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Abstract

In investigating the basically full closure of monomial ideals of rings we use numer-
ical semigroups as a proxy. A numerical semigroup is a subset of the natural numbers
S with a binary operation such that it is, associative, abelian, has an identity and has
a finite complement with the Natural Numbers which we call its gaps G(S). Numerical
semigroups can be denoted by their minimally generating elements a1, ..., an such that

< a1, a2, ..., an >= {x ∈ N |x = k1 ∗ a1 + ... + kn ∗ an, k1, ..., kn ∈ N}

In particular we will discuss basically full ideals in numerical semigroups, their
closures and the structure of basically full closures associated with different types of
ideals.

1 Intro

Our first questions about basically full closures come from Heinzer, Ratliff, Rush 2002
where they discuss the basically full closures of commutative rings.

Definition 1.1 A commutative ring R is a set with two binary operations + and × (called
addition and multiplication) with an abelian group under addition, associativity and com-
mutativity under multiplication, and the regular distributive laws. (Dummit, pg224)

When we decided to investigate basically full closures it was clear that tackling the broadest
case of any commutative ring R was too cumbersome. Instead we looked to the more
particular case of the formal power series and the numerical semigroups they generate.
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Definition 1.2 A formal power series R[[x]] with coefficients ai and bi in the ring R are

sums
∞∑
i=1

anx
n = a0 + a1x + a2x

2 + a3x
3 + . . .

with addition defined as
∞∑
n=0

anx
n +

∞∑
n=0

bnx
n =

∞∑
n=0

(an + bn)xn

and multiplication as
∞∑
n=0

anx
n ×

∞∑
n=0

bnx
n =

∞∑
n=0

n∑
k=0

(akbn−k)xn

Definition 1.3 Numerical Semigroup Rings. Any numerical semigroup generates a nu-
merical semigroup ring, a formal power series ring, k[[tS ]] who’s elements are

∑
s∈S

cst
s

Basically full closures are an operation done on ideals of a commutative ring so we investi-
gate ideals and more specifically monomial ideals in the semigroup ring k[[tS ]]. We start by
discussing numerical semigroups in their own right, then discuss ideals in rings and their
operations in rings and connect those ideals and operations to the equivalent in numerical
semigroups.

2 Numerical Semigroups

Definition 2.1 A Numerical semigroup is a subset of the natural numbers S with the
binary operation addition that is commutative, associative and has an identity.

Definition 2.2 An important feature of a numerical semigroup is its finite complement
with the natural numbers which we call its gaps, G(S).

Definition 2.3 Multiplicity of a numerical semigroup S is the size of the smallest gener-
ating element i.e. for S =< a1, . . . , an > the multiplicity is a1.

Numerical semigroups can be denoted minimally by generating elements a1, . . . , an with
gcd(a1, a2, . . . , an) = 1 such that

< a1, a2, . . . , an >= {x ∈ N|x = j1a1 + ... + jnan, j1, . . . , jn ∈ N}.

Example 2.4
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S1 =< 2, 3 >= {0, 2, 3, 4, . . .} G(S1) = {1}
S2 =< 4, 7 >= {0, 4, 7, 8, 11, 12, 14, 15, 16, 18, . . .} G(S2) = {1, 2, 3, 5, 6, 9, 10, 13, 17}
S3 =< 3, 5, 7 >= {0, 3, 5, 6, 7, 8, . . .} G(S3) = {1, 2, 4}

Generally elements of G(S) can be ordered b1, b2, . . . , bn where we have bn called the frobe-
nius of S, F (S). When S is generated by two elements a and b, S =< a, b >, it is know
that F (S) can be determined by the formula

F (S) = (a− 1)(b− 1)− 1.

Definition 2.5 The conductor, C(S), is the first element of S for which all integers greater
than C(S) are in S.

3 Ideals and Ideal Operations in rings

3.1 Ideals

Definition 3.1 Let R be a commutative ring and I a subset of R, I is an ideal if and only
if for all a ∈ I and r ∈ R we have ar ∈ I. (Dummit, pg 243)

Definition 3.2 Let S be a semigroup ring and I a monomial ideal, then I := (ts) for some
s ⊂ S.

Monomial ideals of semigroup rings can be investigated by looking at ideals of numerical
semigroups which meet all the usual ideal criteria but in terms of numerical semigroups as
opposed to rings in general. We must also define the maximal ideal

Definition 3.3 For S a semigroup ring M a monomial ideal, then M is the maximal
monomial ideal of the semigroup ring if M := (tS).

Before we can define basically full closure of an ideal we must define two operations,
Multiplication and the Colon Operation.

Definition 3.4 For a commutative ring we define multiplication for ideals as I and J as

IJ :=

n∑
k=1

ikjk
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Definition 3.5 For a commutative ring we define the colon operation for ideals I and J
as I : J := {x ∈ R|xJ ⊆ I}.

Definition 3.6 An ideal I in a semigroup ring A is basically full if I = MI : M .

3.2 Ideals and Operations in numerical semigroups

Now that we have defined, monomial Ideals, and Ideal operations in terms of semigroup
rings we can create equivalent definitions for numerical semigroups and ideals of numerical
semiogroups rings.

Definition 3.7 Let S be a numerical semigroup and I a subset of S, I is an ideal if and
only if for all a ∈ I and s ∈ S we have a + s ∈ I.

Definition 3.8 For a numerical semigroup the equivalent to multiplication for monomial
ideals in rings is addition of ideals I and J in numerical semigroups as
I + J := {x ∈ S|x = i + j with i ∈ I and j ∈ J}

Here are some examples of addition of ideals under a given numerical semigroup.

Example 3.9 T =< 3, 7 >= {0, 3, 6, 7, 9, 10, 12, 13, 14, 15, . . .} with
I = (6) = {6, 9, 12, 13, 15, 16, 18, 19, 20, . . .} and
J = (7, 9) = {7, 9, 10, 12, 13, 14, . . .} we have that
I + J = {13, 15, 16, 18, 19, 20, . . .} = (13, 15)

Example 3.10 U =< 3, 20 >= {0, 3, 6, 7, 9, 10, 12, 13, 14, 15, . . .} with
A = (23) = {23, 26, 29, 32, 35, 38, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 63, 64, . . .}
and
B = (3) = {3, 6, 9, 12, 15, 18, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 43 . . .} we
have that
A + B = {26, 29, 32, 35, 38, 41, 44, 46, 49, 50, 52, 53, 55, 57, 59, 61, 62, 65, 66, 67, . . .} = (26)

Definition 3.11 Similarly for numerical semigroups we define the equivalent operation,
called difference, for ideals I and J as (I − J) := {x ∈ R|x + J ⊆ I}

Here are some examples of difference of ideals under a given numerical semigroup.
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Example 3.12 W =< 3, 8, 13 >= {0, 3, 6, 8, 9, 11, 12, 13, . . .}
K = (6, 8) = {6, 8, 9, 11, 12, 14, 15, 16, . . .}
L = (8, 13) = {8, 11, 13, 14, 16, 17, 19, 20, 21, . . .}
L−K = {8, 11, 13, 14, 15, . . .}

Example 3.13 V =< 5, 6, 7 >= {0, 5, 6, 7, 10, 11, 12, 13, 14 . . .}
C = M = (5, 6, 7){5, 6, 7, 10, 11, 12, 13, 14 . . .}
D = (7, 10) = {7, 10, 12, 13, 14, 15, 16, 17, . . .}
C −D = {5, 6, 7, 10, 11, 12, 13, 14 . . .}

4 Basically Full Closure

Given an ideal I in a numerical semigroup S, we say I is basically full if I = (I +M)−M
where M is the maximal ideal of S defined as S\{0}. We can call the running of the above
computation the basically full closure operation as it will reveal the basically full closure
of an ideal even if it is not basically full.

Example 4.1 Given a semigroup S =< 4, 5 > and ideals (4) and (8, 9)
(4) + (4, 5) = {8, 9, 14, 16, 17, 18, 19, . . .}
[(4) + (4, 5)]− (4, 5) = {4, 5, 10, 12, 13, 14, 15, . . .} = (4, 5)
[(8, 9) + (4, 5)]− (4, 5) = (8, 9, 15)
Hence (8, 9) and (4) are not basically full but their closures are now known as (8, 9, 15)
and (4, 5) respectively. For ideal (8, 9, 10) if we run our basically full closure

Example 4.2 S =< 4, 5 > and ideal I = (8, 9, 10)
[(8, 9, 10) + (4, 5)]− (4, 5) = (8, 9, 10) hence (8, 9, 10) is basically full.

Example 4.3 Given a semigroup T =< 3, 7, 8 >= {0, 3, 6, 7, 8, 9, 10, ...}
N = (6, 7) = {0, 6, 7, 9, 10, 12, 13, 14, ...}
In calculating the basically full closure of N = (6, 7) denoted (6, 7)bf we have that
(6, 7)bf = (6, 7) hence N is basically full.
P = (6, 11) = {0, 6, 9, 11, 12, 13, 14, ...}
In calculating the basically full closure of P = (6, 11) denoted (6, 11)bf we have that
(6, 11)bf = {6, 7, 9, 10, 11, 12, 13, ...} 6= (6, 7) hence P is NOT basically full since 10 was not
in P originally
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5 “Binary” Addition

In investigating basically full closures we came across an algorithm for calculating closures
that, though still lacking a full proof, is promising in it’s ability to predict the elements
needed in an ideal to generate the basically full closure.

Suppose that
S =< 3, 7, 11 >= {0, 3, 6, 7, 9, 10, 11, 12, ...}
I = (3) = {3, 6, 9, 10, 12, 13, 14, 15, ...}

Each place represents an element of the semigroup and/or ideal where a ’1’ denotes an
element that is in the ideal and in the natural numbers and a 0 represents an element
that is not in the ideal. The digits in the last line are the result of the “binary” addition
where the element in the respective position for M is added to the respective element for
I where 0 + 0 = 1, 0 + 1 = 1 + 0 = 1 and 1 + 1 = 1. The red 1’s in the bottom sequence
denote elements which are added to the ideal in order to complete the closure operation.
In support of a rigorous proof of these “binary” addition operations we have shown that
the gap structure of a basically full closure dose not change when q, q ∈ N is added to the
ideal (assuming we choose a q such that the ideal plus q is still an ideal).

6 Shifting Lemma

Do ideals of any particular class behave the same as each other under basically full closure?
Which is to say, do we have the property for any semigroup S and for ideals I and maximal
ideal M that. k + [(I + M)−M ] = (k + I + M)−M ? Well call this the shifting lemma.

Lemma 6.1 Given semigroups S, ideal I of S, and maximal ideal M dose k + [(I +M)−
M ] = (k + I + M)−M∀ k ∈ Z

Theorem 6.2 Proof of Lemma 6.1
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First some definitions. Under a numerical semigroup S we can define the ideal I as I =
(a1, a2, ..., an) where the ai’s , 1 ≤ i ≤ n, are the generating elements of the ideal. We have
that,

I = {x ∈ S | x = y + ai y ∈ S, 1 ≤ i ≤ n}

The maximal ideal is M = (m1, ...,ml) where the mj’s , 1 ≤ j ≤ l, are generating elements
of M and the elements of M are all the elements of S excluding zero.

M = {x ∈ S|x = y + mj , y ∈ S, 1 ≤ j ≤ l}

The basically full closure of I is the same as [(I + M) − M ]. We can strictly define
[(I + M)−M ] as {x ∈ S | x + m ∈ (I + M) ∀ m ∈M}. Notice that,

z ∈ k + [(I + M)−M ]

⇐⇒

z ∈ k + {x ∈ S | x + m ∈ (I + M) ∀ m ∈M}

⇐⇒

z ∈ {x ∈ S | x = y + k, y ∈ {p ∈ S | p + m ∈ (I + M), ∀ m ∈M}}

⇐⇒

z ∈ {x ∈ S | ∀ m ∈M ,x + m ∈ k + (I + M)}

⇐⇒

z ∈ {x ∈ S | ∀ m ∈M ,x + m ∈ (k + I) + M}

⇐⇒

z ∈ [(k + I) + M ]−M

Hence we have that k + [(I + M)−M ] = (k + I + M)−M

7 Going Forward

Next we plan to investigate arithmatic semigroups which are numerical semigroups of the
form
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S =< n + k, n + 2k, . . . , n + nk > with n, k ∈ N\{0}. We suspect that characterizing
elements in the basically full closure will come more readily when we are constricted to
arithmatic semigroups. Below are some examples of arithmetic semigroups, some of their
ideals, and their basically full closures.

Example 7.1 S =< 3, 10, 17 >= {0, 3, 6, 9, 10, 12, 13, 15, 16, 17 . . .}
for an ideal
I = (6) = {6, 9, 12, 15, 16, 18, 19, 21, 22, 23, . . .}
the basically full closure of I is
IbF = {6, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, . . .}

Example 7.2 For S =< 3, 7, 11 > and k ∈ S we can describe all possible ideals as one of
the 11 types directly below. The Maximal ideal will be of the type (k, k + 4, k + 8) and
principal ideals will be of the type (k).
(k) = {k, k + 3, k + 6, k + 7, k + 9, k + 10, k + 11, k + 12, . . .}
(k, k + 1) = {k, k + 1, k + 3, k + 4, k + 6, k + 7, k + 8, k + 9, k + 10, k + 11, k + 12, . . .}
(k, k + 2) = {k, k + 2, k + 3, k + 5, k + 6, k + 7, k + 8, k + 9, k + 10, . . .}
(k, k + 4) = {k, k + 3, k + 4, k + 6, k + 7, k + 9, k + 10, k + 11, . . .}
(k, k + 5) = {k, k + 3, k + 5, k + 6, k + 7, k + 8, k + 9, k + 10, k + 11, . . .}
(k, k + 8) = {k, k + 3, k + 6, k + 7, k + 8, k + 9, k + 10, k + 11, . . .} (k, k + 2, k + 4) =
{k, k + 2, k + 3, k + 4, k + 5, k + 6, k + 7, . . .}
(k, k + 1, k + 4) = {k, k + 2, k + 3, k + 5, k + 6, k + 7, . . .}
(k, k + 4, k + 5) = {k, k + 3, k + 4, k + 5, k + 6,+7, k + 8, . . .}
(k, k + 4, k + 8) = {k, k + 3, k + 4, k + 6,+7, k + 8, . . .}
(k, k + 1, k + 2) = {k, k + 1, k + 2, k + 3, k + 4, k + 5, k + 6, k + 7, . . .}

Directly below are the basically full closures of the ideal types. Elements that were added
to the basically full closure that were not in the original ideal are underlined and colored
red. (k)bF = {k, k + 3, k + 4, k + 6, k + 7, k + 9, k + 10, k + 11, k + 12, . . .}
(k, k + 1)bF = (k,+1)
(k, k + 2)bF = {k, k + 2, k + 3, k + 4, k + 5, k + 6, k + 7, k + 8, k + 9, k + 10, . . .}
(k, k + 4)bF = {k, k + 3, k + 4, k + 6, k + 7, k + 8, k + 9, k + 10, k + 11, . . .}
(k, k + 5)bF = {k, k + 3, k + 4, k + 5, k + 6, k + 7, k + 8, k + 9, k + 10, k + 11, . . .}
(k, k + 8)bF = {k, k + 3, k + 4, k + 6, k + 7, k + 8, k + 9, k + 10, k + 11, . . .}
(k, k + 2, k + 4)bF = (k, k + 2, k + 4)
(k, k + 1, k + 4)bF = (k, k + 1, k + 4)
(k, k + 4, k + 5)bF = (k, k + 4, k + 5)
(k, k + 4, k + 8)bF = (k, k + 1, k + 8)
(k, k + 1, k + 2)bF = (k, k + 1, k + 2)
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8 Matlab Code for Basically Full Closures

The calculation of basically full closures require a large amount of computation. Naturally
we set out to create a program to do these calculations , thus giving a means of verification
for hand written computations and an efficient way to generate ideals and their closures
revealing patterns and trends. I used Matlab R2013a(8.1.0.604) to write 5 functions . The
first was ’semifunc’ which generates the elements of a semigroup up to several past the
conductor as well as the gaps of that semigroup, ’makeideal’ which, given a semigroup and
an ideal of that semigroup, will generate the elements of that ideal up to several past the
conductor, ’addideal’ which given a semigroup and two ideals gives the product of those
ideals, ’subideal’ which, given a semigroup and two ideals, will complete the ideal difference
operation and the ’bfnew’ function which generates the basically full closure of an ideal
given a semigroup. The code for the various function is listed below.

semifunc

function [Semigroup,Gaps] = semifunc(Stemp1)

% Generate a Semigroup %

Stemp2 = unique(Stemp1); %makes sure the semigroup generators are unique

%CHECK semigroup input has 2 or more elements

if length(Stemp2) < 2

disp(’Semigroup must have AT LEAST 2 generating elements’)

end

iscoprime = zeros(1,length(Stemp2)) ; %MAKING array for varifying coprime

for k = 1:length(Stemp2) %CHECK that Semigroup elements are coprime

coprime = gcd(Stemp2(k), setdiff(Stemp2, Stemp2(k)));

if sum(coprime) > length(Stemp2) - 1

iscoprime(k) = 1;

else

iscoprime(k) = 0;
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end

k = k + 1;

end

if sum(iscoprime) ~= 0 % DISPLAY if elements are NOT coprime

disp(’Elements of semigroup MUST be coprime’)

else

minele = min(Stemp2); %min genarating element of the Semigroup

secminele = min(setdiff(Stemp2, minele)); %2nd smallest generating element of Semigroup

maxval = (minele - 1)*(secminele - 1);

arraysize = floor(maxval/minele);

terminate = length(Stemp2) + 1;

k = 1;

multarray = zeros(length(Stemp2),arraysize);

while k < terminate;

tempmult = [Stemp2(k):Stemp2(k):floor(maxval/Stemp2(k))*Stemp2(k)] ;

multarray(k,1:length(tempmult)) = tempmult;

k = k +1 ;

end

meshmult = meshgrid(multarray);

Stemp3 = meshmult + meshmult’ ;

Stemp4 = unique(Stemp3);
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Stemp5 = Stemp4(Stemp4 < maxval + minele +1) ;

Semigroup = Stemp5 ;

Gaps = setdiff(0:max(Semigroup), Semigroup)’;

end

end

%_______________________________________________%

makeideal

function a = makeideal(Semigroup, Ideal)

%This function takes any generating set for an ideal

%in a semigruop and prints out the elements of the Ideal

%to some repetition of the dimension.

Semigrouplist = semifunc(Semigroup);

isSubset = isempty(setdiff(Ideal, Semigrouplist)) ; %MAKE variable telling is Ideal is subset of Semigroup

if isSubset == 1 %CHECK that ideal generators are subset of Semigroup

if length(Ideal) < 2

I = Ideal + Semigrouplist;

elseif length(Ideal) >= 2

I = unique(meshgrid(Ideal,Semigrouplist) + meshgrid(Semigrouplist, Ideal)’)’;

I = I’;

end

a = union(I, Ideal);
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else %DISPLAY that ideal generators NOT subset of Semigroup

disp(’Ideal generators MUST be subset of Semigroup’)

end

end

%_______________________________________________%

addideal

function a = addideal(Semigroup, FirstIdeal, SecondIdeal)

% This function add’s ideals of S

I = makeideal(Semigroup,FirstIdeal);

J = makeideal(Semigroup,SecondIdeal);

%The following makes a meshgrid of each value of I and J respectively

% and adds them to each other. We then take th eunique elements out

IplusJ = unique(meshgrid(I, J) + meshgrid(J, I)’);

% This final step limits the number of elements IplusJ contains by capping

% it at the max of S using indexing

GAPIplusJ = setdiff([1:max(IplusJ)], IplusJ); %MAKE gap set of IplusJ

b = IplusJ( IplusJ < max(GAPIplusJ) + 1 + min(Semigroup)); %PRINT min gen past conductor

y = [ ];

bnew = b;

for k = 1:(length(b) - 1)

x = b(k);
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y = x + Semigroup;

bnew = setdiff(bnew, y);

end

a = bnew ;

end

%_______________________________________________%

subideal

% For Semigroup S, and Ideals I & J calculating I - J %

function a = subideal(Semigroup, FirstIdeal, SecondIdeal)

S = semifunc(Semigroup);

I = makeideal(Semigroup, FirstIdeal);

J = makeideal(Semigroup, SecondIdeal);

y = 1;

b = [ ];

TotalMax = max([max(I), max(J), max(S)]) ;

SemiMax = max(S);

BigMax = TotalMax + SemiMax +1 ;

I = union(I, max(I):BigMax);

for k = 1:length(S);

x = S(k);

A = x + J ;

if isempty(setdiff(A, I)) == 1

b(y) = x ;
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y = y + 1;

end

end

if isempty(setdiff(0, b)) ==1

b = setdiff(b, 0);

end

bnew = b;

for k = 1:(length(b) - 1)

x = b(k);

y = x + Semigroup;

bnew = setdiff(bnew, y);

end

a = bnew;

end

% _______________________________________________ %

bfnew

% BF Ideal function

function a = bfnew(Semigroup, Ideal)

I = Ideal;

M = Semigroup;

IM = addideal(Semigroup, I, M);

IMcoloM = subideal(Semigroup, IM, M);
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a = IMcoloM;

end
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