for zn−1, . . . , z1. We will eventually be left
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with a very large sum of terms that each contain something of the form dkg
dzj

where k < g,

except one term, which will be znnz
n−1
n−1 · · · z1f(n − 1)!(n − 2)! · · · 1. In the �rst type of term

mentioned, there will always be some sort of linear factor of the form (zi − zk). When we
plug in 1 for all of the zjs, these terms will all vanish. Thus,(
z1

d

dz1

)0(
z2

d

dz2

)1

· · ·
(
zn

d

dzn

)n−1

D(z1, z2, . . . , zn)|z1=···=zn=1 = (n− 1)! · · · 1!P (1, 1, . . . , 1).

Since n < p, (n− 1)!(n− 2)! · · · 1! is not divisible by the prime number p, we need only
show that the above formula is not a multiple of p to show that P (1, 1, . . . , 1) is not divisible
by p.

Let Sn denote the group of permutations on n objects. By the de�nition of the determinant[2],

D(z1, z2, . . . , zn) =
∑
σ∈Sn

sgn(σ)
n∏
j=1

z
yσ(j)
j

So we can write equation 6.2.1 as(
z1

d

dz1

)0(
z2

d

dz2

)1(
z2

d

dz3

)2

· · ·
(
zn

d

dzn

)n−1 ∑
σ∈Sn

sgn(σ)
n∏
j=1

z
yσ(j)
j

=
∑
σ∈Sn

sgn(σ)

(
z1

d

dz1

)0(
z2

d

dz2

)1(
z2

d

dz3

)2

· · ·
(
zn

d

dzn

)n−1 n∏
j=1

z
yσ(j)
j

∑
σ∈Sn

sgn(σ)

(
z1

d

dz1

)0(
z2

d

dz2

)1(
z2

d

dz3

)2

· · ·
(
zn−1

d

dzn−1

)n−2

yn−1
σ(n)

n∏
j=1

z
yσ(j)
j

=
∑
σ∈Sn

sgn(σ)

(
z1

d

dz1

)0(
z2

d

dz2

)1(
z2

d

dz3

)2

· · ·
(
zn−2

d

dzn−2

)n−3

yn−1
σ(n)yσ(n−1)n−2

n∏
j=1

z
yσ(j)
j

...

=
∑
σ∈Sn

sgn(σ)yn−1
σ(n)y

n−2
σ(n−1) · · · yσ(2)1

n∏
j=1

z
yσ(j)
j

Since we are concerned only when z1 = z2 = · · · = zn = 1,(
z1

d

dz1

)0(
z2

d

dz2

)1(
z2

d

dz3

)2

· · ·
(
zn

d

dzn

)n−1

D(1, 1, . . . , 1)

=
∑
σ∈Sn

sgn(σ)yn−1
σ(n)y

n−2
σ(n−1) · · · yσ(2)1

=
∑
σ∈Sn

sgn(σ)
n∏
j=1

yj−1
σ(j)

But this is the Vandermonde determinant, which we know to be
∏

1≤i<j≤n(yj−yi). Since
yi ∈ Z/pZ and all yi are distinct, we know that

∏
1≤i<j≤n(yj−yi) is not a multiple of p. Thus,

P (1, 1, . . . , 1) is not a multiple of p. By Lemma 77, this implies that P (ω1, ω2, . . . , ωn) 6= 0,
and furthermore that D(ω1, ω2, . . . , ωn) = det(

(
e2πixjyk/p

)
6= 0.



CHAPTER 6. TAO'S REFINEMENT 50

Proof. (Proof of Corollary 80): Let p be a prime, and let A, Ã be non-empty subsets of Zp
such that |A| = |Ã|. We want to prove that the linear transformation T : l2(A) → l2(Ã)

de�ned by Tf |A = f̂ |Ã. De�ne ω := e2πi/p. By the de�nition of the Fourier transform

equation 3.4.1, f̂(ã) =
∑

a∈G f(a)ωãa. Since f ∈ l2(A), we can rewrite the Fourier transform

as f̂(ã) =
∑

a∈A f(a)ωãa. Let |A| = n and let A = {a1, a2, . . . , an}. Similarly, let Ã =
{ã1, ã2, . . . , ãn}.Consider the column vector

f(a1)
f(a2)
...

f(an)

 (6.2.2)

We must apply a linear transformation, T, to equation 6.2.2 to get
f̂(ã1)

f̂(ã2)
...

f̂(ãn)

 .

By the de�nition of the Fourier transform,

T =


ωã1a1 ωã1a2 · · · ωã1an

ωã2a1 ωã2a2 · · · ωã2an
...

...
. . .

...
ωãna1 ωãna2 · · · ωãnan


But we know from Lemma 79 that det(T) is non-zero, and so T is invertible.
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Applications

After developing this new version of Fourier analysis, one might wonder, why have we done
this? It turns out there are many applications of Fourier analysis on groups, two of which
we will discuss in this section. First is a theoretical application of Tao's re�nement of
the uncertainty principle to the distribution of primes, and the second is a more practical
application to the �eld of compressed sensing.

7.1 Arithmetic Progression of Primes

Tao's re�nement has been used to prove a very impressive theorem by Tao and Ben Green, the
Green-Tao Theorem. This result, along with other works, earned Terence Tao the prestigious
Fields Medal in 2006.

Theorem 81. (The Green-Tao Theorem): The prime numbers contain in�nitely many arith-
metic progressions of length k for all k.[11]

Remark. The proof of this groundbreaking theorem is far beyond the scope of this text.
However, it is mentioned because the ideas developed in Tao's re�nement play a role in
proving the above result.

We can see a simple example, where k = 5 : 5, 11, 17, 23, 29. This is only the �rst of an
in�nite list of arithmetic progressions of length 5 of prime numbers.

The longest known arithmetic progression is of length 26 and starts with the number
43142746595714191 with a di�erence of 5283234035979900. This was discovered in 2010 by
Perichon [15].

7.2 Compressed Sensing

While we have created a comprehensive theory for Fourier analysis of groups, one might
wonder if there is any practical application to such notions. In fact, compressed sensing,
a very popular area of interest and research, relies heavily on the concepts we have just
developed. Compressed sensing has applications to medical imaging and image compression.
The military would like to implement this technique, using small, inexpensive cameras to
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record small amounts of data that can later be reconstructed using compressed sensing to
give a comprehensive view [5].

Lemma 82. [16]: Let N be a prime number and T,Ω be subsets of ZN . Let l2(T ) and l2(Ω)
be the spaces of signals that are zero outside of T and Ω respectively. The restricted Fourier
transform FT→Ω : l2(T )→ l2(Ω) is de�ned as

FT→Ωf := f̂ |Ω for all f ∈ l2(T )

If |T | = |Ω|, then FT→Ω is a bijection. If |T | ≤ |Ω|, FT→Ω is an injection, and if |T | ≥ |Ω|,
then FT→Ω is a surjection.

Proof. In Corollary 80, we proved that if |T | = |Ω|, then the linear transformation A :

l2(T )→ l2(Ω) de�ned as Af = f̂ |Ω is invertible. This implies that, if |T | = |Ω|, then FT→Ω

is a bijection. Therefore, if |T | ≤ |Ω|, then FT→Ω is an injection. Similarly, if |T | ≥ |Ω|, then
FT→Ω is a surjection. The theorem holds if the Fourier transform is replaced by the inverse
Fourier transform.

Theorem 83. Let f : ZN → C, with N being a prime number. Let Ω be a subset of
{0, 1, 2, . . . , N − 1} and f be a vector supported on T such that |T | ≤ 1

2
|Ω|. Then f can

be constructed uniquely from Ω and f̂ |Ω. Conversely, if Ω is not the set of all N frequencies,

then there exist distinct vectors f, g such that |supp(f)|, |supp(g)| ≤ 1
2
|Ω|+ 1 and f̂ |Ω = ĝ|Ω.

Proof. [3]: Let us start with the �rst claim of the theorem. Assume that f is a vector
supported on T such that |T | ≤ 1

2
|Ω|. Since |T | ≤ |Ω|, we know from Lemma 82 that FT→Ω is

injective. By the de�nition of injective, each element of f̂ |Ω in the range of FT→Ω is the image
of a unique element f ∈ l2(T ). Equivalently, if FT→Ωf1 = FT→Ωf2 then f1 = f2. Therefore,
we can reconstruct f . To prove uniqueness, assume there exists f, g ∈ l2(T ) such that

|supp(f)|, |supp(g)| ≤ 1
2
|Ω| and f̂ |Ω = ĝ|Ω. Consider the function f − g. Since f̂ − g = f̂ − ĝ,

we know that the Fourier transform of f − g vanishes on Ω. Also, |supp(f − g)| ≤ |Ω|. Again
by Lemma 82, we know that Fsupp(f−g)→Ω is injective. But since f̂ − g|Ω = 0, this implies
that f − g = 0. Thus, f = g.

Now, consider the second statement of the theorem. Assume that |Ω| < N. We can �nd
disjoint subsets S, T such that |S|, |T | ≤ 1

2
|Ω| + 1 and |T | + |S| = |Ω| + 1. Let a0 be a

frequency which is not in Ω. By Lemma 82, we know that FT∪S→Ω∪{a0} is a bijection. This
implies that we can �nd a vector h that's supported on T ∪ S that vanishes on Ω but is
non-zero at a0. Thus, h is non-zero. If we then de�ne f := h|T and g := h|S, we have that
f̂ |Ω = ĝ|Ω and |supp(f)|, |supp(g)| ≤ 1

2
|Ω|.

While there is much, much more involved in the quickly-developing �eld of compressed
sensing, the above theorems show how closely compressed sensing is related to Tao's re�ne-
ment.
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