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Abstract. We explore properties and representations of first and second order spectral shift
functions evaluated for pairs of self-adjoint matrices guided by examples. We examine the
conditions sufficient for the first and second order spectral shift functions to be identically 0 in
3.11, 4.10, and 4.13.

1. Introduction

Spectral shift functions of the first order emerged from I.M. Lifshits’s work on theoretical
physics during 1947–1952 wherein he was looking for efficient formulas to calculate how the free
energy of a pure crystal changes when small impurities are added to the crystal [1]. Spectral
shift functions have now become fundamental objects in perturbation theory.

Spectral shift functions contain information about the change of the spectrum of a matrix, or
more generally, a bounded linear operator, under the influence of a perturbation. Operators that
are functions of other operators can be encountered in quantum mechanics, and perturbation
theory can help in examining systems obtained by perturbations of simpler systems.

The first order spectral shift function ξ(x), given in (14), can be thought of as a measure of
how many eigenvalues of a matrix passed the real parameter x in the positive direction as the
matrix was perturbed. The first order spectral shift function also appears in a version of the
fundamental theorem of calculus for functions of bounded linear operators in (13). The second
order spectral shift function η(x), given in (20), can be thought of as a measure of how much
the eigenvalues shift when the matrix is perturbed.

2. Linear Algebra Preliminaries

In this section, we gather facts from standard linear algebra that will be applied in our study
of spectral shift functions. Most of these facts can be found in textbooks on linear algebra.
The facts that we need are collected in [2] and [3].

Definition 2.1. ([2, Definition 3.4]) A square matrix A is called diagonalizable if there is a
diagonal matrix D and an invertible matrix S such that

A = SDS−1. (1)

Theorem 2.2. ([2, Theorem 3.5]) An n × n matrix A is diagonalizable if and only if A has
n linearly independent eigenvectors. The elements on the diagonal of the matrix D in the
decomposition (1) are the eigenvalues of A and the columns of S are the respective eigenvectors
of A.

Definition 2.3. ([2, Definition 3.9]) The adjoint of a matrix, A∗, is the transpose of the matrix
A with every element replaced with its complex conjugate.

Definition 2.4. ([2, Definition 3.10]) A matrix is unitary if and only if its adjoint equals its
inverse, U∗ = U−1.

Definition 2.5. ([2, Definition 3.10]) A matrix is self-adjoint if and only if it equals its adjoint,
A = A∗.
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Proposition 2.6. ([2, Exercise 3.11]) A matrix U in Cn×n is unitary if and only if its column
vectors form an orthonormal basis in Cn.

Proposition 2.7. ([2, Exercise 3.13]) The spectrum, the set of eigenvalues, of a self-adjoint
matrix is a subset of R.

Theorem 2.8 (The Spectral Theorem). ([2, Theorem 3.12]) An n×n matrix A is self-adjoint
if and only if it is diagonalizable with a unitary matrix S.

Let us collect and connect what we know so far. The eigenvalues of a self-adjoint matrix
are real numbers, even if the matrix itself has complex entries. Self-adjoint matrices are diag-
onalizable with unitary matrices. Unitary matrices have orthonormal columns, which will be
important later for the second order spectral shift function. The columns of the diagonalizing
matrix are also the eigenvectors of the self-adjoint matrix.

Proposition 2.9. ([2, Proposition 4.9]) If A is a self-adjoint matrix with eigenvalues λ1, ..., λn,
then the decomposition of A into SDS−1 can be represented as the linear combination

A =
n∑
i=1

λiSEiiS
−1. (2)

where the matrix Eij, called an elementary matrix, has one nonzero entry, the i, j − th entry,
and this entry is always 1.

Definition 2.10. ([3, Theorem 5.13.9]) A matrix P is an orthogonal projection if and only if
P = P 2 and P = P ∗.

Definition 2.11. ([3, Definition of Orthogonal Complement]) For a subset M of an inner-
product space V , the orthogonal complement, denoted M⊥, is defined to be the set of all vectors
in V that are orthogonal to every vector in M .

Definition 2.12. ([3, Theorem 5.11.1]) If M is a subspace of a finite-dimensional inner-product
space V , then V = M ⊕M⊥, the direct sum of the orthocomplementary subspaces. This means
that for every v ∈ V , v = x+ y for a unique x and y, where x ∈M, y ∈M⊥.

Lemma 2.13. ([4, Lemma 2.6]) For P and Q orthogonal projections,

Q− P = QP⊥ −Q⊥P. (3)

Proof. Let P be defined on V and let X be the image space of the projection P. To prove this
lemma, we need to establish that P +P⊥ = I for an orthogonal projection P onto a subspace X
of a finite-dimensional inner-product space V . We know V = X +X⊥ and X ∩X⊥ = 0 by the
properties of orthocomplementary subspaces. For every v ∈ V , there are unique vectors x ∈ X
and y ∈ X⊥ such that v = x+ y. Additionally, a pair of orthocomplementary subspaces X and
X⊥ in V defines an orthogonal projection P onto X and an orthogonal projection P⊥ onto X⊥

such that Pv = x and P⊥v = y. Thus for every v ∈ V , v = x + y = Pv + P⊥v = (P + P⊥)v,
and since v = (P + P⊥)v, it must be that (P + P⊥) = I.

Now we can rewrite the equation (3) in the following way:

Q− P = Q(P + P⊥)− (Q+Q⊥)P = QP +QP⊥ −QP −Q⊥P = QP⊥ −Q⊥P.
�

Proposition 2.14. Let S be the diagonalizing unitary matrix of a self-adjoint matrix A, then
SEiiS

−1 is an orthogonal projection.

Proof. To show that SEiiS
−1 is an orthogonal projection, we need to demonstrate that it

satisfies the two properties from 2.10. First recall from 2.4 that since S is unitary we can
rewrite SEiiS

−1 as SEiiS
∗. This gives us SEiiS

−1 = (SEiiS
−1)∗ because

(SEiiS
∗)∗ = (S∗)∗E∗iiS

∗ = SEiiS
∗.
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For the second property, observe that an elementary matrix is a projection, so E2
ii = Eii.

This gives us SEiiS
−1 = (SEiiS

−1)2 because

(SEiiS
−1)2 = (SEiiS

−1)(SEiiS
−1) = SEii(S

−1S)EiiS
−1 = S(EiiEii)S

−1 = SEiiS
−1.

�

Definition 2.15. ([2, Definition 4.11]) Let A be a self-adjoint matrix and let f be a bounded,
scalar-valued function defined on the real numbers. We define the function f of the matrix A to
be

f(A) = Sf(D)S−1 =
n∑
i=1

f(λi)SEiiS
−1. (4)

There are two functions that are used to define the first and second order spectral shift
function. The first function is the characteristic, or indicator, function of a set.

Definition 2.16. The characteristic function χ(a,b)(x) is defined on R. It maps a scalar to 1
if the scalar is in the specified interval, and maps the scalar to 0 otherwise, that is,

χ(a,b)(x) =

{
1, if x ∈ (a, b)

0, otherwise.
(5)

The matrix valued characteristic function of a self-adjoint matrix can be viewed as a linear
sum of matrices as in (4) which uses the scalar valued characteristic function χ(a,b)(λi) as f(λi).

χ(a,b)(A) = Sχ(a,b)(D)S−1 =
n∑
i=1

χ(a,b)(λi)SEiiS
−1. (6)

We can also represent χ(a,b)(A) applied to a vector x using the dot product with the set of
eigenvectors of A, {fj}nj=1.

χ(a,b)(A)x =
∑
λ∈(a,b)

〈x, fj〉 fj. (7)

Example 2.17. We will now inspect a simple example of the matrix valued characteristic func-
tion.

χ(0,1.5)(A) = χ(

[
1 0
0 2

]
)

Since A is a triangular matrix, the eigenvalues are the numbers on the diagonal; λ1 = 1, and
λ2 = 2. We can see that χ(0,1.5)(1) = 1 and χ(0,1.5)(2) = 0. Since A is a diagonal matrix with
real entries, it is self-adjoint. The diagonalizing matrix for a diagonal matrix is the identity
matrix, which is its own inverse.

S =

[
1 0
0 1

]
= S−1

The SDS−1 decomposition of A is

A =

[
1 0
0 1

] [
1 0
0 2

] [
1 0
0 1

]
.

Putting it all into equation (6) gives us

χ(0,1.5)(A) = (1)

[
1 0
0 1

] [
1 0
0 0

] [
1 0
0 1

]
+ (0)

[
1 0
0 1

] [
0 0
0 1

] [
1 0
0 1

]
=

[
1 0
0 0

]
.

The second function we need to define the first and second order spectral shift functions is
the trace of matrix.
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Definition 2.18. The trace of a matrix is defined to be the sum of the diagonal entries,

tr(A) =
n∑
i=1

aii. (8)

The trace can also be defined using the dot product,

tr(A) =
n∑
j=1

〈Afj, fj〉 (9)

where the vectors {fj}nj=1 are the eigenvectors of A.

The trace function maps a matrix to a scalar, and in our work this scalar is a real number.
The trace function has the properties that it is linear and cyclic. Given three matrices A,B
and C and two scalars c and d, we have

tr(cA+ dB) = c(tr(A)) + d(tr(B)), (10)

tr(ABC) = tr(CAB) = tr(BCA). (11)

3. The First Order Spectral Shift Function

When examining matrix valued functions it is often useful to ask how f(A) changes if we
perturb A to A+V where both matrices are self-adjoint. The scalar version of the Fundamental
Theorem of Calculus allows us to see how a scalar valued function f(a) changes when a ∈ R is
perturbed to a + v ∈ R. One can think of the scalars a and a + v as 1× 1 matrices which are
trivially self-adjoint.

f(a+ v)− f(a) =

∫ a+v

a

f ′(x)dx (12)

It is reasonable to expect that integration will be involved in the case of matrix valued
functions as well, and that there is an analog of the fundamental theorem of calculus for matrix
valued functions. We can begin to gain some insight by using the scalar valued characteristic
function to rewrite the integrand and the bounds of the integral in the fundamental theorem
of calculus for scalars. ∫ a+v

a

f ′(x)dx =

∫ ∞
−∞

f ′(x)χ(a,a+v](x)dx∫ ∞
−∞

f ′(x)χ(a,a+v](x)dx =

∫ ∞
−∞

f ′(x)(χ(a,∞)(x)− χ(a+v,∞)(x))dx

∫ ∞
−∞

f ′(x)(χ(a,∞)(x)− χ(a+v,∞)(x))dx =

∫ ∞
−∞

f ′(x)(χ(−∞,x)(a)− χ(−∞,x)(a+ v))dx.

Now we have a different form for the right hand side of (12).

f(a+ v)− f(a) =

∫ ∞
−∞

f ′(x)(χ(−∞,x)(a)− χ(−∞,x)(a+ v))dx.

It is known that for matrices

tr(f(A+ V )− f(A)) =

∫ ∞
−∞

f ′(x) tr(χ(−∞,x)(A)− χ(−∞,x)(A+ V )) dx. (13)

This equation looks very similar to (5) except the scalars a and a + v have been replaced by
the matrices A and A + V and the trace function appears on each side of the equation. The



SPECTRAL SHIFT FUNCTIONS 5

equation (13) is named Krein’s Trace Formula and references to it can be found in [4]. This
equation is in fact the analog to the Fundamental Theorem of Calculus we were looking for.

Definition 3.1. Let A and V be two self-adjoint matrices of the same dimension. Then, the
first order spectral shift function for the pair A and A+ V is defined by

ξ(x) := tr(χ(−∞,x)(A)− χ(−∞,x)(A+ V )). (14)

It can be interpreted as the net number of the eigenvalues of a matrix that crossed x in the
positive direction as A is perturbed to A+ V .

This first order spectral shift function can also be expressed in an equivalent and much easier
to use form.

Definition 3.2. The first order spectral shift function for the pair A and A+ V can be defined
by

ξ(x) = Card{i : λi < x} − Card{j : µj < x}, (15)

where Card stands for the cardinality of the set, {i : λi < x} is the set of eigenvalues of A that
are less than x, and {j : µj < x} is the set of eigenvalues of A + V that are less than x. We
prove this in the proposition below.

Proposition 3.3. For two n× n self-adjoint matrices, A and A+ V, with eigenvalues {λi}ni=1

and {µi}ni=1, respectively,

tr(χ(−∞,t)(A)− χ(−∞,t)(A+ V )) = L−M,

where L = Card{i : λi < t} and M = Card{j : µj < t}.

Proof. Let S denote the diagonalizing matrix of A and T denote the diagonalizing matrix of
A + V . Let DA denote the diagonal matrix of the eigenvalues of A and DA+V denote the
diagonal matrix of the eigenvalues of A + V . Finally, let {λi}ni=1 be the eigenvalues of A and
{µj}nj=1 be the eigenvalues of A+ V .

Given equation (6), we know

χ(−∞,x)(A) =
n∑
i=1

χ(−∞,x)(λi)S
−1EiiS,

from which we get

tr
(
χ(−∞,x)(A)− χ(−∞,x)(A+ V )

)
= tr

(
n∑
i=1

χ(−∞,x)(λi)S
−1EiiS −

n∑
j=1

χ(−∞,x)(µj)T
−1EjjT

)
.

By linearity and cyclicity of the trace given in (10) and (11) respectively,

tr(
∑n

i=1 χ(−∞,x)(λi)S
−1EiiS −

∑n
j=1 χ(−∞,x)(µj)T

−1EjjT )
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= tr(
n∑
i=1

χ(−∞,x)(λi)S
−1EiiS)− tr(

n∑
j=1

χ(−∞,x)(µj)T
−1EjjT )

=
n∑
i=1

χ(−∞,x)(λi)tr(S
−1EiiS)−

n∑
j=1

χ(−∞,x)(µj)tr(T
−1EjjT )

=
n∑
i=1

χ(−∞,x)(λi)tr(SS
−1Eii)−

n∑
j=1

χ(−∞,x)(µj)tr(TT
−1Ejj)

=
n∑
i=1

χ(−∞,x)(λi)tr(IEii)−
n∑
j=1

χ(−∞,x)(µj)tr(IEjj)

=
n∑
i=1

χ(−∞,x)(λi)tr(Eii)−
n∑
j=1

χ(−∞,x)(µj)tr(Ejj).

Since the trace of Eii is always equal to 1,

n∑
i=1

χ(−∞,x)(λi)tr(Eii)−
n∑
j=1

χ(−∞,x)(µj)tr(Ejj) =
n∑
i=1

χ(−∞,x)(λi)−
n∑
j=1

χ(−∞,x)(µj).

Furthermore,

n∑
i=1

χ(−∞,x)(λi)−
n∑
j=1

χ(−∞,x)(µj) =
∑
{i:λi<x}

1−
∑

{j:µj<x}

1

because χ(−∞,x)(λi) is equal to 1 if λi < x and 0 otherwise, i.e. 1 is added to the sum for each
eigenvalue less than x. Finally,∑

{i:λi<x}

1−
∑

{j:µj<x}

1 = Card{i : λi < x} − Card{j : µj < x}.

�

There is yet another way to view ξ(x) that involves viewing the matrix product SEiiS
−1

as an orthogonal projection, named the spectral projection, onto the span of the eigenvector
associated with λi.

Proposition 3.4. The first order spectral shift function can be defined as

ξ(x) = tr(χ(−∞,x)(A+ V )χ[x,∞)(A)− χ[x,∞)(A+ V )χ(−∞,x)(A)). (16)

Proof. We can view χ(−∞,x)(A) as

χ(−∞,x)(A) =
n∑
i=1

χ(−∞,x)(λi)SEiiS
−1 =

n∑
i=1

χ(−∞,x)(λi)Pi. (17)

From this representation we see that χ(−∞,x)(A) is an orthogonal projection itself. The
orthogonal complement of χ(−∞,x)(A) is χ[x,∞)(A).

Now we write the first order spectral shift function in the form given by (14). We can then
apply (3) with Q = χ(−∞,x)(A) and P = χ(−∞,x)(A+ V ). Thus we simply have

tr(χ(−∞,x)(A)− χ(−∞,x)(A+ V )) = tr(χ(−∞,x)(A+ V )χ[x,∞)(A)− χ[x,∞)(A+ V )χ(−∞,x)(A)).
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�

What follows are several examples of ξ(x) with graphs to accompany them. Notice from
the graphs that ξ(x) can only be nonzero on the interval [a, b], where a = min{λi, µj}ni,j=1 and
b = max{λi, µj}ni,j=1. This follows when one considers ξ(x) as in equation (14). When x < a
none of the eigenvalues in {λi, µj}ni,j=1 are less than x, so the difference in equation (14) is 0,
and when x > b all of the eigenvalues are less than x, so the difference in equation (14) is again
0. Notice that ξ is a piece-wise constant function.
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Example 3.5. Diagonal Pair D1

A =

[
1 0
0 2

]
A+ V =

[
4 0
0 5

]
σ(A) = {1, 2} σ(A+ V ) = {4, 5}

ξ(t) =


2, if t ∈ (2, 4]

1, if t ∈ (1, 2] or (4, 5]

0, otherwise
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Example 3.6. Commuting Pair C1

A =

[
3 2i
−2i 3

]
A+ V =

[
−3 i
−i −3

]
σ(A) = {1, 5} σ(A+ V ) = {−4,−2}

ξ(t) =


−2, if t ∈ (−2, 1]

−1, if t ∈ (−4,−2] or (1, 5]

0, otherwise
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Example 3.7. Noncommuting Pair NC1

A =

[
2 1
1 2

]
A+ V =

[
1 3 + i

3− i 4

]
σ(A) = {1, 3} σ(A+ V ) = {−1, 6}

ξ(t) =


−1, if t ∈ (−1, 1]

1, if t ∈ (3, 6]

0, otherwise
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Example 3.8. Diagonal Pair D2

A =

−1 0 0
0 0 0
0 0 1

 A+ V =

0 0 0
0 1 0
0 0 2


σ(A) = {−1, 0, 1} σ(A+ V ) = {0, 1, 2}

ξ(t) =

{
1, if t ∈ (−1, 2]

0, otherwise
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Example 3.9. Commuting Pair C2

A =

 1 i 0
−i 1 0
0 0 −2

 A+ V =

 2 i 0
−i 2 0
0 0 2


σ(A) = {−1, 0, 2} σ(A+ V ) = {1, 2, 3}

ξ(t) =


1, if t ∈ (−1, 0] or (1, 3]

2, if t ∈ (0, 1]

0, otherwise
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Example 3.10. Noncommuting Pair NC2

A =

2 0 −i
0 3 0
i 0 2

 A+ V =

 3 2− i −3i
2 + i 0 1− i

3i 1 + i 0


σ(A) = {1, 3} σ(A+ V ) = {−2,−1, 6}

ξ(t) =


−1, if t ∈ (−1, 1]

1, if t ∈ (3, 6]

0, otherwise
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It can be insightful to ask when ξ(x) is zero everywhere. This occurs when the spectra are
equal and multiplicities of the respective eigenvalues are equal.

Proposition 3.11. Let A and A + V be two self-adjoint matrices where the spectra of A and
A + V are equal, and the multiplicities of the respective eigenvalues are also equal. Then the
spectral shift function is identically 0.

Proof. We begin with the forward direction. Let {λi}ni=1 = {µj}nj=1 where λ1 = µ1, λ2 =
µ2, . . . , λn = µn. Given this, we can see that Card{i | λi < x} = Card{j | µj < x} ∀x ∈ R.
Since this is the case, we know that ξ(x) = Card{i | λi < x} − Card{j | µj < x} = 0 ∀x ∈ R.

Now we do the other direction. Let λ1 ≤ λ2 ≤ . . . ≤ λn and µ1 ≤ µ2 ≤ . . . ≤ µn be the
eigenvalues of A and A + V respectively. Suppose ξ(x) = 0 for all ∀x ∈ R. Then Card{i |
λi < x} = Card{j | µj < x} for all ∀x ∈ R. Suppose ∃k such that λk 6= µk, and assume
without loss of generality that λk < µk. In particular, we know Card{i | λi < λk} = Card{j |
µj < λk}. Since λk < µk, ∃ε ∈ R such that λk + ε < µk too. Then Card{i | λi < λk + ε} >
Card{i | λi < λk}, while Card{j | µj < λk + ε} = Card{j | µj < λk}. From that we see
Card{i | λi < λk + ε} > Card{i | λi < λk} = Card{j | µj < λk} = Card{j | µj < λk + ε}.
This gives us Card{i | λi < λk + ε} > Card{j | µj < λk + ε}, which means for x = λk + ε,
ξ(x) 6= 0. This is a contradiction of our assumption, so it must be that {λi}ni=1 = {µj}nj=1 where
λ1 = µ1, λ2 = µ2, . . . , λn = µn. �

4. The Second Order Spectral Shift Function

The second order spectral shift function is a considerably more complicated object. The
second order spectral shift function is useful when ξ(x) is 0 in the finite dimensional case, or
when ξ(x) is undefined in the infinite dimensional case. All of the examples in this paper are
for finite dimensional operators that we have represented with matrices. One can interpret
the second order spectral shift function as how much the eigenvalues change when they are
perturbed. The second order spectral shift function is used in Koplienko’s Trace Formula.

tr

[
f(A+ V )− f(A)− d

dx
(f(A+ xV )) |x=0

]
=

∫
R
f ′′(x)η(x)dx (18)

References to Koplienko’s Trace Formula can be found in [4].
The second order spectral shift function can also be represented in terms of the first order

spectral shift function with a proof appearing in [4]. The following representation is typically
used as the definition of η.

Definition 4.1. The second order spectral shift function is defined as

η(x) := tr(χ(−∞,x)(A)V )−
∫ x

−∞
ξ(λ)dλ. (19)

One equivalent form of η(x) is given below.

Proposition 4.2. The second order spectral shift function can be defined as

η(x) = tr((xI − A− V )(χ(−∞,x)(A+ V )− χ(−∞,x)(A))). (20)

The second equivalent form of η(x) is the easiest one to use for calculations. The following
proposition was derived in Lemma 5.2 in Trace Inequalities and Spectral Shift, appearing in
Operators and Matrices, Volume 3 [4], and was communicated to the author by A. Skripka.

Proposition 4.3. The second order spectral shift function can be defined as the sum

η(x) =
n∑

k,j=1

|µk − x| · | 〈fj, gk〉 |2 · χ[µk,λj ](x), (21)
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where χ[µk,λj ](x) denotes χ[λj ,µk](x) if λj < µk. In this equation, {fj}nj=1 are the orthonormal
eigenvectors of A, {gk}nk=1 are the orthonormal eigenvectors of A + V , {λj}nj=1 are the eigen-
values of A, {µk}nk=1 are the eigenvalues of A + V , and | 〈fj, gk〉 | is the absolute value of the
dot product of two eigenvectors.

Proof. We begin by noting that χ(−∞,x)(A+ V ) and χ(−∞,x)(A) are the orthogonal projections
we encountered in (14), so we can use equation (3) to write

χ(−∞,x)(A+ V )− χ(−∞,x)(A) = χ(−∞,x)(A+ V )χ[x,∞)(A)− χ[x,∞)(A+ V )χ(−∞,x)(A).

Substituting this into (20) gives us

tr((xI − A− V )(χ(−∞,x)(A+ V )χ[x,∞)(A)− χ[x,∞)(A)χ(−∞,x)(A+ V )).

The trace function is cyclic, (11), and it can be written as a dot product, (9), so

tr((xI − A− V )χ(−∞,x)(A+ V )χ[x,∞)(A))

= tr(χ[x,∞)(A)(xI − A− V )χ(−∞,x)(A+ V ))

=
∑
λj>x

〈
(xI − A− V )χ(−∞,x)(A+ V )fj, fj

〉
.

Using equations (6) and (7) we can write

(xI − A− V )χ(−∞,x)(A+ V )

= (xI)χ(−∞,x)(A+ V )− (A+ V )χ(−∞,x)(A+ V )

= (xI)
n∑
k=1

χ(−∞,x)(µk)S2EkkS
−1
2 − (A+ V )

n∑
k=1

χ(−∞,x)(µk)S2EkkS
−1
2

=
n∑
k=1

xχ(−∞,x)(µk)S2EkkS
−1
2 −

n∑
k=1

µkχ(−∞,x)(µk)S2EkkS
−1
2

=
∑
µk<x

xS2EkkS
−1
2 −

∑
µk<x

µkS2EkkS
−1
2

=
∑
µk<x

(x− µk)S2EkkS
−1
2

=
∑
µk<x

(x− µk) 〈·, gk〉 gk

The operator
∑
µk<x

〈·, gk〉 gk should be thought of as being applied to a vector. With that in

mind, we can immediately see

(xI − A− V )χ(−∞,x)(A+ V )fj

=
∑
µk<x

(x− µk) 〈fj, gk〉 gk.

Using properties of the dot product gives us
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λj>x

〈
(xI − A− V )χ(−∞,x)(A+ V )fj, fj

〉
=
∑
λj>x

∑
µk<x

(x− µk) 〈fj, gk〉 〈gk, fj〉

=
∑
λj>x

∑
µk<x

(x− µk)| 〈fj, gk〉 |2.

=
∑

µk<x<λj

|x− µk|| 〈fj, gk〉 |2.

Thus,

tr((xI − A− V )χ(−∞,x)(A+ V )χ[x,∞)(A))

=
∑

µk<x<λj

|x− µk|| 〈fj, gk〉 |2.

Similarly,

tr((A+ V − xI)χ[x,∞)(A+ V )χ(−∞,x)(A))

=
∑
λj<x

〈
(A+ V − xI)χ[x,∞)(A+ V )fj, fj

〉
=
∑
λj<x

∑
µk>x

(µk − x) 〈fj, gk〉 〈gk, fj〉

=
∑
λj<x

∑
µk>x

(µk − x)| 〈fj, gk〉 |2

=
∑

λj<x<µk

|x− µk|| 〈fj, gk〉 |2.

Finally,

tr((xI − A− V )(χ(−∞,x)(A+ V )χ[x,∞)(A)− χ(−∞,x)(A)χ[x,∞)(A+ V ))

= tr((xI − A− V )χ(−∞,x)(A+ V )χ[x,∞)(A)) + tr((A+ V − xI)χ[x,∞)(A+ V )χ(−∞,x)(A))

=
∑

µk<x<λj

|x− µk|| 〈fj, gk〉 |2 +
∑

λj<x<µk

|x− µk|| 〈fj, gk〉 |2

=
n∑

k,j=1

|µk − x| · | 〈fj, gk〉 |2 · χ[µk,λj ](x).

�

It is clear from the representation of η(x) given in (21) that η(x) ≥ 0. In the graphs that
follow, note that η(x) is a piece-wise linear function. Like ξ(x), η(x) can only be nonzero on
the interval [a, b], where a = min{λi, µj}ni,j=1 and b = max{λi, µj}ni,j=1.
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Example 4.4. Diagonal Pair D1

A =

[
1 0
0 2

]
A+ V =

[
4 0
0 5

]
σ(A) = {1, 2} σ(A+ V ) = {4, 5}

UA = UA+V =

[
1 0
0 1

]
η(t) =


4− t, if t ∈ [1, 2)

9− 2t, if t ∈ [2, 4]

5− t, if t ∈ (4, 5]

0, otherwise
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Example 4.5. Commuting Pair C1

A =

[
3 2i
−2i 3

]
A+ V =

[
−3 i
−i −3

]
σ(A) = {1, 5} σ(A+ V ) = {−4,−2}

UA = UA+V = 1√
2

[
−i i
1 1

]

η(t) =


4 + t, if t ∈ (−4,−2]

6 + 2t, if t ∈ (−2, 1]

2 + t, if t ∈ (1, 5]

0, otherwise
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Example 4.6. Noncommuting Pair NC1

A =

[
2 1
1 2

]
A+ V =

[
1 3 + i

3− i 4

]
σ(A) = {1, 3} σ(A+ V ) = {−1, 6}

UA = 1√
2

[
1 1
−1 1

]
UA+V =

[
−5√
35

2√
14

3−i√
35

3−i√
14

]

η(t) =


1 + t, if t ∈ [−1, 1]
1
2
, if t ∈ (1, 3)

6− t, if t ∈ [3, 6]

0, otherwise
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Example 4.7. Diagonal Pair D2

A =

−1 0 0
0 0 0
0 0 1

 A+ V =

0 0 0
0 1 0
0 0 2


σ(A) = {−1, 0, 1} σ(A+ V ) = {0, 1, 2}

UA = UA+V =

1 0 0
0 1 0
0 0 1

 η(t) =


−t, if t ∈ [−1, 0)

1− t, if t ∈ [0, 1)

2− t, if t ∈ [1, 2]

0, otherwise
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Example 4.8. Commuting Pair C2

A =

 1 i 0
−i 1 0
0 0 −2

 A+ V =

 2 i 0
−i 2 0
0 0 2


σ(A) = {−1, 0, 2} σ(A+ V ) = {1, 2, 3}

UA = UA+V = 1√
2

 0 1 i
0 i 1√
2 0 0

 η(t) =



1− t, if t ∈ [−1, 0)

3− 2t, if t ∈ [0, 1]

2− t, if t ∈ (1, 2]

3− t, if t ∈ (2, 3]

0, otherwise
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Example 4.9. Noncommuting Pair NC2

A =

2 0 −i
0 3 0
i 0 2

 A+ V =

 3 2− i −3i
2 + i 0 1− i

3i 1 + i 0


σ(A) = {1, 3} σ(A+ V ) = {−2,−1, 6}

UA = 1√
2

i 0 −i
0
√

2 0
1 0 1

 UA+V =

 −0.378 0.0371− 0.7783i 0.1581 + 0.4743i
0.387 + 0.7659 0.2224− 0.3336i −0.3162 + 0.1581i

0.378 0.4818 0.7906



η(t) =



2 + t, if t ∈ [−2,−1)

3 + 2t, if t ∈ [−1, 1]

0.9999 + 6.8571t, if t ∈ (1, 3]

6− t, if t ∈ (3, 6]

0, otherwise
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As with the first order spectral shift function, it can be insightful to ask when η(x) is zero
everywhere. We can see from the examples that follow, wherein ξ(x) is identically 0 and η(x)
is identically 0, that this occurs when the matrices A and A + V both commute and have the
same eigenvalues with the same multiplicities. Since they commute, they have the same set
of eigenvectors and can have the same diagonalizing matrices. Furthermore, if η(x) = 0, then
ξ(x) = 0. This implication does not go the other way. If the matrices do not commute, but
do have the same eigenvalues with the same multiplicities, then η(x) seems to be a piece-wise
constant function. Examples of this behavior are also included.

Proposition 4.10. If two self-adjoint matrices have the same spectra of eigenvalues with the
same multiplicities and the same eigenvectors, then η(x) = 0 ∀x ∈ R.

Proof. Suppose that A and A+ V have the same eigenvalues with the same multiplicities and
with the same eigenvectors. Let {λi}ni=1 = {µj}nj=1 where λ1 = µ1, λ2 = µ2, . . . , λn = µn.
We know that the diagonalizing matrices have columns composed of orthonormal eigenvectors,
so the dot product of any two of them that are not equal is 0. This means that any terms
with | 〈fi, fj〉 |2 where j 6= i will become 0 in the sum

∑
i

∑
j |λi − x| · | 〈fi, fj〉 |2 · χ[λi,λi](x).

This leaves us with the terms where j = i. Since all the eigenvalues are equal and have the
same multiplicities, when j = i, χ[λi,λi](x) = χ{λi}(x). In other words, the only time that
χ{λi}(x) 6= 0, is when x = λi. However when x = λi, |λi − x| = 0. Thus the terms in the
sum

∑
i

∑
j |λi − x| · | 〈fi, fj〉 |2 · χ[λi,λi](x) where j = i are also 0. In conclusion, η(x) = 0. �

Conjecture 4.11. If η(x) = 0 ∀x ∈ R for two self-adjoint matrices, then ξ(x) = 0 ∀x ∈ R for
those matrices too.

It may be possible to prove 4.10 in the other direction using 4.11.

Conjecture 4.12. If ξ(x) = 0 and η(x) = 0 ∀x ∈ R for two self-adjoint matrices, then those
two self-adjoint matrices have the same spectra of eigenvalues with the same multiplicities and
the same eigenvectors.

Additionally, it may be possible to prove under what conditions η(x) is a piece-wise constant
function.

Conjecture 4.13. If two self-adjoint matrices have the same spectra of eigenvalues with the
same multiplicities, but not the same eigenvectors, then ξ(x) = 0 and η(x) is a piece-wise
constant function ∀x ∈ R.
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Example 4.14. Diagonal Pair, Eigenvalues Permuted, XD2

A =

[
1 0
0 2

]
A+ V =

[
2 0
0 1

]
σ(A) = σ(A+ V ) = {1, 2}

UA = UA+V = I

η(t) = 0

Example 4.15. Commuting Pair, Eigenvalues Permuted, XPC1

A = 1
3

[
4 −

√
2

−
√

2 5

]
A+ V = 1

3

[
5 −

√
2

−
√

2 4

]
σ(A) = σ(A+ V ) = {1, 2}

DA =

[
1 0
0 2

]
DA+V =

[
2 0
0 1

]

UA = UA+V = 1√
2

[
1−i√

3
−i√
3

1−i√
6

2i√
6

]
η(t) = 0

Example 4.16. Noncommuting Pair, Eigenvalues Not Permuted, XNC1

A = 1
3

[
4 −

√
2

−
√

2 5

]
A+ V = 1

25

[
34 12i
−12i 41

]
σ(A) = σ(A+ V ) = {1, 2}

DA = DA+V =

[
1 0
0 2

]

UA = 1√
2

[
1−i√

3
−i√
3

1−i√
6

2i√
6

]
UA+V = 1

2

[
1− i 1 + i
1 + 1 1− i

]

η(t) =

{
1
2
, if t ∈ [1, 2]

0, otherwise
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Example 4.17. Noncommuting Pair, Eigenvalues Permuted, XPNC1

A = 1
3

[
4 −

√
2

−
√

2 5

]
A+ V = 1

2

[
3 −i
i 3

]
σ(A) = σ(A+ V ) = {1, 2}

DA =

[
1 0
0 2

]
DA+V =

[
2 0
0 1

]

UA = 1√
2

[
1−i√

3
−i√
3

1−i√
6

2i√
6

]
UA+V = 1

2

[
1− i 1 + i
1 + 1 1− i

]

η(t) =

{
1
2
, if t ∈ [1, 2]

0, otherwise

Example 4.18. Commuting Pair, Eigenvalues Permuted, XPC2

A =

 0 0 −1
0 −2 0
−1 0 0

 A+ V =

−12 0 −3
2

0 −1 0
−3
2

0 −1
2


σ(A) = σ(A+ V ) = {−2,−1, 1}

DA =

−1 0 0
0 −2 0
0 0 1

 DA+V =

−2 0 0
0 1 0
0 0 −1



UA = UA+V = 1√
2

 1√
2

0 1−i
2

0 −i 0
1√
2

0 −1+i
2


η(t) = 0

Example 4.19. Noncommuting Pair, Eigenvalues Not Permuted, XNC2

A =

 0 0 −1
0 −2 0
−1 0 0

 A+ V =

−1 0 0
0 −1 −1 + i
0 −1− i 0


σ(A) = σ(A+ V ) = {−2,−1, 1}

DA = DA+V =

−1 0 0
0 −2 0
0 0 1



UA = 1√
2

 1√
2

0 1−i
2

0 −i 0
1√
2

0 −1+i
2

 UA+V =

0 −1−i√
6

2√
6

1 0 0
0 1+i√

3
1√
3



η(t) =


3, if t ∈ [−2,−1)

2, if t ∈ [−1, 1]

0, otherwise
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Example 4.20. Noncommuting Pair, Eigenvalues Permuted, XPNC2

A =

 0 0 −1
0 −2 0
−1 0 0

 A+ V =

 −1 0 −
√

2
0 −1 0

−
√

2 0 0


σ(A) = σ(A+ V ) = {−2,−1, 1}

DA =

−1 0 0
0 −2 0
0 0 1

 DA+V =

−1 0 0
0 1 0
0 0 −2



UA = 1√
2

 1√
2

0 1−i
2

0 −i 0
1√
2

0 −1+i
2

 UA+V =

0 −1−i√
6

2√
6

1 0 0
0 1+i√

3
1√
3



η(t) =


3, if t ∈ [−2,−1)

2, if t ∈ [−1, 1]

0, otherwise
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