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Chapter 1

Introduction

Most people are familiar with the Heisenberg Uncertainty Principle, which states that it is
impossible to know for certain both a particle’s momentum and its position. This uncertainty
principle is actually just the most well-known of numerous uncertainty principles, including
an uncertainty principle for supports of functions on groups.

The proof of the Heisenberg Uncertainty Principle involves Fourier analysis on the real
number line, or classical Fourier analysis as we will refer to it. We will first review basic
concepts from classical Fourier theory before we develop analogs to those same principles for
Fourier analysis on finite abelian groups. When developing a Fourier theory on groups, we
will begin with the very basics: first, we will develop analogs to integration and an inner-
product vector space of functions from our group into the complex numbers. After that, we
will develop a dual group, which will contain elements that play the same role as trigono-
metric functions do in classical Fourier analysis. We will then define the Fourier transform
of elements in our dual group. From there, we will be free to find analogs to classical results
in traditional Fourier theory such as Plancherel’s identity, the Fourier inversion formula, and
a partial time-frequency dictionary.

After we have developed a thorough theory for Fourier analysis on our groups, we will
them provide proofs for both the classical and group versions of the uncertainty principles.
The discrete uncertainty principle states |suppf||suppf| > |G|, where suppf denotes the
set of elements in our group for which our function is nonzero. We will also prove that
the only functions that make those inequalities sharp are the Gaussians in R and transla-
tions, modulations, or scalar multiples of indicator or characteristic functions of subgroups
in groups.

We will then take a small detour from the uncertainty principle to prove another in-
equality, the entropy uncertainty principle. This inequality can actually be used to prove
the uncertainty principle for groups, although that result is beyond the scope of this paper.
As with most of the ideas presented in this paper, we will look at the analog to the group
version of the entropy uncertainty principle, the Shannon Entropy Inequality over the real
line.

After that, we will return to the idea of the uncertainty principle and prove a refinement
of the group version by Terence Tao. This refinement applies to cyclic groups of prime order.
Tao’s refinement states [suppf|+ |suppf| > p, where p is the order of our group, which must
be a prime number for this refinement.
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Finally, we will look briefly at a couple of the applications of the idea of Fourier analysis
on groups. The first application is the Green-Tao theorem, which says that for any positive
integer k, there exists an arithmetic progression of primes of length k. This result, along
with other work, earned Terence Tao the Fields Medal in 2006. While proving the Green-
Tao theorem is far beyond the scope of this text, we mention it as an application to Tao’s
refinement because the refinement is used in the proof of the theorem.

The second application is the idea of compressed sensing, which allows comprehensive
images to be constructed from limited data. Compressed sensing is a very popular area of
research today, and its applications are wide-spread. The methods of compressed sensing are
used in medical imaging and image compression, and the United States military has even
used it. Again, going into detail of compressed sensing is beyond this text, but we will prove
a theorem that gives us certain conditions where we can reconstruct a function from partial
frequency information.

To begin, we will review classical Fourier analysis on the real line.



Chapter 2

Fourier Analysis on R

Before we begin to develop our Fourier theory on finite abelian groups, let us first review
some main ideas from classical Fourier analysis. These ideas and theorems will also play
a role when we prove the Heisenberg Uncertainty Principle later on in this paper. The
following definitions and theorems can be found in most Fourier analysis books.

2.1 The Schwartz Class

In order to develop the idea of Fourier analysis, we must first have a space of functions to
work in. The space we will work in is called the Schwartz class, which is an inner-product
vector space.

Definition 1. The Schwartz class S(R) is the collection of infinitely differentiable functions
f : R — C that decrease faster than any polynomial increases, as do all of their derivatives.
That is, for all non-negative integers k£ and [,

lim |2*| ()| =0

|z|—o00
Lemma 2. The Schwartz class is a vector space.

Proof. To be a vector space, S(R) must be closed, be associative under addition and scalar
multiplication, be commutative under addition, have an additive identity as well as additive
inverses for every element, have a scalar multiplicative identity, and have a distributive law.

Since we are dealing with functions in C, we know that addition of functions is commu-
tative and associative, and the scalar multiplication is associative. We also know that for all
c1,co € Cand functions f,g : R — C, c1(f+9) = c1f +cag and (c1+¢c2)f = c1 f +caf. So we
need only check that S(R) is closed under addition and scalar multiplication, has an identity
element, and has an inverse for each element. Let f, g € S(R), then let h(z) = f(z) + g(x).
The n* derivative h™ (z) = £ (2) +¢™(z). Then by limit laws and the triangle inequality,
0 < limp o0 |2[F|AO (2)] < limyg)soo [2]F O (2)] + limyy)—oo [2]F[g®(x)] = 04 0 = 0. Thus,
lim| 400 |2[¥|AD(2)| = 0, so the Schwartz class is closed under addition.

If ¢ € C, then |cf(z)| = |c||f(z)| and any n*"derivative of cf(x) will be equal to c¢x f™(z).
Again using limit laws, limy,| o0 [2[*efO ()| = ¢ x limp 500 [2]¥] fO(2)] = |¢| X 0 = 0, s0 the
Schwartz class is closed under scalar multiplication as well.

6
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Let b : R — C be defined as b(z) := 0 for all z € R. This function is in S(R) since
lim o0 [2]F[0@ (2)| = limpy 00 [2[¥ X 0 = 0. Then for all f € S(R), f(z)+b(z) = f(z)+0 =
f(z) for all € R. Thus, b(x) is the zero element of S(R). The scalar 1 is the multiplicative
identity since 1 x f(z) = f(z) for all f in S(R) and z in R.

For every g € S(R), consider the function —g, where —g(z) = (—1) X g(x) Vo € R. Then
g(x) + (—g(z)) = 0 for all g € S(R), so each element has an additive inverse. We can thus
conclude that S(R) is indeed a vector space. O

Lemma 3. The Schwartz class has an inner product. For all f,g € S(R),

:Afwﬂﬁm (2.1.1)

Proof. First, it is clear that, because f, g are in S(R), that the inner product as defined in
equation 2.1.1 is convergent. To prove that equation 2.1.1 defines an inner product, we must
show four things for all f,g,h € S(R) and ¢ € R: 1)(f, g) = (g, f), 2)(f, f) > 0 with equality
mwwmnf:03wﬁm—’ﬁg>%d®ﬁ+%> <ﬁ> (g, h).

To start with, [, f(z)g(z)dz = [, f( da: = [, 9(x)f(x)dz. So (g, f) = ([, g).

Second, we can see that (f, [y = fR f(x)dz = [, |f )|2dz. Hence |f(z)|*> > 0 for
all z in R, so fR |f(z)|?dz > 0. Since f is an element of the Schwartz class, we know that
f is continuous. If f is not identically equal to zero, there must exist an zy in R such that
f(zo) # 0. By the definition of continuity, there exists a § > 0 so that, for all |z —zo| <, f
is bounded away from zero, thus |f(z)| > |f( )l We can now write

zo+0
/|f(x)|2dx2/ ! ]f(x)\deZMX25>O.
R z9—0

Thus, if f is not identically equal to zero, then (f, f) # 0. Also, we know that [, Odz = 0,
SO We can now say that (f, f} = 0 if and only if f is identically equal to zero.

Third, (cf, g) fR cf(z)g(z)dx = ch (x)dx = c(f, g).

Finally, (f + g, h) fR x)+ g(x))h(zx dm = o f( h(z)dz + Jz9(x) h(z)dz = (f, h) +
(9. h).

Thus, equation 2.1.1 defines an inner product on S(R). ]

Definition 4. The induced norm of S(R) is defined as:

| £ ll= / 1 (2)[2da (21.2)

Remark. The 2 subscript of the induced norm of S(R) refers to the fact that this induced
norm coincides with the norm in L?(R), which is the space of square-integrable functions.
L?(R) is a complete inner-product vector space, also known as a Hilbert space. The inner-
product is defined as in equation 2.1.1, where the integral is the Lebesgue integral, which is
beyond the scope of this thesis.

All inner-product vector spaces, including S(R) with the L? — norm, obey the Cauchy-
Schwarz inequality.
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Lemma 5. (Cauchy-Schwarz Inequality): For f,g € L*(R),

g 1N Izl g ]2 -

Lemma 6. The Schwartz class is closed under multiplication.

Proof. Let f and g be functions in S(R).
Consider the function h : R — C such that h(x) = f(x)g(z) for all z in R. We can then
write the (" derivative of h(z) as

hD(z) = i

0

(1)1 2.1

Then, using the limit laws and the triangle inequality,

l

i 0@ < tim Sl () )7 o)

m=

- 3 [ ) (1) o)

m=0

Since f,g € S(R), limp o0 [2[¥ f™(2)] = 0 for all k,m > 0, k,m € Z. Similarly,
limy) 00 9™ (2)| = 0 for all n > 0, n € Z. Thus, limp, | |z|*|hO(z)] = 0, so h € S(R).
Thus, the Schwartz class is closed under multiplication. O

Lemma 7. The Schwartz class is closed under multiplication by trigonometric functions.

Proof. Let a function f € S(R), and let h(z) := €™ f(z) Vo € R. The [** derivative of h(x)
will be given by equation 2.1.3, with ¢g/=™(z) = (27i)""™e?™®. So by limit laws and the
triangle inequality,

MN

lim \x!k|h(l)(x)| <

|z|—00

(1 Jafr@)) (1)t ((2may-mpernie
( ) () |

_< lim \x|k|f(m)(x)|> <l> lim (27T)lm:|

b (2]

Thus, h(xz) € S(R), so the Schwartz class is closed under multiplication by trigonometric
functions. O

3
]
o

MN

3
]
o

Il
MN

I
o3
I
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2.2 The Fourier Transform

We will now go over a few basic definitions and theorems from classical Fourier analysis that
we will later find analogs to in the group setting.

Definition 8. The Fourier transform f: R — C of a Schwartz function for £ € R is
defined by

Fie) = [ flae=eea

The Riemann-Lebesgue Lemma tells us that lim¢_,o f(g) = 0, so using that and Lemma
7, we know that the Fourier transform of a Schwartz function is also a Schwartz function.

The next few lemmas are part of the time-frequency dictionary, which relates the con-
volution, translation, derivative, and many other operations of functions and their Fourier
transforms.

Lemma 9. For f € S(R), f/(¢) = 2mil f(€).

Proof. Consider the Fourier transform of the derivative of f, f/(£) = Jo f(x)e 2™ dy.
We will use integration by parts, letting u = ¢ 2% and dv = f/(x)dr. We know that

du = —2mife ?™%%dy and v = f(x). Using the integration by parts formula, f/(£) =
f(x)em2mr|e — [ —2mife > f(x)dx. Since f € S(R), f(x)e ?™*|> = 0. Thus, f'(£) =
[ 2mige2m8 f () dx = 2mi (). 0

Definition 10. The convolution of two functions, f and g, is defined as

fgla) = / £z - y)9(y)dy

—

Lemma 11. For f,g € S(R), f*g(&) = f(£)g(&).

Proof. By definition of the Fourier transform and convolution, m(f) = [o(Jp flz —
Y)g(y)dy)e " dx. Let u = v — vy, so du = dx and z = u + y. Then after interchanging
the order of integration, we get the desired result:

Frg(e) = / ( / Fu)g(y)dy)e <) gy = / F(u)e 2y / o(y)e=2m vy
F(©3(9).
]

Definition 12. The translation of a function f by a scalar h is defined as 7, f (x) := f(x—h).

Definition 13. The modulation of a function f by a scalar h is defined as M, f(z) :=
e27r7jh:cf<x>.
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Lemma 14. For f € S(R), J\?h\f(é) = 1, f(E).

Proof. Consider the function M, f(¢) = Je e f(z)e ™t dy = [o f(x)e N dy =

~ o~

f(&—=h)=mf (). O

The Fourier transform creates a bijective map from S(R) onto itself. Because of this fact,
we can recover the original function from its Fourier transform using the Fourier Inversion
Formula.

Theorem 15. (Fourier Inversion Formula): If f € S(R), then for all x € R,

f(z) = /R Fle)emicra,

Remark. For a proof of the above formula, see [14], pg. 180.

Theorem 16. (Plancherel’s Identity): If f € S(R), then

1f o=l 1l -

Remark. The proof to this identity involves the time-frequency dictionary, the Fourier Inver-
sion Formula, and the multiplication formula, which states that [, f(z)g(x)dx = [, f(x)g(x)dx
for all f,g € S(R).



Chapter 3

Fourier Analysis on Finite Abelian
Groups

In this chapter, we will develop a Fourier theory on finite abelian groups. In order to have
a well-developed theory, we will need analogs to key ideas in classical Fourier analysis, like
integration, induced norms, and trigonometric functions. Before we do this though, we will
need to review some key concepts of group theory.

3.1 Group Theory

Definition 17. A finite abelian group, denoted (G, x), is a set G closed under a binary
operation x such that the following properties are satisfied:

e Va,b,c € G,(axb)*c=ax(bxc), associativity of *

e Je € G such that axe =exa = a Va € G, identity element

e Va € G, dd’ € GG such that a xa’ = a’ x a = e, inverse elements
e YVa,b € G, a*xb=bx*a, commutativity of x

the set G has a finite number of elements

Definition 18. The order of a group G, denoted |G|, is the number of elements in the set
G.

Example 19. Examples of finite abelian groups include the cyclic group (Z,, +), the integers
modulo n under addition, and (U,, ), the n'" roots of unity under multiplication. [10]

Example 20. An example of a finite abelian group that is not cyclic is the Klein 4-group.
This group is isomorphic to (Zy X Zs), with each nontrivial element having order 2. Its
multiplication table is as follows:

11
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*1' e a b ab
e e a b ab
a | a e ab b

bl b ab e a
ablab b a e

We will remember that two groups are said to be isomorphic if there is a bijective function
between the two groups that preserves the group operation.

Definition 21. [10]|Let (G, x) and (G, ') be two groups. G and G’ are isomorphic if there
exists a bijective function ¢ mapping G onto G’ such that ¢(a x b) = ¢(a) *" ¢(b) for all
a,b € GG. We denote this as G ~ G'.

Example 22. The previous example of the Klein 4-group is isomorphic to the group Zs x Zs,
where the x denotes the direct product. Elements of this group are ordered pairs of the
form (a,b), where a,b € {0,1}. This is just one particular case of groups of the form ZI =
Zo X Ly X - -+ X Zs. These groups are used in Boolean algebra, which is where the values of
the variables can be only one of two things.

Remark 23. Tt can be shown that all finite abelian groups are isomorphic to the direct product
of cyclic groups. A cyclic group is a group that can be generated by a single element, i.e.
G = {a"|n € Z}. Since every cyclic group of order n is isomorphic to (Z,,+), we can say
that every finite abelian group is isomorphic to the group Zy, X Zy, X --- X Zy,, where
Ni, Ny, ..., Ny are positive integers, [12|, Theorem 0.1.

Remark. Unless otherwise stated, (G,*) will be a finite abelian group of order n under
addition.

3.2 L*QG)

Since we are trying to create an analog to Fourier analysis on the real number line, we will
need a space that takes the place of L?(R). We will call this space L*(G), which is the space
of functions mapping elements of G into C. Since we are only considering finite groups, we
will always be dealing with finite groups; thus, we do not need a special, restricted space of
functions like we did with the Schwartz class in R. The analog to S(R) will therefore be the
space of all functions from our group into the complex numbers, L*(G) = {f : G — C}. Let
|G| = n. For each a € G define a function 6, : G — C by

O

Normally it is customary to define d,(a) := 1, but we make d,(a) = /n so that, when we
later define an inner product for L?(G), the §,s can form an orthonormal basis for L?(G).

The next couple of lemmas will help us prove that the d,s do in fact form a basis for
L*(G).
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Lemma 24. If f € L*(G), then for all z in G

f(z) = % S F(a)ua) (3.2.1)

acG
Proof. Assume G = {ay,a9,...,2,...,a,_1,a,}. Then
% > fla)da(z) = [f(a1) x ba, () + - 4 f(@) X 02(@) + -+ - + f(an) X O, (2)]

aeG

- <

[fla1) X 04+ f(z) x Vn+---+ f(an) x 0]
)

Il
~
—

8

Lemma 25. The functions {0, }acc are linearly independent.

Proof. Let G = {ay,as,...,a,} and b, € C for all @ in G. Assume . b,0,(x) = 0, for all
x € G. By equation 3.2.1, we know »_ _. b.0q(x) = y/nb, for all x € G. This implies that
b, = 0 for all z € G. By definition of linear independence, this implies {0, }.cc are linearly
independent. O

Remark. Since {0, }qec are linearly independent and are elements of L?(G), and since every
element in L?(G) can be written as a linear combination of {d,}.cc, then by definition,
{04 }acc form a basis for L*(G). The dimension of L?(G) is n, the order of G.

3.2.1 Integration on L?*(G)

Again, in the interest of creating an analog to classical Fourier analysis, we will need a form
of integration of our functions over our group.

Definition 26. For U C G and f € L*(G), we define the integral of f over U to be:

/U r=3 f (3.2.2)

acU

Lemma 27. The integral as defined by equation 3.2.2 is linear.
Proof. Let a,3 € C,U C G, and f,g € L*(G). Then
/ of +Bg=>_ af(a)+ Bg(a)
U

aceU

=Y af(a)+)_ Bg(a)

acU aclU
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Lemma 28. If Uy and U, are disjoint subsets of G, then fUlng f= fUl f+ ng f
P’/’OOf. Let U1 = {(11, asg, . .. ,am} and U2 = {bl, bQ, e bk}

/U =Y

acU1UUq

=f(a1) + flag) + -+ flam) + f(br) + f(b2) + - - + f(br)

= [+ fl

acly acUsz

:/U1f+ Ugf

3.2.2 The Inner Product of L?(G)

Since our goal is to develop a Fourier theory on groups, we obviously need to develop the
idea of a Fourier transform on groups. To do this, we will need an inner product in our
vector space, L?(G).

Define a mapping (*, *) : L?(G) x L*(G) — C with the formula

1 _—L a)g(a)
=g [ 3= PR (323)

Lemma 29. The mapping defined by equation 3.2.3 defines an inner product in L*(G).

Proof. This time, there is no doubt that (f, g) is in C since we are dealing with finite sums.
To be an inner product, (*,*) must satisfy these four properties for all f,g,h € L*(G)
and o, 8 € C: 1)(f,9) = (g, /), 2) (af + Bg,h) = alf,h) + Blg,h), 3) {f,f) =0, 1)
(L) =0 < f=0.

First, (f,g9) = ﬁ D acc fla)g(a) = \_é| Zaecmg(a) = (9, /)

Second,
(af + Bg,h) = |Zaf ) + Bg(a))h(a)
acG
= Zaf )h(a) + Bg(a)h(a)
aEG
1
= @aezaaf |G|a€ZGﬂg
1
= ma%ﬂ lG,BZg

= a(f,h)+ 5(g,h)
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Third, (f, f) = & Zace f(@)f(a) 20

Fourth, assume (f, f) = 0. Since ﬁzaea f(a)f(a) is simply adding up positive real
numbers, if (f, f) = 0, this has to imply that |f(a)] = 0 for all a in G. But this implies
that f(a) = 0 for all a in G. Assume f(a) = 0 for all a € G. Then ‘—é'ZaeG fla)f(a) =

04+0+---+0=0. Thus, (f, f) =0 if and only if f(a) =0 for all a in G.
Thus, (*,*) defines an inner product on L*(G). O

Definition 30. For any f € L*(G), the induced norm is defined as

| = VI T \/é S (o) (@) (3.2.4)

aeG

Lemma 31. The set {0, }acc form an orthonormal basis for L*(G).

Proof. We have already shown that {4, }.c¢ form a basis for L?(G). We need only show that
{04 }acc are orthonormal.
Let us first assume a;,a; € G and j # k. Then

1 _
<5a;" 5(1k> = @ Z 511;‘ (a’)éak ((I)

aeG

= 0X04+0x0+--+40dq(a;) X0+ 40 x g, (ar) +---4+0x0
= 0

Next, let us assume a;,a;, € G and j = k. Then

1 _
<5aj7 5ak> = @ Z 5aj (a)éaj (a)

ae@G
1 —
= @[OXO—FOXO—}—...—F&”(%) X5aj(aj)+...+0><0]
1 S
= g X VIGIx VG
|Gl
=1
Thus, by definition, {d,}se¢ form an orthonormal basis for L*(G). -

Remark. The L? —norm is not the only norm associated with our group. For any p > 1, we
can define the LP — norm as

I Moo= (ﬁ > !f(x)!”) p

z€G

We have now built a group analog to the Schwarz class. The next step will be to find
functions that can take the place of the trigonometric functions used in classical Fourier
analysis.
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3.3 Characters, Dual Group CA}’, and LQ(CA}’)

In our Fourier analysis on groups, characters will play a role analogous to the role of trigono-
metric functions in classical Fourier analysis. The characters will map elements from G into
the unit circle, just like the trigonometric functions take elements from R into the unit circle
in C. The characters form another group, the dual group, G. In this section, we will also
define an inner product and an induced norm in the space L?(G). Finally we will prove some
additional lemmas for the characters needed to build the Fourier theory on groups.

Definition 32. A character of G is a group homomorphism x : G — S!, where S* denotes
the unit circle, i.e. S'={z€C:|z|] =1}.

Definition 33. y is a group homomorphism if for all a,b € G, x(a + b) = x(a)x(b).

Lemma 34. The sel of characters, denoted by @, 15 a group with the binary operation
(x1x2)(a) = x1(a)xa(a) for all x1,x2 € G and a € G.

Proof. 1) We first need to show that G is closed under our binary operation. Take any
two elements xi,x2 € G. Then xixz(a) = xi(a)xz(a), but xi(a) and xz(a) are in S?,
and any two elements in S, when multiplied together, produce another element in S!.
Furthermore, x;x2 is a character since x1x2(a + b) = x1(a + b)x2(a + b) by the definition of
our binary operation. Indeed, since x; and x, are group homomorphisms, x1(a+b)xa(a+b) =
x1(a)x1(b)x2(a)x2(b). Because x1(a) and x2(b) are elements of C for all a, b in G, and because
we know that multiplication is commutative in C, we can write yi(a)x1(b)xz(a)x2(b) =
x1(a)xz(a)x1(b)x2(b) = x1x2(a)x1x2(b). So x1x2(a+b) = x1x2(a)x1X2(b), which implies that
X1X2 1s a group homomorphism. Thus, our group G is closed under our binary operation.

2. We now must show that our binary operation is associative. Let x1,x2,x3 € G and
a€d.

((xax2)(xs))(a) =(xix2)(a)xs(a)
=x1(a)xz(a)xs(a)
=x1(a)(x2x3)(a)
=(x1(x2x3))(a)

3. We now need an identity element in G. Let us define Xo(a) = 1Va € G. This element is
in S! since 1 € S*. It is also a group homomorphism since xo(a+b) =1 = 1x1 = yo(a)xo(b).
For any x € G, (xx0)(a) = x(a)xo(a) = x(a) X 1 = x(a). Similarly (xox)(a) = x(a). Thus,
Xo is an identity element for G. R

4. We will note that, for any xy € G, x(0) = 1: Note that x(a) # 0 for any a in G since x
maps elements onto the unit circle. Therefore, for any a in G, x(a)x(0) = x(a + 0) = x(a).
Since we know x(a) # 0, we can use the cancellation law, and we get that x(0) = 1.

5. We also need an inverse for cach element in G. Define x~(a) = x(—a), for all a € G.
Since —a € G, our new element ! will be in S! since y : G — S'. This element is

also a group homomorphism: if we consider x!(a + b) = x((a + b)™') = x(—a — b). But
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x(—a—0b) = x(—a)x(=b) = x " *(a)x (b). So x ! is in fact a group homomorphism. We now
need to show that y~! is actually an inverse element. Consider (x~'x)(a) = x (a)x(a) =
x(=a)x(a) = x(—a + a) = x(0) = 1. Similarly, we can show (xx')(a) = 1.

Numbers 1 through 5 imply that G is indeed a group. G is called the dual group of
G. O

Example 35. If our group is equal to Z,, then the dual group can be identified with U,,
the n'" roots of unity. For n = 3, we can create multiplication tables for Zs and Us, as well
as a character table:

For Zs, the multiplication table is as follows:

o~ o+
N = OO
O DN ==
=N CIIN)

A similar multiplication table is shown for Us :

* ‘ 1 p2mi/3  pAi/3

1 1 o2mi/3 Ami[3
e2mif3 | o2mi/3  p4mi/3 1
eAmif3 | p4mi/3 1 o2i/3

Notice that the above group tables have the same structure. In fact, Zs ~ Us. To see
how the each character acts on each element of the group, we have a character table:

*lo 1 2
ol1l 1 1
X1 1 627ri/3 e47ri/3
X2 1 647ri/3 e27ri/3

The multiplication table for the characters of Zs follows:
* ‘ Xo X1 X2
Xo | Xo X1 X2
X1 X1 X2 Xo
X2 | X2 Xo X1

Example 36. We can also create a character table for the Klein 4-group [1]:

*1le a b ab
Ywll 1 1 1
il -1 1 -1
a1l -1 -1 1
Ys|1 1 -1 -1
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From this character table, we can build the multiplication table for the characters of the
Klein 4-group as well:

*Ixo xa xe xs

Xo | Xo X1 X2 X3

X1 | X1 Xo X3 X2

X2 | X2 X3 Xo X1

X3 | X3 Xz X1 Xo

Remark. In the two examples above, we observed that G ~ G. This is not just a coincidence.
For finite abelian groups, it is true that G ~ G, [12, Theorem 1.4]. Because of this fact, we
can then relate elements in G to elements in G. For every a in GG, we can relate a to a x, in
G. In general, there is no canonical isomorphism between the G and G.

Now that we have another group, we will need to define a similar space to L?(G), called
LZ(CA?), which will be the space of functions from G to C. This space is called the dual space
of L2(G). We can show in a similar way to what we did with L*(G) that L2(G) is an inner-
product vector space, so we will therefore need to define the inner product and induced norm

of L*(G).

Definition 37. We will also define an inner product in Lz(é), for ﬁﬁ € @, as:

-~  —_—

(£.9)=>_F0akn) (3.3.1)

x€G

Definition 38. The induced norm in L2(G) is defined as:

| Fllea= . |3 F00F 00 (3.3.2)
xe@G

Remark. We can similarly define an L — norm for the space L? (CA}) as
I F = | D_IFEQP

¢eq

Remark. Note that we do not normalize the inner product nor the LP-norms.

Remark. We can define conjugation in G by X(a) = x(a). Since x(a) € S, we know that

X~ H(a) = x(a).
The next few lemmas will give us some building blocks so we can later define things like
the Fourier transform and the Fourier Inversion Formula.



CHAPTER 3. FOURIER ANALYSIS ON FINITE ABELIAN GROUPS 19

0 X # Xo
n X =Xo

Lemma 39. If y € @7 then ) .o x(a) = { where n = |G|.

Proof. [6]: First, let us assume x = xo. Then > _.x(a) = > ccxo(a) =
Next, let us assume y # Xo; hence, there exists ag € G such that x(ag) # 1.
be the arbitrary element b = ag + a for any a in GG, then

x(ao) Y x(a) = Y xlao+a)

z:aeG(l):: n.
If

we let the b

acG acG
= > x(b
beC
Since x(ag) # 1, then ) . x(a) = 0. O

0 a#0

where n = @
n a=0

Lemma 40. Ifa € G, then ) _ax(a) = {

Proof. First, let us assume a = 0. Then >° ax(a) =3 ax(0) = > .51 = n. Next, let
us assume a # 0, then there exists y; € G such that y1(a) # 1. Then

a)> x(@) = Y xi(a)x(a)
xe@G
= Z(Xlx)(a)

xeG

Let 8 be the arbitrary element 5 = y;x for any y € G. Then
a) Y x(a) =Y p(a)
xeG Bed

Since x1(a) # 1, this implies that} 5 x(a) = 0. O

0 x17# X2
n Xi1=X2

Lemma 41. If x1, 2 € G, then Y acc X1(a)xz2(a) = { where n = |G|.

Proof. |6]: First, let us assume y; = xo. This implies x1¥z = Xxo. We can then appeal
to Lemma 39, which implies »_ . x1(a)xz2(a) = n. Now, we will assume x; # x2. Since
inverses in groups are unique, we know that x1X2 # Xo. Again, by Lemma 39, this implies

ZaEG x1(a)xz(a) = 0. O
0 a#bd

n a=

Lemma 42. Ifa,b € G, then 3 & x(a)x(b) = { where n = |G|.

Proof. First, let us note that x(a)x(b) = x(a)x(—=b) = x(a — b). We will first consider
the case where a = b. Then x(a)x(b) = x(a —b) = x(0). By Lemma 40, this implies
>vea x(a)x(b) = n. Next, we will consider the case where a 7€ b Since inverses in groups
are unique, a — b # 0, so by Lemma 40 again, ) egx( a)x(b) = ]
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3.4 Fourier Transforms

We are now ready to actually define the Fourier transform on our group. In addition, we
will prove the analogs to well-known theorems in classical Fourier analysis like the Fourier
Inversion Formula and Plancherel’s Identity.

Definition 43. The Fourier transform of f € L?(G) is the function fe LQ(CAJ), defined
as the inner product with a character in G, that is:

FO0 = (f.x) = Zf a)x(a (3.4.1)

aEG

Lemma 44. The Fourier transform as defined by equation 3.4.1 is linear.

Proof. For o, 3 € C, f,g € G, andxeé

of +Bg(x) = |G|Zaf )+ Bg(a))x(a)
aeG
- |G|a§ ofa \G@ﬁg
= Zf Zg
aGG aEG
- af(x)+ﬁg(x)

]

__Just as in classical Fourier analysis, the Fourier transform forms a bijection from G to
G. We can use this fact to prove the Fourier Inversion Formula.

Theorem 45. (Fourier Inversion Formula): If f € L*(G), then f =3 .4 A( )X

Proof. [6]: From Lemma 42, we can see that > _&x(b)x x(a) = /né,(b) for a,b € G. By
equation 3.2.1, we know '
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Theorem 46. (Plancherel’s Identity): If f € L*(G) and |G| = n, then || f ||12()=]| f||L2(@)

Proof. Consider

S ES f@x@) =S Foxm)
xe@ aclG beG

€@ a€G beG

By Lemma 42, we know that er@ x(a)x(b) = 0 unless a = b, then it equals n. Thus

I =223 Fa)Fa)

= | f 2
]

In the next couple of subsections, we will partially build the time-frequency dictionary

for our Fourier group theory.

3.4.1 Translation

Definition 47. We will define the translation by a € G of the function f € L*(G) by

Taf(x) = f(x —a)

_~

(3.4.2)

Lemma 48. Fora € G and f € L*(G), T/a:f(x) = x(a)f(x).

Proof. Consider

—

Taf (X)




CHAPTER 3. FOURIER ANALYSIS ON FINITE ABELIAN GROUPS 22

3.4.2 Convolution
Definition 49. For f,g € L?(G), we will define convolution as
= Z T f(—a)g(a) (3.4.3)
aceG

Lemma 50. The convolution as defined in equation 3.4.3 s commutative.
Proof. Consider
= f(z—a)g(a)
aceG
Let x —a = b, then a = x — b. Then

(f*g)(@) =) fb)g(x —b)

beG

=(g = f)(z)

~

Lemma 51. For f,g € L*(G) m = fg.
Proof. Consider

Fxg00 = Y (f*9)@)x()

zeG

= Y (3 fl@—a)g(@)x(x)

z€G  a€elG
Note that x(z) = x(a)x(x — a). Let b = x — a. Then we get

Frgl0) = D> f(b)g(a)x(a)x(b)

beqG aclG

= (3" rox®) (Y gla)x(a)

beG aeG

= f()3(x)

3.4.3 Modulation

Definition 52. The modulation of a function f € L*(G) by a € G is defined as M,f(x) =
a(x) f(x).

Lemma 53. For f € L*(G) and o € G, Ma\f(f) = f(a™19).
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Proof. Recall that for any &, € G, ¢ = € and (€)™ = a~1¢~! since we are dealing with
an abelian group. We will use these facts in the following list of equalities:
—_— 1 JR—
M.f(§) = €] > a(@)f(x)é(x)

zeG

= 15 2 f@al) @

zeG

é S f(@) (e @)
xeG

ﬁ S @) @)

xelG

= fla7t¢)

]

Remark. Note that, because the binary operation inAC/}\ is multiplication, we can define the
translation by a € G of f € L*(G) as 1.f(§) = f(éa™'). With this definition, and the

~

one for modulation, we can rewrite Lemma 48 as 7,f(§) = M_,f(§{) and Lemma 53 as

Mo f(€) = maf(6).



Chapter 4

Uncertainty Principles

Now that we have the basic building blocks in both group and classical Fourier theory, we can
prove both versions of the uncertainty principle. While the classical and discrete versions of
the uncertainty principles look quite different, they actually both encode information about
the supports of functions in space and frequency. In this section, we will also identify the
extremal functions which change the inequalities to equalities in both settings.

4.1 Uncertainty Principle in R

The Heisenberg Uncertainty Principle was proved by Werner Heisenberg, a German theo-
retical physicist, in 1927. The uncertainty principle says that it is impossible to know a
subatomic particle’s position and momentum at the same time. The more precisely the po-
sition of a particle is known, the less precisely the momentum can be known, and vice versa.
Here is the mathematical statement of Heisenberg’s Uncertainty Principle:

Theorem 54. (Heisenberg Uncertainty Principle): Suppose that ¢ € S(R) and that ¢ is
normalized in L*(R), i.e. || |[o= 1. Then

([ wwpa) ([ eriera) = 100

Proof. |[14]: We know that || ¢ [o= 1. By the definition of the L?-norm, this implies
Jg [¥(x)Pde = 1. If we use integration by parts, with v = |[¢)(z)|* and dv = dz, we get
that v = x and

du = —([(x)])
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Using the formula for integration by parts, we get that
— (WP — [ 20Re(v!(@0))da
R

Since ¢ € S(R), (|¢(x)[*x)|>=, = 0, so we are left with

1= —/RQxRe(w'(m)w(x)d:E (4.1.1)

Since | z |> |Re(z)| and since | [ f| < [|f], we can rewrite equation (4.1.1) as

12 [ el (@)l (4.1.2)

By the Cauchy-Schwarz Inequality, Lemma 5, equation 4.1.2 becomes

v<2( [ ) Qdm) (1w |dx)

By Plancherel’s Identity, Theorem 16, we get

v |acw<x>|2cwc)é (f |1Zf<s>|2d5)5 (41.3)

From Lemma 9, we know that ]\//j’(f) = (27ri£)]\/4\(£). Thus, equation 4.1.3 becomes

v rwm»?m)é (f |47r252|r$<5>12d£)é (41.4)

Squaring both sides of equation 4.1.4 yields

1<4 (/R |x¢(m)|2dx) 472 (/R \&Z(g”?dg)
o = ([ evaras) ([ rederac)

This implies

4.2 Uncertainty Principle in G

We will now present an analog to the Heisenberg Uncertainty Principle for finite abelian
groups. Before we do that, though, we must first define the support of a function.

Definition 55. For a function f in L?(G), the support of f, denoted suppf, is the set of
all @ in G such that f(a) # 0. We denote the cardinality of the support by ]suppf| We can

similarly define the support of a function f in G as the set of all X € G such that f ( ) # 0.
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Theorem 56. (Discrete Uncertainty Principle): For f € L*(G), |suppf]| \suppﬂ > |G].

Proof. [6]: By the Fourier Inversion Formula, Theorem 45, we know that for all « € G

=3 F(0)x(a)

xeG

a)l =1 F(x)x(a)

xeG

This implies that

Since x(a) is an element of S* for all a € G and x € G, then |y(a)| = 1. Using this fact
and the triangle inequality, we get that

o)l <D 1FIx(@)] =D 17 () (4.2.1)

xe@ xGG

By the definition of the Fourier transform, equation 3.4.1, and the triangle inequality, we

know
!_,G|Z\f ,G|Z\f

acG acG
Let N = max,eq |f(a)]. We can then say
> 1f(a)] < |suppf| x N (4.2.2)

aeG

Thus, for all x € @,
F00)] < =lsuppf| x N
IGI

Substituting this into equation 4.2.1, we get

a)l < Z e suppf| x N = \GI x |supp f| x [supp f| x N (4.2.3)
xGG’
Since equation 4.2.1 applied to every a € G, it will apply to o’ € G such that f(a’) = N.
Combining equation 4.2.1 and equation 4.2.3, we get
N < @ x [suppf| x [suppf| x N
Rearranging and canceling, we get
[suppf| x [suppf| = |G|

O

In this context, it is clear that both the supports of f and fcannot be too small since
the product of their cardinalities must be greater than or equal to the order of the group G.
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4.3 The “Gaussians”

In Fourier analysis in both R and G, there are specific functions that give us sharpness in
the uncertainty principle. In classical Fourier analysis, these functions are Gaussians, while
in the group setting, they are the translations, modulations, and scalar multiples of the
indicator functions of subgroups of GG. These are the functions for which equality is attained
in the inequalities; these functions are also called extremal functions.

4.3.1 The Gaussians in R

Recall that a Gaussian is a function of the form G,(z) = e*". Before we prove that the
classical version of the uncertainty principle is an equality if and only if our function is a
Gaussian, we first need to recall some preliminary calculations.

Lemma 57. The integral [, e gy = I

2
Proof. Consider (fR e“””%la:) = (fR e‘“"”de> (fR e‘“dey> == [ e~ @+ dxdy. Chang-
ing this integral to polar coordinates, we get

(fs) -

Thus, fR ey = \/g
In particular, this calculation shows that || Gy, ||z2®)= <fR e_ax2daj> = (%)1. Ifa=m,

then || G7r ||L2(R): 1. ]
Lemma 58. The integral [, 2l dy = YT

2a3/2 "

Proof. Let us evaluate the above integral using integration by parts, letting v = x and

dv = ze~*dz. We then get that du = dz and v = —%e“wQ. Using the formula for integra-
tion by parts, we get [, z2e~ 0 g = —%xe’“ﬁﬁooo + 2%5 Jr e~ dx. Using L’Hopital’s rule,
limg 400 —ze™* = lim, 4 Mﬁ = 0. Thus, —%me‘“w 1>, = 0. We know from Lemma 57
that [, e~ = VE so [, 22 dy = %% O

Lemma 59. The Fourier transform of a Gaussian is another Gaussian.

Proof. Consider the Gaussian function G(z) = ¢ 5*". Then
Ga(¢) = [ VEBre P i
R
— / \/me—B(mQ—l—Zwiwf/B)dx
R
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Completing the square of 22 + 27miz{/B gives us (z + ==)? + (35)%. Our integral then
becomes

o) = [ ey,
R
_ B / o~ Bla+rie/B)? g
R

By Lemma 57, we can conclude that [, e~ Ba+mit/B)? o — \%\/_ Thus, é\B(£> =

~m¢*/B /% But this is simply another Gaussian with a constant in front of it. Thus,
the Fourier transform of a Gaussian is a Gaussian. O]

Theorem 60. The uncertainty principle, Theorem 54, is sharp if and only if ¥(x) =

/2B /e 8% for some B > 0.
Proof. (<) Assume ¢(x) = 1/2B/7Gg(x). From Lemma 59, we know that
o) = v@B/e-*ﬁwV//B
\/56—71'252/3

Plugging our values of ¢(z) and 12(5) into the left hand side of Theorem 54 and using Lemma
58, we get

(/ 2B:L‘2€_QB$ d:L’) (/ 2526—27r2£2/Bd§) _ ﬁ VT 2\/%33/2 (4.3.1)
R

T T 2(23)3/2 2(2m2)3/2

Simplifying the right hand side of equation 4.3.1, we get 5. Setting this equal to we

TorT
see that B = Sm. Thus, the Gaussian Grjpo(z) = e~ 2™ i an extremal function for the
uncertainty principle.

(=) Let us now assume that there exists some function ¢(z) that makes Theorem 54
sharp. We will go through the proof of the Heisenberg Uncertainty Principle, making sure
that each inequality is sharp. From the hypothesis, we know that 1 = [, [¢)(x)[*dz. Using
integration by parts, we get 1 =2 [, zRe[ip(x)y'(z)]dx. Re(z) = z if and only if z € R, so
let us assume that ()1’ (z) is real for all € R. Since 1 > 0, we can say that

| —2|/w 2)da] (4.3.2)

Since | [ f| = [ |f| only if f is always positive or always negative, let us assume 1) (2)¢' (z)
0 for all z € R or z¢)(x)y'(z) < 0 for all € R. Then equation 4.3.2 becomes

1:24mwumwmwm (433)

The next step in the proof of the Uncertainty Principle was to apply the Cauchy-Schwarz
inequality, which is only an equality if the two functions are multiples of each other. So let
us assume that zi(z) = Cv/(z) for some C' € C. This implies that 1 (z) = Cye~*" for some
a,Cy € C. Note that z¢(x))(z) = —2az2e 29" so it does in fact satisfy the requirement
that z¢(z)y’(z) < 0 for all z € R. From the proof in the other direction, we know that in
order to achieve equality, we need a = %W and |C1] = 1. But |C}] = 1 implies that C} is on

the unit circle. Thus, ¥(x) = |Cy|e" 2% for C; € S. O

>
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4.3.2 The Gaussians in G

In this section, we will prove that, for cyclic groups, |G| = |suppf\|suppﬂ if and only if f is
the translation, modulation, and/or scalar multiple of the indicator function, 1y, where H
is a subgroup of G.

To prove that the translations, modulations, and scalar multiplies of the indicator func-
tions of subgroups are the only functions that give us sharpness with our group uncertainty
principle, we will first need some more definitions and lemmas from group theory.

Definition 61. An indicator function is defined, for A C G, as

A
Lala) = {(1) ZZA

Definition 62. [12]: The orthogonal complement of a set S C G, denoted S+, is defined
as St :={a e G:alr)=1Vre S}

Remark. Note that the orthogonal complement is a subset of the dual group G and consists
of the characters of G that are trivial on S. If S is a subgroup of G, then St will be a
subgroup of G that is isomorphic to %

Lemma 63. If H is a subgroup of G, then for every a € @,

— Hl o e qt
— G

Proof. |12]: If a« € H*,

1H(a) = <1H7 Oé>

If « € H+, then a(z) = 1 for all z € H. So,

Ti() = %‘21

If « ¢ Ht, then there exists a y € H such that a(y) # 1. Let z = 2 — y for each z € H.

Then
Y al@) = ay)) alz—y)

zeH zeH

= a(y)Y_alz)
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Since H is a subgroup, )  _pa(z —y) = > ..y a(z) when y € H. This implies that

ZzeHm = 0.
So if a € H*, then
@ = Y lu@a@

zelG

- Y@

zeH

=0

Lemma 64. If H C GG is a subgroup, then
[H||H| = |G].

Proof. [12]:
We know that

H = Y 1a(o)

zeG

= > |u(@)f

zelG

= |G|l L 3

From Plancherel’s Identity, we know that || 15 ||2=| 15 || . Thus,

[H| =G Y [Tu(@)]”
zeG
From Lemma 63, we know that

—~ B et
— G
hﬂa}_{é ad HY

Thus,

A GEP = 6 Y (%)

zeCG acHL
AT\
i (1)
fel

2
Therefore, |H| = |G||H*| (Z]) . Rearranging, we get |H||H*| = |G]. O
1G]
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The next lemma involves translations and modulations, which were introduced in sections

3.4.1 and 3.4.3. Recall that for « € G and a € G, and for f € L2(G) and f € G, that

Tof (z ) = f(x—a) and M, f( ) := a(z) f(x). Furthermore, Taf(f) f(foﬁ ) and MafA(f) =
&(a )f(f) Also, Taf = af and ]\/4\f = Taf Now note that |suppf| = [supp7.f]| for all
a € G. Also, suppf = suppM, f for all o € G.

Lemma 65. If f £ 0, then 0 € supp(T_moMag1f), and 1g = xo € supp(T_xoMaalfoor

some xg € G and oy € G.

Proof. If f # 0, then there exists o € G such that f(xg) # 0 and Joy € G such that

flao) #0.
Consider 7_g\ M1 f(z) = T ao (g 1 (2) f () = ag ' (z + 20) f (T + 20).

Then 7_3, M1 f(0) = ag ' (w0) f(z0) # 0. Thus, 0 € supp(T,woM%_lf).
Now consider £ € G

(T_xOMaalf)A(f) = Z T—ao M, @

xEG
= Z% (x + o) f x+$o)@
acEG
= €] %f x + xo)ao(z + 70)& ()
1
= €] QEGZG f(@)ao(z)é(z — 20)
1
— @g(:go) g; f(z)ao(z)E(2)
= &(0) f(nf).
So (fooMao_lf)A(XO) = XO(Z'O)J?(XOOCU) = J?(Oéo) # 0,50 xo € Supp(T*xOMao_lf)A' =

We are now ready to prove the main theorem of this subsection.

Theorem 66. If 0 € suppf and xo € suppf, then ]suppf”suppﬂ = |G| if and only if
f =cly, where H is a subgroup of a cyclic group G and c is a nonzero constant.

Proof. |2]: (=) Let us assume \suppf||suppﬂ = |G|, and that N = |G|. This assumption
implies that f is not identically equal to zero. By our hypothesis, 0 € suppf and xq € suppfA
We need only show that suppf is a subgroup. If suppf = B is a subgroup, we know from
Lemma 64 that |B||B*| = |G|, so |suppf| = |B*|. Since B* = {a € G : a(z) = 1 Vz € B},
we can show that for any o € G and 8 € B,

Zf JaB(x)

xEG’
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Since f is supported on B, we can write

flad) = g7 2 Fwa@ie)

zeB

Also, since 3 € B, Bz ) 1 for all z € B, which would imply that g(z) = 1 for
all x € B. Thus, f(af) = ‘G| Y owep f(@)a a(r). But since f is supported on B, we can
sum over all elements in G since we would just be adding zeros for x not in B. Thus,
Flap) = \GI See f(@)alz) = F(a). Note that yo(a) = 1 for all a € B, s0 xo is in B*. Thus,
if we let o = o in the above equation, we would get that f(ﬁ) = ]/C\(XO) for all 5 € B*. This

proves that f is constant on B+ R R
We know that o = x € suppf, and this implies that f(Xo) 2 0. This implies that f is a

nonzero constant on BL, which implies that Bt C supp f But from our assumption that B
is a subgroup of G, we knovv that ]suppf| |B*|, so suppf = B*. Since f is supported and
constant on B+ we can say that f Clpi. By Lemma 63, we know that, for g = 1, then
g = 1p1. The Fourier Inversion Formula tells us that the Fourier transform forms a bijection
from G onto G; this implies that f = clp for c€ C and ¢ # 0. We now just need to prove
that suppf is a subgroup of G. R

Let [suppf| = M. Let 71,73,...,7y € G be such that a,; € suppf for 1 < j < M. Because

we are assuming that G is cyclic, we can relate each element o; € G to an element in the
group U,, where n = |G| and a;(k) = e2™/5/" Let 0 < p < N — M. Define w'” = f(p+ k),
with 1 < k < M. By the Fourier Inversion formula, we know that

w,&p) = Zf E(p+ k)

ted

= Z ]/C\(O‘T‘)O‘r(p + k)

aresuppf

— Z (ou,)o, (p + k)

Let o, = zj, let u = (f(zl), f(zQ), . ,f(zM)> , and let w(p) = (w(p) wép), . (p)) Then
w®) = Zu, where Z is an MxM matrix where 2 ; = z . We want to show that w® = 0,
which will show that f does not have M consecutive zeros. Since u = (f(zl) f(zQ) o 7f(zM)> ,
and z; € suppf we know u # 0. To show that w® £ 0, we just have to show that detZ # 0.

p+1 p+1 p+1

Zl 2 22 2 ... ZM2
Z = . : :

p+M p+M p+M

Zl 2’2 .« .. ZM
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1 1 1
21 g2ttt AM
1_p+1 1 1_pt+1 1
detZ = T 0 2P et , , . _ = AT et (V).
M-1  _M-1 M-1
“1 2 T AM

But V is a Vandermonde matrix, so

_ p+l _p+l p+1
detZ = 27" 257 - 20 (25 — 2k).
1<j<k<M

Since z; # 2z if j # k, detZ # 0, thus w® # 0 for 0 < p < N — M. This implies
that f does not have M consecutive zeros, or in other words, there are no elements in
suppf that are M elements apart. Suppose there were elements in suppf that were less than
M — 1 elements apart. But since [suppf| = N/M, this implies that there are at least two
elements in suppf that are M or more elements apart. This is a contradiction. Hence, the
elements in suppf must be exactly M — 1 elements apart. By our assumption 0 € suppf,
then suppf = {0, M,2M, ..., N — M}, which is a subgroup of G. So f = cly where H is a
subgroup of G.

(<) Now assume f = 1y where H is a subgroup of G. Obviously, |suppf| = H. By

Lemma 63, we know
|H] i
— = a€H
1g(a) = ¢ 19 i
0 a¢gHt
Thus, |[suppXz| = |H*|, and by Lemma 64, we know |H||H*| = |G]. O

Remark. Note that Theorem 66 and Lemma 65 imply that, if g # 0, then |suppg|+ |Suppf| >
|G| if and only if ¢ is the modulation, translation, or nonzero scalar multiple of the indicator
function 1y, where H is a subgroup of G and G is cyclic.

This statement is actually true even if G is not cyclic. For a proof of the more general
version, see [13|, Proposition 2.2.



Chapter 5

The Entropy Uncertainty Principle

While the uncertainty principle is one of the most well-known inequalities in Fourier analysis
on groups, there are other inequalities that can be very useful. One of them, the entropy
uncertainty principle, can even be used to prove the uncertainty principle. However, in order
to prove that inequality, we will need some more basic ideas, including the notion of tensor
powers. We will use these ideas to prove a few analogs to classical inequalities on R, like
the Hausdorff-Young inequality, which will give us the tools we need to prove the entropy
uncertainty principle.

5.1 Entropy Uncertainty Principle

The entropy uncertainty principle relates a function on the group, its Fourier transform on
the dual group, and the logarithms of their absolute values. Mathematically, the statement
is as follows:

Theorem 67. Entropy Uncertainty Principle: Let f € L(G) such that || f ||r2)= 1. Then

516 @ el £ (@) + 5 - IF©) P log o)) < 0.
acG ¢eG

Remark. Note that L(G) is the space of functions which map elements of GG into C. Depending
on the norm one uses, this space becomes L*(G), or more generally, LP(G) for p > 1. If f is
in L(G), then it is also in LP(G) for p > 1.

To prove the Entropy Uncertainty Principle, we will need a number of lemmas which we
will state, and then prove in the following section.

Lemma 68. (Young’s Inequality). Let a,b > 0 and p,q € [1,00] with % —I—% = 1. Then
ab < % + %.

Lemma 69. (Holder’s Inequality). Let % + % =1,p,q> 1, with f € LP(G) and g € LY(G).
Then
I fg v < f @l 9 e -

34
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Lemma 70. (Hausdor{f-Young Inequality). Let % + é =1, with1 <p <2, and f € LP(G)
and || f ||r@y= 1. Then ~

1 ey 2l f Do)
Proof. (Proof of Entropy Uncertainty Principle)|2|: If Il? —i—% = 1, then ¢ = ]%. By the
Hausdorff-Young Inequality, we know for f € L(G), 1 <p <2,

1 a@ Sl llve

Lot us define AQp) =] ) — | T Loy then A@p) > 0 for 1 < p < 2.

Recall that LP(G) and Lp(é) have different normalizations: for the LP(G) space, we divide
by |G|P, but we do not in the LP(G) space. By the definition of an L” norm on L(G),

U e " PN
| 1 o= ks (Sace @) Similarly, || F lp@y= (Seea 1FOF) " Thus, we

can rewrite A(p) :

1/p (»-1)/p
Alp) = |G|1/p <Z|f > (Zf )7 1) :

(r—1)/
Let us define B(p) := g (Xoee 1 F(@P)" and C(p) = (de@‘ Fepe- U) o
Then A(p) = B(p) — C(p).
Consider

1/p
log(B(p)) = log |G|1/p (Z\f >

a€G

1/p
= log(|G|7Y?) + log <Z]f )

a€eG
— “Liog(lc) —10g<Z!f )
p a€eG
Now consider
Bp) _ d
= —log<|G| 12 (Z\f >+——log (Z|f )
p aceG a€G

= osllc) - <Z|f ) (mZ(If(aﬂploglf(a)l))-

aeG aeG
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Since || f [lr2= 1, then B(2) = 1 and B'(2) =
S 1f(a)]? =G| Therefore

B(Q) Also, since || f ||z2@)= 1, then

/ _ log(|G| 1 1 1 2o a
B) = (a;u ) . (—ZGEG, ap 2 (@ Prost )D))

B log(\ ) 1 2

- T4 |G| 5 <|G| C; | 1Og |f )D))

- m;wa)lzlog(v(a)l)-
Similarly,

log(C(p)) 10g (Z | &)/ ®=D )
¢ed

Note:

Consider y = a?/®=1). Then log(y) = 27 log(a). Then idy = log(a) * =1Ldp =

(r-1)

= %;ig( a)dp. This then implies that % = =% log(a) = ~2 &)

géﬁ)) = diplog(c(p))
= élog gﬂsﬂp/@—” +(2%1>dip10g (;ﬂé)lp/(””)
~ oy gf £)p/o-D +p;12w|\f1>|pm Yecc I((I))Ii’;)”logﬂf( )
- oy &Zé|f(5),p/(p—1) _p(pl_ ; Vet £<€f;rr;é—;|;i<l|)f<g>\)_

We know that || f ||L2 G)— 1, so by Plancherel’s Identity, || f ||r2)=|| f||L2(@): 1. By
definition, C'(2) = 1. So — =C"(2).

~ ~1F(E) 2 1og(|
2) = ilog (5626 f(£)|2) _ %decg;i|’f(§)(l\2f(f)\)

Since /S cea [F(O2 =1, then 3 |F(€)[? = 1. Thus,

C'(2) = —10g ——Z| (€)*log(| £ (€)]

¢ed

= S Y IR©rosFE)l

¢ed
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So by definition, A'(2) = B’(2)—C"(2). By Plancherel’s Identity, A(2) = 0. Since A(p) > 0
for 1 <p<2and A(2) =0, then A'(2) <0. Thus,

Z\f )|*log | f(a)| + = Z!f ()P log |F(§)] < 0.

aEG EGG
]

One might wonder why the above inequality is called the entropy uncertainty principle.
By definition [2], the entropy of | f]? is

WfP) = |G|er z)[*log £ ()"

zeG

Similarly, the entropy of ]ﬂ2 is defined as

= 1) log | F (&)
¢eq

~

With this notation, the discrete entropy uncertainty principle reads h(|f|*) +h(|f|*) >0

5.2 Shannon Entropy Inequality

The reader might wonder if there is an analog to the entropy uncertainty principle in classical
Fourier analysis. There is, in fact, an analog, called the Shannon Entropy Inequality.

Definition 71. The definition of entropy for functions in S(R) is similar to that for functions
in G. -
H(P) = - [ 1f@)Plogls@)Pds

—00

Theorem 72. (Shannon Entropy Bound) [9]: For f € S(R) and g = f, then
e
H(IfF) + H(lg]*) = log 5.

In 1957, Isidore Hirschman proved that H(|f|*) + H(|g|?) > 0, yielding a very similar
result to our discrete entropy uncertainty principle. In 1975, William Beckner proved the
above tighter bound, and that equality holds when f and ¢ are Gaussians. This result is
very similar to the Heisenberg Uncertainty Principle, which also attains equality in the case
that the functions are Gaussians.
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5.3 Proofs of Lemmas

We will now provide the proofs of the lemmas we needed to obtain the entropy uncertainty
principle.
Young’s Inequality (Lemma 68): Let a,b > 0 and p,q € [1,00] with % + % = 1. Then

< a4 v
ab_p+q.

Proof. [7]: Consider the function f : (0,00) — R, where f(x) = In(x). We know that
f"(z) = =. Since f”"(z) > 0 Vz € R, we know that f(z) is concave. By definition [8], this
implies that In((1 — Az + Ay) > (1 — A) In(z) + Mn(y) for A € [0,1] and x,y € (0, c0).

Let t = %' Since p € [1,00], t € [0, 1]. Note that é =1-—t.

Consider

ln(a—p + E) = In(ta” + (1 —t)07)

D q
> tln(a?) + (1 —¢t)In(b7)
= tpln(a) + (1 —t)qIn(b)
= In(a) + In(b)
= In(ab)

If we take each side of the inequality as powers of e, we conclude that ab < %p + %. n

Holder’s Inequality (Lemma 69): Let % —l—% =1, pg > 1, with f € LP(G) and
g € LYG). Then
I f9 lere) <l f vl 9 [z

Proof. By Lemma 68, we know that, for all a € G,

S@p Iy

p q

|f(a)g(a)] <

This implies

1 a)l? 1 a)l?
a;‘f < EZW )| +Ezlg( )|
= p,G|Z\f Zlg

aEG’

Taking the natural logarithm of both sides yields

m(lmz'f ) 1n<|GI S U@ + g S loto )

aeG aeG aeG
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By the concavity of the logarithm, we get

1 1 1 » 1 1 q
mGEEHMMWD s;m(ﬁﬁlﬂw>+5mGa§me)

aeG acl oce
. 1/p 1 1/a
= =>f@r) +m{ =3 g
|G| r=te |G| acG
= (|| £ o) +n (| g lzoe)

n (
= In (H fllze@ll g ||L4(G))

By making both sides of the inequality powers of e, we get

| fg llovea<I fllzee |l 9 lza) -
]

Next we present a non-traditional proof of the Hausdorff-Young Inequality based on Tao’s
“tensor-power trick” instead of on the more traditional Marcinkiewicz Interpolation Theorem.
We first need to define tensor powers and prove a lemma relating the tensor powers and their
Fourier transforms.

Definition 73. Let f : G — C. Let us define the M*" tensor power of f, denoted f®M,
as fOM: GM — C, with f®M(ay, as,...,an) = f(a1) f(az) - f(an).

— N\ M —
We not that GM = (G) .So, for € € GM and a € GM, we define £(a) := & (a1)&(az) - - - Er(an)

where a = (ay,aq,...,ay).

Lemma 74. The tensor power of the Fourier transform of f is equal to the Fourier transform
of the tensor power of f.

Proof. Consider the Fourier transform of f®™. By the definition of the Fourier transform,
for every £ € GM,

FE) = o 3 M k)
G|
aceGM
= @ Z Z Z flay)f(ag) - flanr)ér(ar)éa(as) -+ Enr(anr)

a1€G azeG CLJMEG

= (é > f(a1)§1(a1)> <|_Cll| > f(az)&(az)) (é . f<aM)§M(aM)>

a1€G a2€G apm €EG

~ ~ ~

= f(&)f(&) - f(Em)
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Hausdorff-Young Inequality(Lemma 70): Let % —1—% =1, with 1 < p < 2, and
feLP(G) and || f ||zry= 1. Then

I f e 2l f o)

Proof. |17]: Note that, by the definition of the Fourier transform and the triangle inequality,

aeG a€eG aEG

for all £ € G. Since || f || (@)= suPeeq | (€], 50 || £ I <N f l21(c)
Also, from Plancherel’s Identity, , we know

Z|f(£)|2; <‘G|Z|f )

66@ acG

Let us assume that f is supported on some subset A C G and that for a € A = supp/,
2™ < | f(a)] < 2™ for some m € Z.
Consider the inequality

sup |f(€)] < |G| Z|f

feG aeG
S Z 2m+1
|G| acA
Al
= lgm
G|
This implies
~ A
sup 7(€)| < Alams (53.1)
From Plancherel’s identity, we know
1 1
RIGIE = \ia > | f(a) )
566 ac
%

6|

G
aeA
2m+1 )

[
(X
&
(8=

QI_ Q=
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(Zf(fV) < (%)227"“ (5.3.2)

£e@

Thus,

Since 1 < p < 2, we know that ¢ > 2, and so ¢ — 2 > 0. Now consider

(Z fW) = (Z f(g)Zf(g)H)
¢eG tel

Using equation 5.3.1, we can say

(Z |f<f>q> E (Z or (o) )

£eG
_ |A‘ m+1 _223 TreV2 ‘

IA

Using equation 5.3.2, we know

(Z f(&)q) <
¢eq

Q=

Since we are assuming that 2™ < |f(a)| < 2™ we know
(|A\)é2m+1 ., (w)gm
|G |Gl

< <|G|a;~|f )

3=
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We then get that R
H f HLq (G <2 H f HLP (5.3.3)

For the above inequalities, we have assumed that 2™ < |f(a)| < 2™ for all a in suppf.

Even though there are an infinite number of dyadic intervals, if we normalize the L” norm

1
so that (3, [f(a)[?)? =1, we need only consider the intervals between |G|~'% and |G['™.
Here’s why:

Suppose there exists an z € G such that |f(z)] > |G|'*. Even if for all other a € G,
@] =0, 1| f s> ((GI) ) . This implies that || f |[z)> (IG]°1)7 = “GG"
Unless |G| = 1, this implies that || f ||z»(¢)> 1, which is a contradiction. We still need an
argument as to why we can assume |G|~ i < |f(x)| for all x € G. However, we will just
accept this as fact for now.

Let A = suppf. If a € A, then, from the above argument, we know that |G|71%° <
|f(a)] < |G| for all @ € A. But |G| 100 — 9—100log |Gl 4 |G|100 = 2100182 IG1 This yields

the new inequality
910010, G| < 1f(a)] < 91001og; |G| (5.3.4)

By the Archimedian Principle, we know that there exists some k,l € Z such that k£ <
—100log, |G| < k+ 1 and [ < 100log, |G| < I + 1. We can then rewrite equation 5.3.4 as
28 < |f(a)] < 2! for all a € A. It is obvious that k < [ + 1, so subtracting k from [ + 1
should give us a positive number. Furthermore, [ — k ~ 2001log, |G|. This is the number of

dyadic intervals that our function can take values in.
For k < m < [, let us define A4,, = {a € A]2™ < |f(a)|] < 2™"'}. Notice that A =
Ul A,, and that all A,,s are disjoint. Let us also define f,, = fxa,, . Then, since the

m=k
Ams are dlSJOlIlt f= Zm . fm. But since the Fourier transform is linear, we also get that

f= S kfm From equation 5.3.3, we know that || T o< 2 || fm [lee(e) for all m.
Thus,

l
I F Wleey=N D F oy
m=k

By the triangle inequality, we get that

l
1 Pl < SO0 Pl
m=k

l
> 2| fn v
=k

20+ 1=Fk) || flleeca)
= 2(1+200logy |GI) || f llze(c)
< 400(1 4 log, |G) || £ [l ze(a)

IA

So, for all finite abelian groups G and for all f € L*(G), we have || 7 | @< 400(1 +
logy |G)) || f llzee) - In particular, this is true for the group GM, where |GM| = \G!M, and
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for the function F' € L?(G™) where I = f®M. Plugging these values into the inequality, we
get
H (f®M>AHLq(é\M)§ 400(1 + log, ‘GMD H f®M HLP(GM)

Using the tensor power trick, we get
| 712 < 4001 + Mlog, |G || £ 12q)

Now taking the M root,

I 1@ V40001 + Mlogy [G | f [l2e(c)

Finally, taking the limit as M goes to infinity yields

IS o <l e



Chapter 6

Tao’s Refinement

6.1 Tao’s Refinement

Terence Tao has proved a refinement to Theorem 56. We will prove his result, but we will
need a number of preliminary lemmas to do so. Again, we will first state these lemmas and
then provide proofs for them in a later section. Notice that this refinement applies to cyclic
groups.

Theorem 75. (Tao’s Refinement): Let p be a prime number. If f : Z/pZ — C is a nonzero
function, then

|suppf| + |suppf| > p+ 1.

Conversely, if A and B are two non-empty subsets of Z/pZ such that |A| + |B| > p + 1,
then there exists a function f such that suppf = A and suppf = B.

6.1.1 Why is this a Refinement?

Before we provide the lemmas and proofs, let us first examine why this result is an improve-
ment of the uncertainty principle. To do this, we will show that, from Tao’s refinement, we
can recover our original uncertainty principle.

Lemma 76. If a+b > p—+1 for a,b, p positive integers, then a X b > p.

Proof. We know that a + b > p + 1. We will obtain our result by contradiction, so let us
assume that ab < p. Let us consider two cases: b =1 and b > 1.

Case 1: Assume b = 1, then ab < p implies that a < p, but a + b > p + 1 implies that
a = ab > p. So we have a contradiction.

Case 2: Assume b > 1. Then ab < p implies that a < 2. But a +b > p + 1 implies
that @ > p + 1 — b. Combining the two inequalities, we get that p+1 — b < 2. Multiplying
through by b, we get bp + b — b?> < p. Subtracting bp from both sides and factoring, we get
that b(1 — b) < p(1 —b). Since b > 1, we know 1 — b < 0, so our inequality reduces to b > p.
Since a is a positive integer, ab > b, so we get that ab > p, which is a contradiction.

Thus, if a+b > p+1, this implies that ab > p. Tao’s refinement is indeed an improvement
on the uncertainty principle. O]

44
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6.1.2 Lemmas for the Refinement

Lemma 77. [19]: Let p be a prime, let n be a positive integer, and let P(z1, 2o, ..., 2,) be a
polynomial with integer coefficients. If wy,ws, ..., w, are p" roots of unity, not necessarily
distinct, and P(wy,ws, ... ,w,) =0, then P(1,1,...,1) is a multiple of p.

Lemma 78. The n'" derivative of the polynomial [icicjcn(zi — zi) yields:

Adn—1)
o 1 G-2=m-1 I G2
dzn 1<i<j<n 1<i<j<n—1

The following Lemma says that all minors of the Fourier matrix are invertible.

Lemma 79. Let p be a prime and let 1 < n < p. Let x1,29,...,2, be distinct ele-
ments of Z/pZ and let y1,ys,...,yn also be distinct elements of Z/pZ. Then the matriz
(62”ixfyk/p)1<j pen as a non-zero determinant.

Corollary 80. If p is a prime, and A, A are non-empty subsets of Z/pZ such that |A| = | A|,
then the linear transformation T : I?(A) — I*(A) defined by T'f = f|; (the restriction of the
Fourier transform of f to A) is invertible. Here, 1*(A) denotes the functions f : G — C

which are equal to zero outside of A.

6.1.3 Proof of the Refinement

Tao’s Refinement (Theorem 75): Let p be a prime number. If f : Z/pZ — C is a nonzero
function, then R
|suppf| + [suppf| = p+ 1.

Conversely, if A and B are two non-empty subsets of Z/pZ such that |A| + |B| > p + 1,
then there exists a function f such that suppf = A and suppf = B.

Proof. [16]: Let us prove the first statement by contradiction. Assume|suppf|+ [suppf] < p.
Let A := supp(f). We can then find a set A C Z/pZ such that ANsupp(f) = 0 with |A| = |A].
fTfla= ﬂA, then by Corollary 80 we know that 7" is invertible. Since A is disjoint from
supp(f)7 we know ﬂix = 0. Because T is invertible, this implies that f|4 = 0. But f|4 # 0
by definition, so this is a contradiction. Therefore, [suppf| + |supp]?| >p+ 1.

To prove the second statement, let us assume A and B are two non-empty subsets of
Z,/pZ such that |A| + |B| > p + 1. First, let us assume that |A| 4+ |B| = p + 1. Let us pick a
subset A € Z/pZ such that |A| = |A| = n and let the intersection of A and B contain just
one element, say £. Because the linear map 7' defined in Corollary 80 is invertible, we can
find a non-zero function f € (2(A) such that f is zero on A\{&} but f(£) # 0. But since
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AN B = {¢} and f is zero on A\{¢}, this implies that suppf C B. Also, since f € I2(A),
suppf C A. But by the first part of the theorem, suppf = A and suppf: B.

When we consider the case where |A|+|B| > p+1, we can find subsets A" and B’ of A and
B respectively, such that |A'| + |B’| = p+ 1. We can then take generic linear combinations
as A" and B’ vary. We will eventually conclude that for all A" C A, if x € A’ then x € suppf
for some f € [?(A). Similarly, for all B’ C B, if y € B’ then y € suppf. Thus, A = suppf
and B = supp]?. 0

Remark. Note that if our group did not have prime order, then this result would not be
true. For example, consider the group Zg. If our function was the indicator function of the
subgroup H = {0,2,4}, then |suppf| = 3. From Lemma 63 and Lemma 64, we know that

|suppf] ||§|| = 2. Then [suppf]| + |Suppf| =5 < 7. We could also consider our repeating
example of the Klein 4-group. Obviously, |G| = 4, and we have a subgroup of order 2,
H ={e,a}. Then |suppf| = 2, and again by the two lemmas mentioned above, |[suppf| = 2.

So [suppf| + |[suppf| = 4 < 5, so our refinement cannot be applied to groups without prime
order.

6.2 Proofs of Lemmas
Here we prove the three lemmas we used to prove Tao’s Refinement of the uncertainty
principle.

Proof. (Proof of Lemma 77): Let p be a prime, let n be a positive integer, and let P(2q, 22, ..., 2,)
be a polynomial with integer coefficients. Our goal is to show that if w;,ws, ..., w, are p”
roots of unity, not necessarily distinct, and P(wy,ws,...,w,) = 0, then P(1,1,...,1) is a
multiple of p. Consider

R 11 12 1
P(z1,29, ..., 2,) i= E Wiyigoin 21 250 -+ 0 200

1<in i, in <7

where a;,iy...;, € Z.

Then
Pk, 272 k) = Z iy, 2 P11 T R2E2FHRntn)
1<41,12...,in <7
Let us divide P(z*1, 2%, ... 2F) by 2P—1. Then P(2*, 2k2, ... 2Fn) = Q(2)(2P—1)+R(2),

where deg(R(2)) <p— 1. The Q(z) and R(z) depend on our ch01ce of k;s, so let use choose
the k;s so that R(z) will be of the form R(z) = Y7~ o,z with o, € Z,

Let w = e2™/P and w;(k) = wk. We know P(w;,wy,...,w,) = 0, and w? — 1 = 0. This
implies that R(w) = 0. Consider f(z) = 1+ z + 2* + --- + 2P~ then f(z) is irreducible
over Q (|10], pg.216, Corollary 23.17). But since w is a root of f(z) and f(z) is irreducible,
f(z) = qR(x), q € Q since irreducible polynomials for « over C are unique up to a constant
factor, ([10], pg. 269, Theorem 29.13). But since R(z) has integer coefficients, and so does
f(z), this implies that the constant multiple k = % € Z, since %f(x) = R(z).
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Consider P(1,1,...,1) = P(1", 1%, .. 1¥) = Q(1)(1? — 1) + R(1). Since 17 — 1 = 0,
this implies that P(1,1,...,1) = R(1). But R(1) = k(1 + 1+ 1>+ --- + 177!) = pk, some
k € Z. Thus, P(1,1,...,1) = pk, and P(1,1,...,1) is a multiple of p. ]

Proof. (Proof of Lemma 78): Consider

H (27— 2i) = (2n — 2n-1)(2n — 2n—2) - (20 — 21) H (zj — z).

1<i<j<n 1<i<j<n—1

Then we want to calculate its n'* derivative:

d=1 dn=1

D) (2 —21) =~ | (B — 20-1) (20 — 2n2) -+ (20 — 21) | | (2 — )
(n—1) (n—1)

dzn 1<i<j<n dzn 1<i<j<n—1

Since [, <, 1(2; — 2) does not depend on z,, we can pull it out front. Using the
product rule, we get

dn—1
=~ 1l -2
dzg : 1<i<j<n
dm=1)
= H (25 — 2i) m[(zn — 2Zn—2)(2n — Zn=3) - (20— 21) + -+
1<i<j<n—1 dzn

oot (Zn = 2ne1) (Zn = Znez) - (20 — 22)]

Since we started with n — 1 linear terms multiplied together, we get n — 1 terms, each
with n — 2 linear terms once we apply the product rule. Since we are taking the (n — 1)th
derivative, we will eventually end up taking the first derivative of (n—1)! linear terms. Thus,

(n—1)
T | (ECE U | !

1<i<j<n 1<i<j<n—1

Proof. (Proof of Lemma 79) [16]: Let p be a prime and let 1 < n < p. Let xq,x9,...,2, be
distinct elements of Z/pZ and let y1, ys, . - ., yn also be distinct elements of Z/pZ. Our goal is
to show that the matrix (ezmmiyk/p)Kj <, has a non-zero determinant. Define w; := e /P,

Each w; is a distinct root of unity, and we need to show that
det(w;*)i1<jp<n # 0,

where y1, 92, ..., y, are also distinct elements of Z,,.
Let us define a polynomial D(zy, 2, ..., 2,) of n variables as

D(z1, 22, ..., 2n) 1= det(2]* ) 1<) k<n-
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D(zy,z9,...,2,) is obviously a polynomial with integer coefficients.
If z; = 2z, we would have two identical rows of our matrix, so D(zy, 22,...,2,) = 0.
Thus, we can factorize D to get

D(Zl,ZQ,...,Zn):P(Zl,ZQ,...,Zn) H (Zj_zj’)

1<5<j’<n
where P(z, 29, ..., 2,) is some polynomial with n variables and integer coefficients. Note
that there are Z = (njLQ!)!Q! = ”(n;l) linear factors in D in the product.
We will try to show that P(1,1,...,1) is not a multiple of p, which Lemma 77 will then tell
us that P(wy,ws, . . ., wy,) is non-zero. This will prove our claim, since [[,; o, (wj—w;) # 0,
since wjs are all distinct.
In order to compute P(1,1,...,1), we will differentiate D a number of times.

Consider the expression

d 0 d 1 d 2 d n—1
(2132]) (ZQEZQ) (23325) o <anE;;> D(z1, 20, .. 20) (6.2.1)

n

Now note that there are 0+1+24---+(n—1) = @ differentiation operators applied
to D, which is the same as the number of linear factors in D. Moreover, there are n — k
linear factors involving 2, _j1.

When we take the derivative of D, we will need to use the product rule @ times. We
will end up adding numerous terms together, with each term having a combination of linear
factors multiplied by various derivatives of P(zy, 22, ..., 2,). The only term that will have no
linear factors will be P(zy, 29, ..., 2,), multiplied by 2125 - - 2, and

(zl %)0 (@%)1 <22d;‘zl3>2 e (zn%yl ' ngj<j,§n(zj — z;7), which we can calculate us-
ing Lemma 78. This will be the only term that matters, since when we plug in 1 for all the
z;, that will be the only term that doesn’t equal zero because all other terms will have at
least one linear factor. We can see this if we just consider taking the first few derivatives.
To begin with, let’s compute zn%(D(zl,z% . ,zn)) Let’s call P(z1,z29,...,2,) = f and
H1§j<j/§n(zj —zy) =g. Then D(z1,29,...,2,) = fg, and

d dg df )

an_zn(D(Zl,ZQ7...,zn)) :zn( E—i— i

Now consider

i/ d dg df Fg, A dg & P
o (zndzn<fg)) <f T e T g T T A e T

If we continue until we take the n'* derivative, we will end up with a term 2" f azn 2. All of the
other terms will be of the form

it dig
dz% dZZ
where 0 <k <n,0<j<n,and 0 <i <n—1. We can write dz;‘f as (n— 1) ]cicjcn (2 —

z;) by Lemma 78. We can do the same process for z,_1,...,2;. We will eventually be left
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with a very large sum of terms that each contain something of the form % where k < g,
except one term, which will be 272""1 ...z f(n — 1)!(n — 2)!---1. In the first type of term
mentioned, there will always be some sort of linear factor of the form (z; — z;). When we
plug in 1 for all of the z;s, these terms will all vanish. Thus,

a )" ) d n_lD( )| = (n—1!--11P(1,1 1)
ZleI Z2d,22 anzn Z1yR2y v vy Rn)|z1==2n=1 — n : . I .

Since n < p, (n — 1)!(n — 2)!--- 1! is not divisible by the prime number p, we need only
show that the above formula is not a multiple of p to show that P(1,1,...,1) is not divisible

by p.
Let S,, denote the group of permutations on n objects. By the definition of the determinant|2],

n

D(z1,29,...,2,) = Z sgn(o) H Z;_/am

oES) 7=1

So we can write equation 6.2.1 as

d 0 d 1 d 2 d n—1 n vt
(Zld_zl> (ZQd_ZQ) <Z2d_23) c. (an_zn> Z Sgn(O')ng

d\’ d\' d\’ d \"" 1T wew
-2 () () () (o) 11
0 1 2 n—2 n
d d d n—1 Yo (i)
Z Sgn(O') ( ) (sz—zz) < d_Zg) s (Zn—l dz 1) Yo(n) sz
O'GSn ]:1
(=) (

5L
1d21
d d ' d ’ d e n—1 n—2 - Yo (4)
= ngn(a) <Zld_21> (sz—zz) ZQd_Zg) (Zn—zdzn 2) yg(n)ya(n—l) jl:[lzj

gESy,

= Z Sgn(a)y:(_nl)y:(_n%l) e ya'(2)]— H Z;'JU(”
Jj=1

0ESh
Since we are concerned only when 2y = 20 =--- =z, =1,
d\° g \! d\2 g\
— — — | | 2= D(1,1,...,1
() () (o) () P
= Z sgn(0>y2@§y2@2_1) “Yo(2)]
oESH
= 2 son(@) ] v
0ESRH j=1

But this is the Vandermonde determinant, which we know to be [[,,_,, (y; —:). Since
Yi € Z/pZ and all y; are distinct, we know that [[,,_,,(y; —:) is not a multiple of p. Thus,
P(1,1,...,1) is not a multiple of p. By Lemma 77, this implies that P(wy,ws,...,w,) # 0,
and furthermore that D(wy,ws, ..., w,) = det((e2™@ivr/P) 2£ 0. O
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Proof. (Proof of Corollary 80): Let p be a prime, and let A, A be non-empty subsets of Ly
such that |A| = |A|. We want to prove that the linear transformation T : [?(A) — I(A)
defined by Tf|la = f|;. Define w := €?™/?. By the definition of the Fourier transform

equation 3.4.1, f(a) = Y ,.s f(a)w™. Since f € I>(A), we can rewrite the Fourier transform

-~

as f(@) = Y ca f(@)w™. Let |A| = n and let A = {ai,as,...,a,}. Similatly, let A =
{d1, ds, ..., d,}.Consider the column vector

flar)
flaz)
. (6.2.2)
f(an)
We must apply a linear transformation, T, to equation 6.2.2 to get
Ay
f(az)
f(an)
By the definition of the Fourier transform,
wcflal w(flaz ... wdlan
wdgal wa~2a2 .. wdﬂln
T =
wnal ,anaz .. ,0nGn

But we know from Lemma 79 that det(T) is non-zero, and so T is invertible. ]



Chapter 7

Applications

After developing this new version of Fourier analysis, one might wonder, why have we done
this? It turns out there are many applications of Fourier analysis on groups, two of which
we will discuss in this section. First is a theoretical application of Tao’s refinement of
the uncertainty principle to the distribution of primes, and the second is a more practical
application to the field of compressed sensing.

7.1 Arithmetic Progression of Primes

Tao’s refinement has been used to prove a very impressive theorem by Tao and Ben Green, the
Green-Tao Theorem. This result, along with other works, earned Terence Tao the prestigious
Fields Medal in 2006.

Theorem 81. (The Green-Tao Theorem): The prime numbers contain infinitely many arith-
metic progressions of length k for all k.[11]

Remark. The proof of this groundbreaking theorem is far beyond the scope of this text.
However, it is mentioned because the ideas developed in Tao’s refinement play a role in
proving the above result.

We can see a simple example, where £ = 5 : 5,11,17,23,29. This is only the first of an
infinite list of arithmetic progressions of length 5 of prime numbers.

The longest known arithmetic progression is of length 26 and starts with the number
43142746595714191 with a difference of 5283234035979900. This was discovered in 2010 by
Perichon [15].

7.2 Compressed Sensing

While we have created a comprehensive theory for Fourier analysis of groups, one might
wonder if there is any practical application to such notions. In fact, compressed sensing,
a very popular area of interest and research, relies heavily on the concepts we have just
developed. Compressed sensing has applications to medical imaging and image compression.
The military would like to implement this technique, using small, inexpensive cameras to

ol
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record small amounts of data that can later be reconstructed using compressed sensing to
give a comprehensive view [5].

Lemma 82. [16]: Let N be a prime number and T, be subsets of Zy. Let lo(T) and 15(9)
be the spaces of signals that are zero outside of T and 2 respectively. The restricted Fourier
transform Fr_q : lo(T) — 15(Q) is defined as

Froof = fla forall f € ly(T)

If |T| = |Q|, then Fr_q is a bijection. If |T| < |Q|, Fr_q is an injection, and if |T| > |,
then Fr_.q is a surjection.

Proof. In Corollary 80, we proved that if |7 = ||, then the linear transformation A :
I5(T) — 1,() defined as Af = f|q is invertible. This implies that, if |T| = ||, then Fr_q
is a bijection. Therefore, if |T'| < ||, then Fr_,q is an injection. Similarly, if |T°| > ||, then
Fr_q is a surjection. The theorem holds if the Fourier transform is replaced by the inverse
Fourier transform. O

Theorem 83. Let f : Zn — C, with N being a prime number. Let € be a subset of
{0,1,2,...,N — 1} and f be a vector supported on T such that |T| < 1|Q|. Then f can

be constructed uniquely from Q and ﬂg Conversely, if ) is not the set of all N frequencies,
then there exist distinct vectors f, g such that |supp(f)|, |supp(g)| < 31Q+ 1 and flo = lo-

Proof. [3]: Let us start with the first claim of the theorem. Assume that f is a vector
supported on 7" such that |T| < $|Q]. Since |T'| < ||, we know from Lemma 82 that Fr_,q is

injective. By the definition of injective, each element of ﬂg in the range of Fr_.q is the image
of a unique element f € [5(T"). Equivalently, if Fr_.ofi = Froafe then fi = fo. Therefore,
we can reconstruct f. To prove uniqueness, assume there exists f,g € lo(7) such that
lsupp(f)], [supp(g)| < 3|€?| and ﬂg = g|q. Consider the function f — g. Since f/—\g =f-7
we know that the Fourier transform of f — g vanishes on Q. Also, [supp(f —g)| < |Q|. Again

—

by Lemma 82, we know that Fsupp(s—g—a is injective. But since f — glo = 0, this implies
that f — g = 0. Thus, f=g¢.

Now, consider the second statement of the theorem. Assume that || < N. We can find
disjoint subsets S, T such that |S|,|T| < 2]Q| + 1 and |T| + |S| = || 4+ 1. Let ao be a
frequency which is not in Q. By Lemma 82, we know that Frys_aufae} 15 @ bijection. This
implies that we can find a vector h that’s supported on T'U S that vanishes on €2 but is
non-zero at ag. Thus, h is non-zero. If we then define f := h|r and g := hl|g, we have that

fla = Gla and |supp(f)], [supp(g)| < 1|9 O

While there is much, much more involved in the quickly-developing field of compressed
sensing, the above theorems show how closely compressed sensing is related to Tao’s refine-
ment.
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