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Chapter 1 Introduction 

Unveiling the transient world is a complex and compelling problem in 

applied mathematics.  Numerous technologies and analytics have been created to 

study dynamic signals.  The wavelet transform (WT) is one such tool.  The WT 

grants us the ability to deconstruct multifaceted signals into time frequency 

representations which allows the user to zoom into and take apart an observed 

signal.  

This ability of the wavelet transform is generated by multiresolution 

properties.  Not only do these unique properties produce time series information 

regarding a signal but they also grant frequency information.  With each level of 

deconstruction of a signal, we may observe different contributing waveforms to the 

signal in certain frequency bandwidths or intervals.     

While the WT is unique, its applications are many.  An area of application 

and the focus of this study is signal processing.  Specifically the processing and 

analysis of electrical potentials generated from the scalp or more commonly named 

Electroencephalographic (EEG) responses. 

These signals are of interest because they are a determinant of brain health 

and cognition. Individuals diagnosed with schizophrenia demonstrate a reduced 

event related potential (ERP) ~300 ms after a rare stimulus [24]. This response is 

associated with the reorganization toward unexpected events.  

This study will explore the time-frequency characteristics of these responses 

and examine the degree in which responses are modulated by regularities in the 

environment within healthy individuals and individuals with schizophrenia.  
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Chapter 2 Preliminaries 

2.1. The Wavelet Basis 

A function ψ ∈ L2 R  is a wavelet if {ψj,k ∶=  2
j

2ψj,k 2jt − k  for j, k ∈ Z} 

forms an orthonormal basis for L2 R .  This basis is called a wavelet basis. The 

wavelet transform involves the use of translations and scaling instead of 

modulations.  This provides the wavelet transform with a natural zooming 

mechanic.  We will talk more about this zooming mechanism in the Orthogonal 

Multiresolution section.  With a wavelet transform the idea is to deconstruct a 

signal into an approximation and a set of details. 

Definition The orthogonal wavelet transform is defined as the function that maps 

L2 R  the set of  L2 R  itegrable functions to the little l
2
 of the Integers, over the 

complex numbers. and assigns each function in L2 R  a sequence of wavelet 

coefficients:   

Wjf j, k ≔   f, ψj,k =  f x ψj,k(x)         

R

dx 

(1) 

 

2.2. Orthogonal Multiresolution Analysis (MRA): 

Definition 10. [13,7] A multiresolution analysis (MRA) is a decomposition of 

𝐿2 𝑅 the set of square integrable functions on R into a set of nested subspaces 

where 𝑉0 is the central space. An MRA satisfies the following properties: 

∀ 𝑗 ∈ 𝑍, 𝑉𝑗 +1 ⊂ 𝑉𝑗  (2) 

 ∀ 𝑗 ∈ 𝑍 , 𝑓 𝑡 ∈ 𝑉𝑗 ⟺ 𝑓  
𝑡

2
 ∈ 𝑉𝑗 +1 (3) 
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lim
𝑗  → +∞

𝑉𝑗 =  𝑉𝑗

+∞

𝑗 = −∞

= {0} 
(4) 

lim
𝑗  → −∞

𝑉𝑗 = 𝑐𝑙𝑜𝑠𝑢𝑟𝑒   𝑉𝑗

𝑗 =+∞

𝑗 =−∞

 =  𝐿2(𝑅) 

(5) 

The integer translates of the scaling function 𝜑 form an 

orthonormal basis for 𝑉0 
(6) 

Definition 11. [Meyer] The scaling function mentioned in (6) we will define: 

𝜑𝑗 ,𝑘 𝑡 ≔ 2
−𝑗
2 𝜑(2−𝑗 𝑡 − 𝑘) 

 

(7) 

Assume the following theorem 

Theorem 12. ([13], Theorem 7.1) Let {𝑉𝑗 }𝑗∈𝑍be an MRA with a scaling function 

𝜑 whose dilations and translations according to (3.1.5) form an orthonormal basis 

of V0. Then the family {𝜑𝑗 ,𝑘}𝑘∈𝑍 is also an orthonormal basis of  {𝑉𝑗 }𝑗∈𝑍 . 

 

 

 

Briefly we will discuss the MRA and its properties. Property (2) states that 

the subspaces are nested.  Each space expresses a level of detail that is contained in 

the subspace above.   

… 𝑉3 ⊂ 𝑉2 ⊂ 𝑉1 ⊂ 𝑉0 ⊂  𝑉−1 ⊂ 𝑉−2 ⊂ 𝑉−3 … 

Here it is important to note that depending on the author the index of the subspaces 

may be different; for example, Matlab© software, [13],[7] has an increasing index 

with declining subspaces. In other words: 
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lim𝑗→−∞ 𝑉𝑗 = 𝐿2(𝑅). 

The scaling function allows us to climb upward and downward from space 

to space. This is seen in the scaling property (3).This property along with (6) 

allows us to calculate any detail in space at a resolution 2
j+1

 using only the 

information from the space above at a resolution 2
j
.  As the resolution gets worse 

 (𝑗 → ∞)  (3.1.4) implies that we will eventually lose all detail. Thus we can see 

that the scaling function, 𝜑 completely defines its MRA. 

There is also a sequence of related orthogonal subspaces 𝑊𝑗 of 𝐿2 𝑅  that are 

related to our 𝑉𝑗 . While not completely necessary, in an orthogonal MRA we 

require that 𝑉𝑗 ⊥ 𝑊𝑗 for all j([7], [14]). These spaces are then connected in an MRA 

by 

𝑉𝑗 =  𝑉𝑗 +1⨁𝑊𝑗 +1 

Here we are using the ―Matlab‖ indexing, where the space𝑉𝑗 +1  ⊂  𝑉𝑗 .  The 

⨁symbol is the summation of the orthogonal spaces 𝑊𝑗 of𝐿2 𝑅 . When 

decomposing a signal, we start with the finest or ―best‖ approximation for the 

signal and choose the lowest level of detail for decomposition. So we will have 

spaces nested: 

𝑉𝑛 ⊂ ⋯ 𝑉3 ⊂ 𝑉2 ⊂ 𝑉1 ⊂ 𝑉0 

such that we can use the ⨁ symbol and truncate the information to attain: 

𝑉0 =  𝑉𝑗 ⨁ 𝑗=1
𝑛 𝑊𝑗  

Example 13.For the central space 𝑉0when decomposed to 3 levels, we may 

represent the central space as 

𝑉0 =  𝑉1⨁𝑊1 

𝑉0 =  𝑉2⨁𝑊2⨁𝑊1 

𝑉0 =  𝑉3⨁𝑊3⨁ 𝑊2⨁ 𝑊1 
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In neurology the convention is to denote the spaces {𝑊3 , 𝑊2, 𝑊1} as octaves and 

the space 𝑉3as the residual space ([1],[2],[3],[4],[5]). 

  

Theorem 14. [17](Mallat‘s Theorem).Given an orthogonal MRA with scaling 

function 𝜑, there is a wavelet 𝜓 ∈ 𝐿2 𝑅  such that for each𝑗 ∈ 𝑍, the family 

{𝜓𝑗 ,𝑘}𝑘∈𝑍  is an orthonormal basis for𝑊𝑗 .  Hence the family{𝜓𝑗 ,𝑘}𝑘∈𝑍  is an 

orthonormal basis for 𝐿2 𝑅 . 

From Mallat‘s Theorem, a central and basic tenant in multiresolution 

analysis, [7] whenever we have an MRA that satisfies (2) – (6) we have wavelet 

function defined as (from [Meyer]) 

ψj,k ∶=  2
−j
2 ψj,k(2−jt − k) 

(8) 

Theorem 14 states that (8) exists, is determined by the scaling function φ, and 

forms an orthonormal wavelet basis for 𝑊𝑗 .  The  𝑊𝑗  spaces in an orthogonal MRA 

are referred to as the wavelet spaces or detail spaces. A proof of Theorem 14 may 

be found in [17], [14], [13], and [7]. 

Returning to the definition of an MRA, it follows that the fifth property (5) 

of an orthogonal MRA may be restated as:  

𝐿2 𝑅 =  
⨁

𝑗 ∈ 𝑍
𝑊𝑗  (9) 

 

Where we have:  

𝑊𝑗 =  span 𝜓𝑗 ,𝑘 
𝑘∈𝑍

 (10) 

Definition 15. For a signal (or function) 𝑓(𝑡) we will define the orthogonal 

projection of our signal onto the space 𝑉𝑗 as 
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𝑃𝑗 𝑓 𝑡 =    𝑓, 𝜑𝑗 ,𝑘 𝜑𝑗 ,𝑘(𝑡) 

𝑘∈𝑍

 (11) 

where  𝑓, 𝜑𝑗 ,𝑘  is the inner product of our signal and scaling function (for a 

definition of the inner product please refer to the appendix).  

Since 𝑃𝑗 𝑓 𝑡  is the orthogonal projection of our signal, it is the ―best‖ 

approximation of our signal in 𝑉𝑗 (see figure 1).  From [13], as a consequence of (4)  

lim
𝑗→+∞

 𝑃𝑗 𝑓 
2

= 0 

 

Then for 𝑃𝑗 +1𝑓 𝑡 ∈  𝑉𝑗 +1 ⊂ 𝑉𝑗 the orthogonal projection 𝑃𝑗 𝑓 𝑡  will be a better 

approximation for our 𝑓 𝑡  than 𝑃𝑗+1𝑓 𝑡  since 𝑉𝑗 +1 is nested in 𝑉𝑗 . 

The difference between our two approximations, 𝑃𝑗 𝑓 𝑡  and 𝑃𝑗 +1𝑓 𝑡  is the 

orthogonal projection of our signal 𝑓 𝑡  onto the orthogonal wavelet space 

𝑊𝑗 +1and can then be calculated  

𝑄𝑗 +1𝑓 𝑡 =  𝑃𝑗 𝑓 𝑡 − 𝑃𝑗 +1𝑓 𝑡 =    𝑓, 𝜓𝑗 +1,𝑘 𝜓𝑗 +1,𝑘

𝑘 ∈𝑍

 𝑡  (12) 

 

 

Figure 1.   𝑷𝒋𝒇  is the projection of f in the space  𝑉𝑗  

Rewriting equation (12) and inserting equation (11) we obtain: 
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𝑃𝑗 𝑓 𝑡 = 𝑃𝑗+1𝑓 𝑡 + 𝑄𝑗 +1𝑓 𝑡  

𝑃𝑗 𝑓 𝑡 =    𝑓, 𝜑𝑗 +1,𝑘 𝜑𝑗 +1,𝑘

𝑘 ∈𝑍

 𝑡 +   𝑓, 𝜓𝑗 +1,𝑘 𝜓𝑗 +1,𝑘

𝑘 ∈𝑍

(𝑡) 

 

(13) 
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Chapter 3 Scaling Equation and Conjugate Mirror 

Conditions 

“The multiresolution theory of orthogonal wavelets proves that any 

conjugate mirror filter characterizes a wavelet 𝜓 that generates an orthonormal 

basis of L
2
(R).” 

S. Mallat 

In this chapter, we will discuss the connection between an MRA and scaling 

equations.  This will then lead us to defining conjugate mirror filters. 

3.1. The Scaling Equation 

Remark 16 Recall (2) from our MRA because  𝜑 ∈ 𝑉0 ⊂ 𝑉−1 we may express 

𝜑 as a superposition of 𝜑−1,𝑘  where 𝜑−1,𝑘 𝑡  forms an orthonormal basis of 𝑉−1  

𝜑−1,𝑘 𝑡 =   2𝜑 2𝑡 − 𝑘 , 𝑘 ∈ 𝑍 (14) 

Meaning, there exists a sequence of coefficients {𝑕𝑘} 𝑘∈𝑍  that satisfy the following 

scaling equation. 

𝜑 𝑡 =   𝑕𝑘𝜑−1,𝑘(𝑡)

𝑘∈𝑍

=  2  𝑕𝑘

𝑘∈ 𝑍

𝜑 2𝑡 − 𝑘  (15) 

The sequence of coefficients {𝑕𝑘} 𝑘∈𝑍  are given by the inner product  

𝑕𝑘 ∶=  𝜑, 𝜑−1,𝑘  (16) 

These coefficients{𝑕𝑘} 𝑘∈𝑍are the so called low pass filter. They are often 

produced from a trigonometric polynomial (such as a spline function discussed 
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later) with a period of one and with only a few of the coefficients not equal to zero.  

Thus they are referred to as finite impulse response filters (FIR) [13], [7].  We will 

discuss FIR later in subsequent chapters 

From (16) the sequence of coefficients {𝑕𝑘} 𝑘∈𝑍  can be represented by its 

refinement mask [13].  This refinement mask is given as: 

𝐻 ƺ =  
1

 2
 𝑕𝑘

𝑘∈𝑍

𝑒−2𝜋𝑖𝑘 ƺ 
(17) 

Remark 17: Notice with ―z‖ notation where 𝑧 = 𝑒−2𝜋𝑖ƺ (17) is a trigonometric 

polynomial where (16) is the FIR.  (17) is then represented as 

𝐻 𝑧 =  
1

 2
 𝑕𝑘

𝑘∈𝑍

𝑧𝑘  
(18) 

Theorem 18 ([13], Theorem 7.2) Let   𝜑𝑗 ,𝑘 ∈ 𝐿2(𝑅) be an itegrable scaling 

function (such as 15).  The Fourier series of {𝑕𝑘} 𝑘∈𝑍satisfies 

 𝐻 ƺ  2 +  𝐻 ƺ + 1/2  2 =  1 
 

(19) 

(19) is referred to as a conjugate mirror filter condition [13].  (19) is a 

consequence of the orthonormality of the scaling function which is shown in [14], 

[7]. For more information and proof of Theorem 18 please refer to [13], Theorem 

7.2.  The main result from Theorem 18 is that (19) is a necessary condition to 

devise (15).  Simply the filters determine several properties of the scaling function. 

 

On the Fourier side of equation (15) we see that 
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𝜑  ƺ =  𝐻(
ƺ

2 )𝜑 (
ƺ

2 ) (20) 

It can be shown [14, Meyer] that (20) satisfies (19).  An  alternative condition for 

the scaling function is shown below ([13]).  

Lemma18.[13],[17]Given a function  𝑓 ∈ 𝐿 𝑅 2 whose family  

{𝑓0.𝑘 =  𝜏𝑘𝑓}𝑘∈𝑍  of integer translates of f  is orthonormal if and only if 

  𝑓  ƺ + 𝑛  
2

𝑛∈𝑍

= 1 (21) 

where 𝜏𝑘𝑓 𝑥 ∶= 𝑓 𝑥 − 𝑘  𝑓𝑜𝑟 𝑘 ∈ 𝑍. 

Proof 19. (inspired by [17]) First we will take the inner product between 

𝜏𝑘𝑓 and 𝜏𝑚𝑓 with k and m elements of the integers. It follows using a change of 

variables with the definition of inner product we have 

 𝜏𝑘𝑓, 𝑚𝑓 =   𝜏𝑘−𝑚𝑓, 𝑓  

For the family of f we may equate their orthonormality via 

 𝜏𝑘𝑓, 𝑚𝑓 =   𝜏𝑘−𝑚𝑓, 𝑓 =   𝜏𝐾𝑓, 𝑓 = 𝛿𝐾 ∀ 𝑚, 𝑘, 𝐾 ∈ 𝑍 

Then we will take the Fourier transform on each side of the equation.  We 

know that the Fourier transform will preserve the inner product [ ref need]. From 

the time frequency dictionary the Fourier transform of 𝜏𝐾𝑓 will translate to a 

modulation by 𝑒−2𝜋𝑖𝑘 ƺ a function whose period is one. 

𝛿𝐾 =  𝜏𝐾𝑓 , 𝑓  =  𝑒−2𝜋𝑖𝑘 ƺ

𝑅

 𝑓  ƺ  
2
𝑑ƺ 

Then we may use the additive property of the integral to sum the integral 

over the integers.  It follows,  
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𝛿𝐾 =   𝑒−2𝜋𝑖𝑘 ƺ
𝑛+1

𝑛

 𝑓  ƺ  
2
𝑑ƺ

𝑛 ∈𝑍

 

Next, we will use a change of variables to map the interval [n,n+1) onto a unit 

interval of [0,1) by setting  𝑚 =  ƺ − 𝑛. Thus the equation above becomes  

𝛿𝐾 =  𝑒−2𝜋𝑖𝑘 ƺ
1

0

  𝑓  𝑚 + 𝑛  
2

𝑛 ∈𝑍

𝑑𝑚 

This equation states that the function 𝐹 𝑚 =    𝑓  𝑚 + 𝑛  
2

𝑛 ∈𝑍  with a 

period of one as a K
th
Fourier coefficient equal to the Kroneckerdelta 𝛿𝐾 .  It must 

therefore be equal to one almost everywhere.  

 ■ 

 

3.2. Conjugate Mirror Filters 

Lemma 21. (Conjugate Mirror Filter) Given an orthogonal MRA with a scaling 

function 𝜑 and a corresponding low-pass filter H, where H(ƺ) is assumed to be a 

trigonometric polynomial with period one, the low-pass filter satisfies for almost 

every ƺ. 

 𝐻 ƺ  2 +   𝐻 ƺ + 1/2  2 =  1 

𝐻 ƺ 𝐻 ƺ       +  𝐻 ƺ + 1/2 𝐻 ƺ + 1/2                = 1 

(22) 

Proof 23. [13] Since the scaling function is assumed to be an orthonormal basis 

and the Fourier transform preserves orthonormality the integer translates of 𝜑  ƺ  

will satisfy lemma 34.  Thus we have 

  𝜑  ƺ + 𝑛  2

𝑛∈𝑍

= 1 (23) 
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Plugging equation (20) into (23)we obtain 

1 =   |𝜑  ƺ + 𝑛   2

𝑛∈𝑍

=    𝐻  
ƺ + 𝑛

2
  

2

𝑛∈𝑍

𝜑   
ƺ + 𝑛

2
  

2

 
(24) 

Then we will separate the sum over the odd and even integers.  It follows, 

  𝐻  
ƺ + 𝑛

2
  

2

𝑛∈𝑍

𝜑   
ƺ + 𝑛

2
  

2

=    𝐻  
ƺ + 2𝑛

2
  

2

𝑛∈𝑍

𝜑   
ƺ + 2𝑛

2
  

2

+   𝐻  
ƺ + 2𝑛 + 1

2
  

2

𝑛∈𝑍

𝜑   
ƺ + 2𝑛 + 1

2
  

2

= 1 

Next we will use the fact that the function H(z) has period one and factor it 

out of the integral and obtain 

 𝐻  
ƺ

2
  

2

 𝜑   
ƺ

2
+  𝑛  

2

𝑛∈𝑍

+  𝐻  
ƺ

2
+

1

2
  

2

 𝜑   
ƺ

2
+  𝑛 +

1

2
  

2

𝑛∈𝑍

= 1 

Then we can once again use equation (4.5.1) since it is true almost 

everywhere by substitution we will arrive at  

 𝐻  
ƺ

2
  

2

+  𝐻  
ƺ

2
+

1

2
  

2

= 1 

Finally we may conclude that the equality of the above equation holds 

everywhere since H(z) is a trigonometric polynomial by (18) and is therefore 

continuous. Hence, 

𝐻 ƺ 𝐻 ƺ       +  𝐻 ƺ + 1/2 𝐻 ƺ + 1/2                = 1 

 ■ 
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3.3. The Wavelet and Conjugate Mirror Filters 

We saw in (12) the projection of f onto the orthogonal space Wj was given by 

𝑄𝑗 𝑓 𝑡 =   𝑓, 𝜓𝑗 ,𝑘 𝜓𝑗 ,𝑘

𝑘 ∈𝑍

(𝑡) 

where we denoted 𝜓𝑗 ,𝑘by (8). 

Theorem 24 ([13], Theorem 7.3) 𝜓 ∈  𝑊0 ⊂  𝑉−1 we may express 𝜓 as a 

superposition of 𝜑−1,𝑘  where 𝜑−1,𝑘 𝑡  forms an orthonormal basis of   𝑉−1 

Meaning, there exists a sequence of coefficients {𝑔𝑘} 𝑘∈𝑍  that satisfy the following 

scaling equation. 

𝜓 𝑡 =   2  𝑔𝑘

𝑘∈ 𝑍

𝜑 2𝑡 − 𝑘  (25) 

with the unique sequence of coefficients {𝑔𝑘} 𝑘∈𝑍  known as the high-pass filter. 

 

Theorem 24 [Meyer, 13] Let 𝜑 be a scaling function and h the corresponding 

conjugate mirror filter.  The function (25) defined on the Fourier side as 

ψ  ƺ =  𝐺(
ƺ

2 )𝜑 (
ƺ

2 ) (26) 

with G(ƺ) a trigonometric polynomial whose period is one given by its refinement 

mask 

𝐺 ƺ = =  
1

 2
 𝑔𝑘

𝑘∈𝑍

𝑒−2𝜋𝑖𝑘 ƺ 
(27) 
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where 𝑔𝑘  is the high-pass filter defined by taking the inverse Fourier transform 

of (26) 

𝑔𝑘 =  −1 1− 𝑘𝑕(1 − 𝑘) (28) 

Lemma 25 ([13], lemma 7.1) The family  𝜓𝑗 ,𝑘 
𝑘∈𝑍

 is an orthonormal basis of Wj. 

if and only if  

 𝐺 ƺ  2 +  𝐺 ƺ + 1/2  2 =  1 
 

(29) 

Proof 26 ([13], lemma 7.1) this proof follows much like proof 23. Plugging 

equation (26) into (21) we obtain 

1 =   |ψ  ƺ + 𝑛   2

𝑛∈𝑍

=    G  
ƺ + 𝑛

2
  

2

𝑛∈𝑍

𝜑   
ƺ + 𝑛

2
  

2

 
(30) 

Then we will separate the sum over the odd and even integers.  It follows, 

  𝐺  
ƺ + 𝑛

2
  

2

𝑛∈𝑍

𝜑   
ƺ + 𝑛

2
  

2

=    G  
ƺ + 2𝑛

2
  

2

𝑛∈𝑍

𝜑   
ƺ + 2𝑛

2
  

2

+   𝐺  
ƺ + 2𝑛 + 1

2
  

2

𝑛∈𝑍

𝜑   
ƺ + 2𝑛 + 1

2
  

2

= 1 

Next we will use the fact that the function G(ƺ) has period one and factor it 

out of the integral and obtain 

 G  
ƺ

2
  

2

 𝜑   
ƺ

2
+  𝑛  

2

𝑛∈𝑍

+  G  
ƺ

2
+

1

2
  

2

 𝜑   
ƺ

2
+  𝑛 +

1

2
  

2

𝑛∈𝑍

= 1 
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Then we can once again use equation (4.5.1) by substitution we will arrive at  

 𝐺  
ƺ

2
  

2

+   G  
ƺ

2
+

1

2
  

2

= 1 

Which is true everywhere since G(ƺ) is a trigonometric polynomial \ 

■ 

From the proof above we may conclude that 𝐺 ƺ  also satisfies a conjugate 

mirror filter condition and due to the orthogonality between 𝑊0 and 𝑉0 

and our definition for 𝐺 ƺ  in (27) and (18) we have  

 𝐻 ƺ   𝐺 ƺ          +  𝐻 ƺ + 1/2   𝐺 ƺ + 1/2                  =  0 
 

(31) 
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Chapter 4 Biorthogonality and its Implication 

 In the previous chapters we introduced an orthogonal MRA and the 

associated scaling equations.  We saw from Mallat‘s theorem that given an MRA 

with a scaling function we were guaranteed a wavelet that formed a basis for the 

orthogonal complement.  As a consequence of the orthonormality of the scaling 

function we discovered conditions on the filter coefficients that insured 

reconstruction. 

 The use of FIRs made wavelets very attractive.  As the application of 

wavelets progressed so too did the theory.  Practitioners continued to seek wavelets 

with different properties to solve new problems.  These quests for different 

wavelets with unique properties began with the relaxing of the old.  For instance in 

the following chapter we will discuss an alternative design to an MRA by 

removing the requirement of orthogonality between a scaling function and its 

wavelet and discuses the new biorthogonal conditions that insure perfect 

reconstruction.   

 

Figure 2.Biorthogonoal Vectors in 𝑹𝟐 

4.1. Biorthogonal MRA 

Example 35 (Simple Biorthogonal Case) Consider the vector s 𝑣1     =  1,0  

and𝑣2     =  1,1  (Figure 2).  We see that they are linearly independent but not 
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orthogonal.  These vectors will then form a basis in R
2
 such that ∀ 𝑣 =  𝑥, 𝑦 ∈ 𝑅2 

There exists unique coefficients a, b such that  

𝑣 = 𝑎𝑣1     + 𝑏𝑣2      

In a biorthogonal case, there exist dual vectors  𝑣1
∗        and𝑣2

∗         such that we are able 

to use the inner products with these dual vectors to produce the coefficients a and b 

where the dual vectors satisfy (in our case) 𝑣1
∗        ⊥ 𝑣2      and 𝑣2

∗        ⊥ 𝑣1     . 

□ 

Our simple example above leads us to the definition of a biorthogonal basis. 

Definitionv36 ([7], Biorthogonal basis) For a Riesz basis   𝜓𝑗  𝑗 =1

∞
the dual Riesz 

basis is a set ofelements 𝜓∗
𝑘
 
𝑘=1

∞
 in a space H such that 𝜓𝑗 , 𝜓∗

𝑘
 = 𝛿𝑗 ,𝑘and any 

𝑓 ∈ 𝑯 may be expressed as 

𝑓 =    𝑓, 𝜓∗
𝑛
 

∞

𝑛=1

𝜓𝑛 =    𝑓, 𝜓𝑛  

∞

𝑛=1

𝜓∗
𝑛

 

A pair of dual Riesz bases ( 𝜓𝑗  𝑗 =1

∞
,  𝜓∗

𝑘
 
𝑘=1

∞
) of W will be referred to as a 

biorthogonal basis. For the definition of a Reisz bases please refer to the appendix.  

Similar to our definition of an orthogonal MRA we also have properties that 

define a biorthogonal MRA.  They are similar in that the scaling function defines 

the MRA.  However we now have two scaling functions and no longer require 

orthogonality between a scaling function and its associated wavelet.  
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Definition 37 A Biorthogonal Multiresolution Analysis with scaling function 𝜑 

and dual scaling function 𝜑*, a biorthogonal MRA satisfies the following 

properties  

∀ 𝑗 ∈ 𝑍, 𝑉𝑗 +1 ⊂ 𝑉𝑗  and 𝑉∗
𝑗 +1 ⊂ 𝑉∗

𝑗  (32) 

∀ 𝑗 ∈ 𝑍 , 𝑓 𝑡 ∈ 𝑉𝑗 ⟺ 𝑓  
𝑡

2
 ∈ 𝑉𝑗 +1  𝑎𝑛𝑑 

𝑓∗ 𝑡 ∈ 𝑉∗
𝑗 ⟺ 𝑓∗  

𝑡

2
 ∈ 𝑉∗

𝑗 +1 

(33) 

lim
𝑗  → +∞

𝑉𝑗 =  𝑉𝑗

+∞

𝑗 = −∞

=  0  𝑎𝑛𝑑 

lim
𝑗→+∞

𝑉𝑗
∗ =   𝑉∗

𝑗

+∞

𝑗 = −∞

= {0} 

(34) 

lim
𝑗  → −∞

𝑉𝑗 = 𝑐𝑙𝑜𝑠𝑢𝑟𝑒   𝑉𝑗

𝑗 =+∞

𝑗 =−∞

 =  𝐿2 𝑅  and  

lim
𝑗  → −∞

Vj
∗ = 𝑐𝑙𝑜𝑠𝑢𝑟𝑒   Vj

∗

𝑗=+∞

𝑗=−∞

 =  𝐿2(𝑅) 

 

(35) 

The integer translates of 𝜑 and 𝜑* forma a Riesz basis of 
 𝑉𝑗  𝑎𝑛𝑑 𝑉𝑗

∗ respectively. 
(36) 
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 A biorthogonal MRA is very much like an orthogonal MRA in 

definition, the loss of orthogonality being the key difference.   Simply, a 

biorthogonal MRA consists of two dual MRAs with two scaling 

functions 𝜑 and𝜑∗. The decomposition of the space L
2
(R) given by these two 

scaling functions is then  

… 𝑉3 ⊂ 𝑉2 ⊂ 𝑉1 ⊂ 𝑉0 ⊂  𝑉−1 ⊂ 𝑉−2 ⊂ 𝑉−3 … 

And 

… 𝑉3
∗ ⊂  𝑉2

∗ ⊂ 𝑉1
∗ ⊂ 𝑉0

∗ ⊂ 𝑉−1
∗ ⊂ 𝑉−2

∗ ⊂ 𝑉−3
∗ … 

 

 Where by (34) the intersection of the spaces is the trivial space {0} and by 

property (35) the union of the spaces is dense.  

 From property (36) the scaling function {𝜑𝑗 ,𝑘}𝑘∈𝑍  is a Riesz basis for 

𝑉𝑗  and {𝜑𝑗 ,𝑘
∗ }𝑘∈𝑍  is a Riesz basis for 𝑉∗

𝑗  ([13], [7]).  We also require that these 

scaling functions be dual in the sense that 

 

 𝜑𝑛 , 𝜑𝑗
∗ =  𝛿𝑛,𝑗  

Then for  𝑓 ∈ 𝑉0 ,   

𝑓 𝑡 =    𝑓, 𝜑∗
0,𝑘

 𝜑0,𝑘 𝑡 

𝑘∈𝑍

 

and if 𝑓∗ ∈ 𝑉0
∗, 

 𝑓∗ 𝑡 =    𝑓∗, 𝜑0,𝑘 𝜑∗
0,𝑘

(𝑡)

𝑘∈𝑍

 

And just like an orthogonal MRA we can use the scaling functions to traverse 

across scales.  This is seen in property (32 and 33). 

 Unlike an orthogonal MRA, the spaces 𝑉𝑗 and𝑊𝑗  are no longer 

orthogonal (also true for the spaces 𝑉𝑗
∗and𝑊𝑗

∗ ). We still relate the spaces by 
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𝑉𝑗 =  𝑉𝑗 +1⨁𝑊𝑗 +1 

and 

𝑉𝑗
∗ =  𝑉𝑗 +1

∗ ⨁𝑊𝑗 +1
∗  

 

Only this time we impose the following conditions 

𝑉𝑗 ⊥ 𝑊𝑗
∗and 𝑉𝑗

∗ ⊥ 𝑊𝑗  

Where  𝜓𝑗 ,𝑘 
𝑘∈𝑍

 and  𝜓∗
𝑗 ,𝑘

 
𝑘∈𝑍

are dual bases for 𝑊𝑗  and 𝑊𝑗
∗, respectively.  

4.2. Biorthogonal Scaling equations 

For a biorthogonal MRA the basic scaling equations (from [13]) are 

𝜑 𝑡 =  2  𝑕𝑘

𝑘∈ 𝑍

𝜑 2𝑡 − 𝑘  𝑎𝑛𝑑 𝜑∗ 𝑡 =  2  𝑕𝑘
∗

𝑘∈ 𝑍

𝜑∗ 2𝑡 − 𝑘  

 

(37) 

𝜓 𝑡 =   2  𝑔𝑘

𝑘∈ 𝑍

𝜑 2𝑡 − 𝑘  𝑎𝑛𝑑  𝜓∗ 𝑡 =   2  𝑔𝑘
∗

𝑘∈ 𝑍

𝜑∗ 2𝑡 − 𝑘  (38) 

And on the Fourier side of these equations become 

𝜑  ƺ =  𝐻(
ƺ

2 )𝜑 (
ƺ

2 ) and 𝜑 ∗ ƺ =  𝐻∗(
ƺ

2 )𝜑 ∗(
ƺ

2 ) 

 

(39) 

𝜓  ƺ =  𝐺(
ƺ

2 )𝜑 (
ƺ

2 ) and 𝜓 ∗ ƺ =  𝐺∗(
ƺ

2 )𝜑 ∗(
ƺ

2 ) (40) 

Similar to what we observed in the orthogonal case, the scaling equations 

(insert here) in the biorthogonal MRA are defined implicitly from the dual scaling 

functions.   
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4.3. Finite Impulse Response Filters and Fast Wavelet Transform 

From (39) we can define the set of four FIR.  With their refinement mask 

and   using ―z‖ notation we have 

𝐻 𝑧 =  
1

 2
 𝑕𝑘𝑘∈𝑍 𝑧𝑘  and 𝐻∗ 𝑧 =  

1

 2
 𝑕𝑘

∗
𝑘∈𝑍 𝑧𝑘  (41) 

with 

𝐺 𝑧 = 𝑧𝐻∗ 𝑧           and 𝐺∗ 𝑧 =  𝑧𝐻(−𝑧)          (42) 

And due to the biorthogonality we will have the following conditions 

𝐻 𝑧 𝐻∗ 𝑧         +  𝐻 −𝑍 𝐻∗ −𝑍           =  1 

𝐺 𝑧 𝐺∗ 𝑧        +  𝐺 −𝑍 𝐺∗ −𝑍           =  1 

𝐻 𝑧 𝐺∗ 𝑧        +  𝐻 −𝑍 𝐺∗ −𝑍           =  0 

𝐺 𝑧 𝐻∗ 𝑧         +  𝐺 −𝑍 𝐻∗ −𝑍           =  0 
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4.4. Fast Wavelet Transform 

 

Figure 3 

Biorthogonal Fast Wavelet Transform Schematic 

 Using the biorthogonal FIR (41,42) we may implement a fast wavelet 

transform for a signal S (Figure 3).  On the side of decomposition the * symbol is 

used to denote a convolution with the conjugate flip (denoted by a line over the 

filter) of the high-pass filter 𝐺∗ and low-pass filter 𝐻∗ and the ↓ 2 is the down 

sampling operator were every even sample is removed.  With the reconstruction or 

Synthesis, the approximation and detail is convolved with the filters G and H.  The 

↑ 2 is the up sampling operator adding in zeros in the even indexes of the 

approximation or detail.  The ⨁ is the orthogonal summation.     
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Chapter 5 Wavelets and Electroencephalography 

 

5.1. Materials and Methods 

Data Collection 

EEG from 116 participants was collected as part of a study conducted at the 

Hartford Hospital.  The participants were either a healthy control group (HC group, 

N = 58) or a group of participants diagnosed with schizophrenic spectrum 

psychological disorders (SZ group, N = 58). The standard 10-20 electrode 

placement was used with 64 Electrodes.  The HC and SZ groups participated in a 

standard auditory oddball paradigm where they pressed a button when a target tone 

(1000 Hz) appeared within a series of standard auditory tones (1500 Hz). A total of 

656 tones (20% targets) were presented to participants during the experiment. 
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Figure 4.Dual Scaling and Dual Wavelet Functions for the Biorthogonal Spline.  
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Finite Impulse Response Filters for the Biorthogonal Spline Wavelet Transform 

Low Decomposition High Decomposition Low Reconstruction High Reconstruction 
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    0.9421 

    0.0021 

   -0.3202 

    0.0123 

    0.0991 

   -0.0141 

   -0.0206 

    0.0051 

    0.0020 

   -0.0007 

        0 

         0 

         0 

         0 

         0 

         0 

         0 

         0 

   -0.1768 

    0.5303 

   -0.5303 

    0.1768 

         0 

         0 

         0 

         0 

         0 

         0 

         0 

         0 

       0 

         0 

         0 

         0 

         0 

         0 

         0 

         0 

    0.1768 

    0.5303 

    0.5303 

    0.1768 

         0 

         0 

         0 

         0 

         0 

         0 

         0 

         0 

  -0.0007 

   -0.0020 

    0.0051 

    0.0206 

   -0.0141 

   -0.0991 

    0.0123 

    0.3202 

    0.0021 

   -0.9421 

    0.9421 

   -0.0021 

   -0.3202 

   -0.0123 

    0.0991 

    0.0141 

   -0.0206 

   -0.0051 

    0.0020 

    0.0007 
 

De-noising and filtering  

Independent component analysis was used to remove artifacts from the raw EEG.  

The bi-orthogonal spline wavelet (represented by the finite, bi-orthogonal, filter 

banks, see table above) was convolved with individual time series to calculate 

wavelet coefficients and to decompose the EEG into time-frequency 

representation. These time-frequency representation approximate the Hi-Gamma 

(65 – 125 Hz), gamma (32 – 65 Hz), Beta (16 – 32 Hz), alpha (8 – 16 Hz), theta (4 

– 8 Hz), and delta (0-4 Hz) frequency bands. Analysis was focused on the delta and 

theta frequency bands since they have the strongest contribution to the EEG 

response to targets [23] 

Comparative wavelet analysis 

Individual trials were decomposed using the fast biorthogonal wavelet 

transform and the wavelet coefficients were averaged separately for the 5 octaves 

and residual space for target and non-target EEG segments. This was done for 
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channels Fz, Cz, and Pz. A two-way-ANOVA was conducted separately for each 

octave and residual space, and channel, in order to identify coefficients which 

demonstrate a significant interaction between group (HC and SZ) and stimulus 

type (target or non-target). The coefficient and EEG electrode with the smallest p-

value was used as a feature in the subsequent analysis.  

5.2. Results, Conclusions and Closing Remarks 

 

For the channels PZ, CZ, and FZ, a two-way ANOVA was conducted with 

the following results: 

Using the wavelet transform, the coefficients for responses were calculated 

for the HC and SZ groups.  The 14
th
 coefficient, which lies in the delta residual 

band statistically differentiated  responses between target tones and non-target 

tones (Targetness), and differentiated individuals within the groups. 

Analysis of Variance 

Channel PZ 

Source Sum Sq. d.f. Mean Sq. F Prob>F 

Subject 1786.4 1 1786.4 21.91 0 

Targetness 12481.6 1 12481.6 153.1 0 

Subject * 

Targetness 
1119 1 1119 13.73 .0003 

Error 18587.9 228 81.5   

Total 33974.9 231    

 

  



CHAPTER 5 WAVELETS AND ELECTROENCEPHALOGRAPHY 

27 

 

Analysis of Variance 

Channel CZ 

Source Sum Sq. d.f. Mean Sq. F Prob>F 

Subject 83.3 1 83.35 .079 .0376 

Targetness 14968 1 14968.04 141.31 0 

Subject * 

Targetness 
243.2 2 243.22 2.3 0.1311 

Error 24150 228 105.92   

Total 39444.6 231    

 

Analysis of Variance 

Channel FZ 

Source Sum Sq. d.f. Mean Sq. F Prob>F 

Subject 53.5 1 53.5 .034 .05585 

Targetness 4545.7 1 4545.74 29.17 0 

Subject * 

Targetness 
0 1 0.01 0 0 

Error 35526.9 228 155.82   

Total 40126.1 231    
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Figure 5.  The histogram for the 14
th

 coefficient for HC group, left and SZ group, right. 

Figure 5, above, for the HC (left) have 76% of their delta coefficients for target responses 

above zero, while the SC group has 64% (orange data series).  Both groups HC and SZ had 

approximately a 50/50 distribution for the non target responses for the delta 14 coefficient below 

zero and above zero (blue series). 

These results demonstrate the time-frequency characteristics in which ERP responses are 

sensitive to acoustic regularities in healthy controls and individuals with schizophrenia. 
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1056

704

352
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Appendix 

Definition A1 (Inner Product) Astrictly positive-definite) inner product on a vector space V over 

C (the complex numbers) is a function  . , .  : 𝑉𝑥𝑉 → 𝐶 such that for , all x, y, z ∈ V and α, β ∈

C,     

(i)  𝑥, 𝑦 =   𝑦, 𝑥         

(ii)  α𝑥 + β𝑦, 𝑧 =  𝛼 𝑥, 𝑧 +  β 𝑦, 𝑧  

(iii)  𝑥, 𝑥 ≥ 0 

(iiii)  𝑥, 𝑥 = 0 𝑖𝑓𝑓 𝑥 = 0 
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