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Chapter 1

Introduction

1.1 Basic Physics terminology

Physics that we use in the project:

• Visible light is electromagnetic radiation.

• Light have properties of both waves and particles(electromagnetic radiation is emitted and

absorbed by photons).

• Electromagnetic radiation has both electric and magnetic field components. They oscillate

in phase perpendicular to each other and perpendicular to the direction of energy and wave

propagation. Electromagnetic waves are transverse.

Figure 1.1: Taken from Wikipedia[1].

• Transverse waves the medium is displaced in a direction perpendicular to the motion of

the wave.
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• Polarization of electromagnetic waves is described by orientation of electric/magnetic field.

• When light/electro-magnetic wave is p-polarized, the only non-zero component of magnetic

field is tangential to an interface and the only non-zero components of electric field are

parallel to the plane of incidence.
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• Boundary conditions - components of electricmagnetic field that are tangent to the interface

are continuous across it.

• Electric permittivity of a medium is a measure of how much the medium is permeated

by the electric field. We denote it by ε̃. The electric permittivity of free space is always

denoted ε0 and equals to 8.8542 ∗ 10−12.

• Magnetic permeability of a medium is a measure of how capable the medium is to in-

duce/support the magnetic field within it. We it denoted by µ̃.The permeability of free

space is µ0 and equals to 4π ∗ 10−7.

• Speed of light in a dielectric medium is v =
√
ε̃µ̃.

• Absolute index of refraction is n = c
v =

√
ε̃µ̃

ε0µ0
where c is the speed of light.

• Dielectric constant is ε = ε̃
ε0

which is dimensionless.

• Relative permeability is µ = µ̃
µ0

which is dimensionless.
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• Maxwell’s equations in differential form:

curl ~E = −µ0∂t(µ ~H)

curl ~H = ε0ε∂t( ~E).

where ε and µ are relative permittivity and permeability respectively.
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1.2 Introduction to metamaterials

Metamaterials are artificially made materials with nano scale metallic inclusions in a dielectric

host medium. Due to this structure, when light, which is considered to be an electro-magnetic wave

in this case, interacts with metamaterials, electric and magnetic fields interact resonantly with free

electrons of metallic inclusions. One of the results of this electromagnetic interaction of light with

metamaterials is negative refraction. The metamaterials with negative refractive index are of special

interest because they can be used to create materials with zero refractive index or to create super

lens that will resolve objects whose sizes are smaller than the wavelength of light. In this project, we

derive the governing equations that describe electric and magnetic fields in metamaterials. Then,

we concentrate on numerically solve these equations, so we are able to make numerical simulations

of the electric and magnetic fields in metamaterials. Metamaterials are layered structures. Every

layer is periodic in its plane, and homogeneous in the vertical direction. We can see it in the

following figures.

Figure 1.2: A layer of metamaterial. Taken form Chettiar [2].
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Figure 1.3: Metamaterial with multiple layers. Taken form Valentine [4].



Chapter 2

Derivation of governing equations

2.1 Setting Up the Problem

For simplicity, we consider the following metamaterial with the negative index of refraction:

every layer is homogeneous in the z and x directions, and has alternation of different conductors

with different dielectrics along the y direction.
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We assume that the metamaterial is periodic in the y direction. This means that every conduc-

tor/dielectric that is present in the metamaterial is repeated with some period in the metamaterial.

2.2 The Main Equation

We consider the single layer of the described above metamaterial in 2D that is there is no

z-direction. A piece of the metamaterial between the same conductors/dielectrics we call the unit

cell or structure with period δ.Every conductor/dielectric in the structure is called the element of

the structure. We assume that we have s elements of the structure. In other words, s is the number

of materials in the cell.Every i-th element of the structure has the boundary yi withi+1-th element

where i = 1, ...s.
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Figure 2.1: 2D cross-section of layer of metamaterial, taken from Korotkevich [3].

So, the structure starts at the boundary y0 = 0 and ends at the boundary ys = δ.Since the

structure has different conductors/dielectrics, every i-th element of the structure has dielectric

constant εi where i = 1, ...s. The light or electro-magnetic wave is incident to the x-axis at the

angle θ.We consider that the light is p-polarized plane wave that is the only non-zero component

of magnetic field is perpendicular to the plane of incidence. Then, ~H = hẑ s sufficient to describe

the propagation of light through the structure. Thin metal films at optical frequencies can be

considered as a material with complex dielectric permittivity and µ = 1. The 2D graph of the

structure/cell: In every i-th element of the structure where i = 1, ...s we should be looking for a

propagating plane wave in the following form:

hi(x, y, t) = a+i e
(ıkxx+ık

(i)
y y−ıωt) + a−i e

(−ıkxx−ık
(i)
y y−ıωt) (2.1)

where a+i and a−i represent the amplitude of the forward and backward propagating waves/modes

in the i-th element, ω is the frequency of oscillations, and k
(i)
y is the component of the wave vector

in the y direction in the i-th element. Notice that kx, the component of the wave vector in the

x-direction, does not depend on i. The reason is that we are actually trying to find kx such that it

is the same in every element of the structure.
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2.3 Normalization of Coordinates

The absolute value of the wave vector in free space is k0 =
ω
c where c is the speed of light in

free space. We see that equation (2.1) can be written as:

hi(x, y, t) = a+i e
(ıkxx

k0
k0

+ık
(i)
y y

k0
k0

−ıωt)
+ a−i e

(−ıkxx
k0
k0

−ık
(i)
y y

k0
k0

−ıωt)
. (2.2)

Now, we renormalize δ and coordinates x,y:

x → k0x = x̃

y → k0y = ỹ

delta → k0δ = δ̃.

We see that new coordinates are dimensionless. Lets drop tilde and use x, y, and δ, but we should

remember that now x, y, and δ are renormalized coordinates. As a result we are left with kx
k0

:= k̃x

and
kiy
k0

:= k̃iy.We see that k̃x and k̃iy are now dimensionless x and y component of the wave vector

respectively. Lets drop tilde and use kx and kiy, but we should remember that kx and kiy are now

dimensionless. We remember that the magnitude of the wave vector in the i-th element is:

(k(i))2 = (k(i)y )2 + (kx)
2

k(i)y =
√

(k(i))2 − (kx)2

k
(i)
y

k0
=

√
(
k(i)

k0
)2 − (

kx
k0

)2

We remember that c
v =

√
ε̃µ̃

ε0µ0
in dielectrics. Since metal inclusions are thin in the metamaterial,

then we should consider them as dielectrics. We also remember that k = ω
v in a medium where v

is the speed of light in the medium. Then:

k
(i)
y

k0
=

√
(
( ωvi )

2

(ωc )
2
− (

kx
k0

)2

k
(i)
y

k0
=

√
(
c

vi
)2 − (

kx
k0

)2

k
(i)
y

k0
=

√√√√(

√
ε̃µ̃

ε0µ0
)2 − (

kx
k0

)2
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We remember that: µ = µ̃i

µ0
= 1 in every element of the structure; ε̃i

ε0
= 1 is dielectric constant ε− i

in the i-th element of the structure where i = 1, ...s; kx
k0

is the dimensionless x component of the

wave vector that we called kx.Then:

k
(i)
y

k0
=

√
εi − (kx)2

gi := ı
k
(i)
y

k0
=

√
(kx)2 − εi

We see that gi is dimensionless. After all of the above manipulations, the equation of the propa-

gating plane wave in every i-th layer where i = 1, ...s is:

hi(x, y, t) = a+i e
giyeıkxxe−ıωt + a−i e

−giye−ıkxxe−ıωt (2.3)

where x, y, kx, and gi are dimensionless.

2.4 Coupling Fields of i-th and i+ 1-th elements

For convinience, we rename terms on the right hand side of the equation (2.3): h+i =

a+i e
giyeıkxxe−ıωt and h−i = a−i e

−giye−ıkxxe−ıωt. Lets derive equations that couple the fields of

i-th and i+ 1-th elements of the structure on the i-th boundary. Since the structure is periodic in

the y-direction, then i-th boundary occurs at coordinate yi where i = 1, ...s.

2.4.1 Boundary Conditions on the Magnetic Field

We remember that electro-magnetic wave is p-polarized. In other words, the only non-zero

component of magnetic field is perpendicular to the plane of incidence that is tangent to the i-

th boundary. Boundary conditions imply that magnetic field component that is tangent to the

i-th boundary is continuous across it.Then, at the i-th boundary we have the following equation:

(h+i + h−i )yi = (h+i+1 + h−i+1)yi where i = 1, ...s and yi is the point on the i-th boundary at which

we evaluate hi and hi+1.
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2.4.2 Maxwells Equations and Boundary Conditions on the Electric Field

ets recall that one of the Maxwells equations is curl ~H = ε0ε∂t( ~E). Since electro-magnetic

wave is p-polarized, then all non-zero components of electric field are in plane of incidence. This

implies that electric filed has non-zero components in the x and y directions respectively. Lets

name these components Ex and Ey, then ~E = Exx̂ + Eyŷ. We assume that the electric filed is

represented by a some kind of a plane wave. Therefore, ~E has the following dependence on t by

having e−ıωt term. As a result, the partial derivative of ~E with respect to t is −ıω ~E. Since we are

going to use curl ~H = ε0ε∂t( ~E) in the i-th element of the structure, then this equations is going to

look like ∇× hiẑ = ε0εi∂t( ~Ei) where ~Ei = Eixx̂+ Eiyŷ.

(1) ∇× hiẑ =


x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

0 0 hi

 = ∂hi
∂y x̂− ∂hi

∂x ŷ

(2) ε0εi
∂ ~E
∂t = −ıωε0εi ~Ei = −ıωε0εi(Eixx̂+ Eiyŷ)

(3) ∇× hiẑ = ε0εi∂t( ~Ei) ⇒ ∂hi
∂y x̂− ∂hi

∂x ŷ = −ıωε0εi(Eixx̂+ Eiyŷ)

(4) ∂hi
∂y = −ıωε0εiEix and ∂hi

∂x = ıωε0εiEiy

(5) Since light is p-polarized, then components of electric field that are parallel to the i-th

boundary are continuous across it. We see that only Ex omponent of the electric field is

tangent to the i-th boundary then Ex is continuous across it. This implies that (Eix)yi =

(E(i+1)x)yi where i = 1, ...s.

(6) Since (Eix)yi = (E(i+1)x)yi , then
1

−ıωε0εi
(∂hi
∂y )yi =

1
−ıωε0εi+1

(∂hi+1

∂y )yi ⇒ 1
εi
(∂hi
∂y )yi =

1
εi+1

(∂hi+1

∂y )yi

(7) Let γi =
1
εi
, then γi(

∂hi
∂y )yi = γi+1(

∂hi+1

∂y )yi

(8) ∂hi
∂y = ∂

∂y (h
+
i + h−i ) = gi(h

+
i − h−i )

(9) So, we have that: γi(
∂hi
∂y )yi = γi+1(

∂hi+1

∂y )yi ⇒ γigi(h
+
i − h−i )yi = γi+1gi+1(h

+
i+1 − h−i+1)yi

where i = 1, ...s and yi is the point on the i-th boundary at which we evaluate hi and hi.
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From sections 2.4.1 and 2.4.2, we have two equations that couple the fields of i-th and i + 1-th

elements of the structure on the i-th boundary where i = 1, ...s:

(h+i + h−i )yi = (h+i+1 + h−i+1)yi (2.4)

γigi(h
+
i − h−i )yi = γi+1gi+1(h

+
i+1 − h−i+1)yi (2.5)

where γi =
1
εi

and i = 1, ...s.

2.4.3 Bloch Periodic Boundary Conditions

Lets get equations for hi on the periodic boundaries. We remember that the structure starts

at the boundary y0 = 0 and ends at the boundary ys = δ, , and we have s elements of the structure.

Since we have s+ 1 boundaries and general case of incidence with angle θ to the x-direction, then

Bloch periodic boundary conditions imply that:

hi+s(x, yj+s; t)e
−αδ = hi(x, yj ; t) (2.6)

where α = ısinθ and yj is some y coordinate within the i-th elemnet. In terms of h+i and h−i , the

equation (2.6) is represented as:

(h+i+s + h−i+s)e
−αδ = h+i + h−i (2.7)

where i = 1, ...s. Since we assumed that ~E is in some form of a plane wave, then it is a periodic

function. By applying Bloch periodic boundary conditions, we have that E(i+s)x(x, yj+s; t)e
−αδ =

Eix(x, yj ; t) where Eix is the value of the x-component of the electric field at the i-th boundary and

yj is some y coordinate within the i-th element. In section 2.4.2, we have got that ∂hi
∂y = −ıωε0εiEix.

We have:

E(i+s)x(x, yj+s; t)e
−αδ = Eix(x, yj ; t)

1

−ıωε0εi

∂hi
∂y

=
1

−ıωε0εi+s

∂hi+s

∂y
e−αδ

γi
∂hi
∂y

= γi+s
∂hi+s

∂y
e−αδ
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So, we have that:

γigi
∂hi
∂y

= γi+sgi+s
∂hi+s

∂y
e−αδ (2.8)

where i = 1, ...s.

2.5 Matrix-Vector Form

Since factor e−ıωt is present at the left and right hand side of the equations (2.4) and (2.5),

we divide the left and right hand side these equations by e−ıωt. Now, let’s rewrite the equations

(c) and (2.5) in matrix-vector form:

mid(i,i) ~ai = mi+1d(i+1,i) ~ai+1 (2.9)

where we introduce

~ai =

 a+i e
ıkxx

a−i e
−ıkxx

 , mi =

 1 1

giγi −giγi

 , d(i,j) =

 egiyj 0

0 e−giyj

 . (2.10)

for i, j = 1...s. Notice that subscript (i, j) of the matrix d is used to show the dependence of g and

y on i,j. Now, we want to get the expression for ~ai. So, we need to multiply the both side of the

equation (2.9) by d−1
(i,i)m

−1
i . Then:

Solving (??) for ~ai one can get recurrent equations on ~ai:

~ai = d−1
(i,i)m

−1
i mi+1d(i+1,i) ~ai+1 (2.11)

where m−1
i = 1

2giγi

 giγi 1

giγi −1

 and d−1
(i,j) =

 (e−giyj 0

0 egiyj

. We see that for equation (2.11)

to exist, mi and d(i,i) should be nonsingular for all i. We notice that d(i,i) never equals to zero

matrix for all i. Since d(i,i) is diagonal matrix and never equals to zero matrix, then d(i,i) is

nonsingular matrix for all i. We remember that γi = 1
εi

where εi is dielectric constant. So, γi

never equals to zero. Then, for mi to be nonsingular, gi should not be equal to zero for all i. Let

ti = d−1
(i,i)m

−1
i mi+1d(i+1,i) ~ai+1 and by using equation (2.11) we have that:

~ai = ti ~ai+1 (2.12)
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2.6 Matrix-Vector Form and Bloch Periodic Boundary Conditions

By applying equations (2.4) and (2.5) from section 2.4.1 and 2.4.2 at the s boundary, i = s.

We have:

(h+s + h−s )ys = (h+s+1 + h−s+1)ys (2.13)

γsgs(h
+
s − h−s )ys = γs+1gs+1(h

+
s+1 − h−s+1)ys (2.14)

We apply equations (2.7) and (2.8) from section 2.4.3 to the right hand sides of equations (2.13)

and (2.14). Since hi+s is evaluated at ys, then h1 should be evaluated at y0. In addition, since the

structure is periodic (εi = εi+s), then γs+1 = γ1 and gs+1 = g1.

(h+s+1 + h−s+1)yse
−αδ = (h+1 + h−1 )y0

γs+1gs+1(h
+
s+1 − h−s+1)yse

−αδ = γ1g1(h
+
1 − h−1 )y0

The two above equations in the matrix-vector form: 1 1

γ1g1 −γ1g1


 eg1y0 0

0 e−g1y0


 a+i e

ıkxx

a−i e
−ıkxx

 =

 1 1

γsgs −γsgs


 egsys 0

0 e−gsys


 a+s e

ıkxx

a−s e
−ıkxx

 e−αδ

m1d(1,0) ~a1 = msd(s,s)e
−αδ ~as

~as = d−1
(s,s)m

−1
s m1d(1,0)e

αδ ~a1

Recall that y0 = 0, then d(1,0) = I. So, we have that

~as = ts ~a1 (2.15)

where ts = d−1
(s,s)m

−1
s m1e

αδ

2.7 Eigenvalue Problem

Now, we can use equations (2.12) and (2.15) to derive equations for ~a1,~a2,~a3,...,~as:

(1) ~a1 = t1~a2

(2) ~a2 = t2~a3 ⇒ ~a1 = t1~a2 = t1t2~a3
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(3) ~a3 = t3~a4 ⇒ ~a1 = t1~a2 = t1t2~a3 = t1t2t3~a4

...

(i) ~ai = ti~ai+1 ⇒ ti−1~ai = ti−1ti~ai+1 ⇒ ... ⇒ ~a1 = t1~a2 = t1t2~a3 = ... = t1t2...ti~ai+1
...

(s) ~as = ts~a1 ⇒ ~a1 = t1~a2 = t1t2~a3 = ... = t1t2...ts~a1

The last equation from the part s can be rewriten as:

~a1 = t~a1 (2.16)

where t =
∏s

i=1 ti with ti = d−1
(i,i)m

−1
i mi+1d(i+1,i) ~ai+1 for i = 1, ..., s−1 and ts = d−1

(s,s)m
−1
s m1e

αδ.

We see that equation (2.16) is the eigenvalue problem for ~a1 with eigenvalue 1: (I− t)~a1 = ~0. For

the above system to have non-trivial solution, the determinant of (I− t) should be equal to 0. So,

by using the formula for the characteristic equation for determinants of 2x2 matrices and λ = 1,

we have that:

1− Tr(t) + det(t) = 0 (2.17)

2.8 Properties of Determinant

By product property of determinants, we have that:

det(t) = det(t1)det(t2)det(t3)...det(ts).

Let’s calculate the dtereminant of matrix det(ti):

det(ti) = det(d−1
(i,i))det(m

−1
i )det(mi+1)det(d(i+1,i)) =

1
γigi

γi+1gi+1.

The determinant of matrix ts:

det(ts) = e2αδdet(d−1
(s,s))det(m

−1
s )det(m1) = e2αδ γ1g1γsgs

.

By using the above results, we derive that det(t) = e2αδ and substitute it into the equation (2.17):



17

1− Tr(t) = 0

Tr(t) = 1 + e2αδ = 2eαδ(e−αδ+eαδ)
2 = 2eαδcoshαδ

Tr(t) = 2eαδcoshαδ (2.18)

Let’s recall the following facts:

(1) t =
∏s

i=1 ti with ti = d−1
(i,i)m

−1
i mi+1d(i+1,i) ~ai+1 for i = 1, ..., s−1 and ts = d−1

(s,s)m
−1
s m1e

αδ.

(2) mi =

 1 1

giγi −giγi

 , and d(i,j) =

 egiyj 0

0 e−giyj

 , with hγi = 1
εi

and gi =

√
(kx)2 − εi

(3) α = sinθ where θ is the incidence angle to the x-direction of light/electro-magnetic wave.

This angle is given to us.

(4) δ is the period that is given to us.

So, we see that only unknown variable in the equation (2.18) is kx. After we solve the non-linear

equation (2.18) for kx, we should evaluate gi =
√

(kx)2 − εi in every element of the structure.

However, the main task is to evaluate the amplitudes of the forward and backward propagating

waves/modes in the i-th element. So, the values of kx has been evaluated by Professor Alexander

O. Korotkevich by using Lehmer-Schur algorithm based on the Argument Principle.

2.9 Argument Principle

If a function f(z) is meromorphic (analytic except for poles) in the domain interior to a

positively oriented contour Γ; analytic and nonzero on Γ; then

1
2πı

∫
Γ

f ′(z)
f(z) dz = 1

2πı

∫
Γ

ln′(f(z))dz = (Z − P ).

where Z – is number of zeros of the function in the domain and P – number of poles.



18

2.10 Amplitudes

After we found kx, we need to calculate a+i and a−i that is the amplitudes of the forward and

backward propagating waves/modes in the i-th element.

2.10.1 Singularity Condition

We found kx from the condition that the matrix (I−t) is singular. This implies that ~a1 where

(I − t)~a1 = ~0 has infinitely many non-trivial solutions. Let (I − t) =: A =

 A11 A12

A21 A22

. Let’s

use the following method. Since A is singular, then rows of the matrix A are linearly dependent.

This implies that ∃ c ∈ C such that A21 = cA11 and A22 = cA12 =⇒ A =

 A11 A12

cA11 cA12

.

Lets multiply the first row by −α and add it to the second row.Then,A =

 A11 A12

0 0

 ⇒

 A11 A12

0 0

~a1 = 0 ⇒ ~a1 =

 A12

−A11


We apply the same method to the first row. Then, by applying the method to the second

row the solutions ~a1 = c1

 A12

−A11

 and ~a1 = c2

 A22

−A21

 where c1, c2 ∈ C

2.10.2 Matrix Manipulations

Lets recall that ~ai =

 a+i e
ıkxx

a−i e
−ıkxx

, then ~a1 =

 a+1 e
ıkxx

a−1 e
−ıkxx

. We see that we can rewrite

~a1 in the following form: ~a1 =

 a+1 e
ıkxx

a−1 e
−ıkxx

 =

 eıkxx 0

0 e−ıkxx


 a+1

a−1

. Let’s substitute

~a1 =

 eıkxx 0

0 e−ıkxx


 a+1

a−1

 for example into ~a1 = c1

 A12

−A11

:

 eıkxx 0

0 e−ıkxx


 a+1

a−1

 = c1

 A12

−A11
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a−1

 = c1

 e−ıkxx 0

0 eıkxx


 A12

−A11


We choose c1 = e−ikx .

After we calculate ~a1, we are going to use ~as = ts ~a1 to find ~as and ~ai = ti~ai+1 to calculate

all other amplitudes i = 2, ..., s−1. After we found kx, gi, and ~ai, we are finally able to reconstruct

the magnetic filed at the every point of the cell. Since we know ~H at every point of the cell. Then

by using Maxwell’s equation ∇× ~H = ε0ε∂t( ~E), we are able to find the electric field at every point

in the structure.



Chapter 3

Numerical Simulations.

We are using MATLAB to calculate the values of the forward and backward propagating

waves/modes in the i-th element. After we evalute a+i and a−i in every i-th element, we use

Maxwell’s equation ∇× ~H = ε0ε∂t( ~E) to calculate the magnetic and electric fields.

3.1 Initial Data for the Case of Two Elements

We consider the structure with two elements that is s=2. We are given the following tables:

The Width of the Element (nm) Dielectric Constant

Element 1 5.0 -26.0790 + 0.8819i

Element 2 45.0 2.7224 - 0.0296i

Number of the kx Dimensionless Value

1 -1.695679238387135e-01 -2.956935340797049e+00

2 4.421583361978319e-03 -1.648402109808226e+01

3 3.508479947541616e-03 -9.057013389637862e+01

4 2.239931603186373e-02 -5.022221535165307e+01

5 1.052240428479498e-02 -3.326157067505196e+01

6 -2.239931603186461e-02 5.022221535165307e+01
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Number of the kx Dimensionless Value

7 2.431188818640963e+00 -7.432525696627290e+01

8 -3.012814624814569e+00 -1.106218640105945e-01

9 2.174406378391880e-02 9.771154602270143e+01

10 -4.421583361978352e-03 1.648402109808226e+01

11 -1.052240428479628e-02 3.326157067505196e+01

12 1.516021336386181e-01 7.702337370307291e+01

13 9.556865697890394e-03 4.064610767458256e+01

14 -2.431188818640970e+00 7.432525696627295e+01

15 3.035552044654712e-03 5.738486460259395e+01

16 -9.556865697890387e-03 -4.064610767458256e+0

17 -1.461185840105554e-01 7.017733929509339e+01

18 3.012814624814563e+00 1.106218640105944e-01

19 2.132085694979038e-02 2.366851262791773e+01

20 1.461185840105556e-01 -7.017733929509339e+01

21 -3.035552044656346e-03 -5.738486460259395e+01

22 1.695679238387134e-01 2.956935340797049e+00

23 2.431295481128431e+00 7.462001939515700e+01

24 -1.516021336386175e-01 -7.702337370307293e+01

25 -2.174406378391873e-02 -9.771154602270143e+01

26 -2.132085694979038e-02 -2.366851262791773e+01

27 -2.431295481128424e+00 -7.462001939515702e+01

28 -3.508479947541663e-03 9.057013389637862e+01
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3.2 Graphs

The following graphs represent the magnetic and electric fields for the firts 4 values of kx (If

reader is interested in the rest of the graphs, we attach them in the Appendix A.). We observe that

the condition of the tangetntial component of the magnetic field being continuous over the boundary

is satisfied. Since only the x component of the electric fields is conserved over the boundary, we

cannot excpect any particular behaviour from the electric field over the boundary. We are attaching

the first 4 x components of the electric fields to show that they are conserved over the boundary.

We see that the Bloch periodic boundary conditions are satisfied by both fields.
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Figure 3.1: Magnetic Fields for the first 4 kx
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Figure 3.2: Electric Fields for the first 4 kx
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Figure 3.3: x components of electric Fields for the first 4 kx



Chapter 4

Conclusion

The numerical simulations show that our method of setting up and deriving the governing

equations for the magnetic and electric fields indeed works. As a result, we belive that this method

can be applyed to any type of periodic metamaterials with negative index of refraction. The use of

this method produces non-experimental approach to finding and studying the behaviour of magnetic

and electric fields in metamaterials with negative index of refraction. In future works, we would

like to consider the 3D case of the layer of the metamaterial with negative index of refraction. In

addition, we want to expand the amount layers from 1 to n.
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Appendix A

The magnetic fields for different kx:

Figure 5.1: Magnetic Fields for the second 4 kx’s
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Figure 5.2: Magnetic Fields for the third 4 kx’s

Figure 5.3: Magnetic Fields for the fourth 4 kx’s
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Figure 5.4: Magnetic Fields for the fifth 4 kx’s

Figure 5.5: Magnetic Fields for the sixth 4 kx’s
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Figure 5.6: Magnetic Fields for the seventh 4 kx’s

The electric fields for different kx:
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Figure 5.7: Electric Fields for the second 4 kx’s

Figure 5.8: Electric Fields for the third 4 kx’s
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Figure 5.9: Electric Fields for the fourth 4 kx’s

Figure 5.10: Electric Fileds for the fifth 4 kx’s
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Figure 5.11: Electric Fileds for the sixth 4 kx’s

Figure 5.12: Electric Fileds for the seventh 4 kx’s
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