
R tutorial

Arithmetic and logical syntax in R

This is an R tutorial, which should help you get familiar with the basics of R, including math functions, ma-
nipulating vectors, reading in data, writing loops and functions, and simulating and displaying phylogenetic
trees.

Similar to MATLAB, R can be used at the prompt like a caluclator

> 7 + 5

[1] 12

> 7/5*5

[1] 7

> 7/(5*5)

[1] 0.28

> 7^5

[1] 16807

> (7 + 5) %% 4

[1] 0

The last operation %% used the modulus operator, which returns the remainder when the argument on the
left is divided by the argument on the right. Ignore the [1] for now. This will be explained shortly.

Values can be assigned to variables as well. This can be done either using = or <-. When a value is
assigned. The result is stored but not displayed unless this is asked for.

> x <- 5^7

> y <- 7^5

> y

[1] 16807

Comparisons can be made to check which value is larger.

> x > y

[1] TRUE

> w <- x > y

> w

> y + w

In the above example, the variable w gets the value TRUE. TRUE evaluates to 1 in arithmetic statements and
FALSE evaluates to 0. Logical comparisons can also be made by surrounding a statement such as an equality
or inequality with parentheses:

1

> x <- 5^7

> y <- 7^5

> w <- (x>y) + (y> x/10)

> w

[1] 2

Equality is written as == and lack of equality is written as !=, which is similar syntax to many other
languages.

> x == 5^7

[1] TRUE

> y != 7^5

[1] FALSE

In addition to being combined in arithmetic statements, logical operators can be used on statements.
Here we use & for AND and | for OR, instead of && and || that you might see in other languages.

> x>y & x<y

[1] FALSE

> x>y | x<y

[1] TRUE

Vectors in R

R is a vector-oriented language and operates on vectors similarly to MATLAB. A variable can store a vector
of values. This is often accomplished using the c operator, which stands for concatenate. Here is an example:

> First3primes <- c(2,3,5)

> Second3primes <- c(7,11,13)

> First6Primes <- c(First3primes,Second3primes)

> First3primes

[1] 2 3 5

> First6Primes

[1] 2 3 5 7 11 13

The fact that vectors can be appended to one another to create new vectors explains the “concatenation”
idea.

If a range of integers is wanted, a quick way to create a vector is the : operator.

> 3:7

[1] 3 4 5 6 7

> 10:2

[1] 10 9 8 7 6 5 4 3 2

Arithmetic operations work piecewise on vectors.

> x <- 1:10

> x/2

[1] 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

> y <- x^2

> y

[1] 1 4 9 16 25 36 49 64 81 100

> x*y

[1] 1 8 27 64 125 216 343 512 729 1000

2

> sqrt(x)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427

[9] 3.000000 3.162278

This is very useful for defining new variables from old variables, for example to create a plot. Note that x*y
gives the cubes from 1 to 10. When the square root function was called on my system, we finally see a line
of output starting with something other than [1]. Here the [9] means that the row is starting with the 9th
element of the output vector. [1] means the row starts with the first element of the output vector, even if
the vector only has length 1.

Note that R does not (by default) work with complex numbers, so these can lead to errors or to values
called NaN for “Not a Number”. With some cleverness, you can sometimes get around this using TRUE and
FALSE values:

> x <- (-5:10)

> x

[1] -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

> sqrt(x)

[1] NaN NaN NaN NaN NaN 0.000000 1.000000 1.414214

[9] 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427 3.000000 3.162278

Warning message:

In sqrt(x) : NaNs produced

> (x>0)*sqrt(x*(x>0)) \# clever solution to make the argument of the square root equal 0 if x is negative

[1] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 1.414214

[9] 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427 3.000000 3.162278

Will the following work? Why or why not?

> (x>0)*sqrt(x)

In some cases, you want to extract an element from a vector, or a range of elements from a vector. Here
we extract the 5th element of a vector, and also a range of elements

> x <- c(1,5,4,2,4,6,7,4,5,1,2)

> x[5]

[1] 4

> y <- x[2:4]

> y

[1] 5 4 2

Here are some other things you can do with vectors that might be useful. Try the following and write in
what the results are:

> x <- c(1,5,4,2,4,6,7,4,5,1,2)

> length(x)

[1]

> sort(x,decreasing=T)

[1]

> y <- sort(x)

> y

[1]

> x

[1]

> max(x)

3

[1]

> min(x)

[1]

> mean(x)

[1]

> median(x)

[1]

> range(x)

[1]

> table(x)

> max(table(x))

[1]

> which(x==4)

[1]

> which(x==max(x))

[1]

> unique(x)

[1]

> length(unique(x))

[1]

> y <- sort(unique(x))

> y

[1]

These examples were all instances of using functions in R. They are all built in functions. Functions in
R have a keyword or user defined object followed by parentheses, usually with one or more arguments in
the parentheses. The function then typically generates output or returns a value that can be stored. The
functions used above do the following

1. length returns the number of elements in a vector

2. sort prints a rearranged version in either ascending (default) or descending order. If the order isn’t
specified, the order is ascending. Using the optional argument decreasing = T or decreasing = TRUE

(it doesn’t matter if you type T or TRUE) makes it decreasing. Note that this function doesn’t change
the order of the vector, but only the way it is printed or saved to a new variable.

3. max and min return the maximum and minimum value in the vector.

4. mean returns the arithmetic average of the values.

5. median returns the sample median of the values.

6. table returns the values in the vector and a count of how often each value arises.

7. max(table) returns the maximum frequency in the table, not the maximum value for x

8. which in this case returns the index or indices of the vector x for which x is equal to 4

9. unique returns a vector which has all of the distinct values of x, each occurring only once

4

FOR loops

An important part of programming is writing loops. A typical example of using a loop is automate a long
summation. For example the sum

10∑
i=1

i2

can be written as loop in R as follows:

> sum <- 0

> for(i in 1:10) {

+ sum <- sum + i^2

+ }

> print(sum)

For this code, the loop starts with for, and the body of the loop has curly braces. You can continue on
more than one line, and R puts the + sign to indicate that the for statement hasn’t finished

As another example, we might wish to evaluate a product of numbers. For example

1× 2× · · ·n

which is often written as n! can be evaluated using a loop

> factorial <- 1

> for(i in 1:n) {

+ factorial <- factorial * i

+ }

> print(factorial)

An example related to probability is the Birthday Problem.

> n <- 20

> prob <- 1

> for(i in 1:(n-1)) {

+ prob <- prob*(365-i)/365

+ }

> print(prob)

which in this case returns the probability that 20 independent people with random birthdays (equally likely
throughout the year) have 20 distinct birthdays.

Try modifying this code to verify that 23 people is the smallest number for whom the probability is
greater than 50% that at least two people have the same birthday.

Functions

It also helpful to write your own functions. The notation for this is to write

myfunction <- function() {

...

}

where myfunction is the name you choose for your function. You can also have one or more parameters for
example

5

myfunction2 <- function(n,m) {

...

}

myfunction3 <- function(n,m=10) {

...

}

In this example, myfunction2 has two parameters which must be specified by the user. However, myfunction3
has two parameters for which the first parameter must be specified by the user, but the second parameter
has a default value of 10. If the user specifies a value for m, this value is used, if the user doesn’t specify it,
then 10 is used. Thus

myfunction3(5,8)

myfunction3(5)

would both be valid function calls.
Exercise. Write a function bd(n) that computes the probability that at least two people out of n have

the same birthday assuming no one is born on February 29th and assuming all birthdays are equally likely
and independent. Plot the probability as a function of n using the following:

prob <- 1:30

for(i in 1:30) {

prob[i] <- bd(i)

}

plot(1:30,prob,ylab="Probability",xlab="Number of people")

points(1:30, prob,type="l")

Points adds a smooth line to the plot.
Exercise. Write a function that approximates Euler’s constant. I.e., write a function to compute

f(n) =

(
n∑

k=1

1/k

)
− logn.

Euler’s constant is γ = 0.57721566 · · · and is obtained by taking the limit of f(n) as n → ∞. Find out how
good the approximation is as a function of n.

Using packages in R

Many different packages exist in R that are uploaded by users, often academics and graduate students. R
is being continually added to in this way, much like Wikipedia, and there is no guarantee that things work
correctly. Often, however, they do work.

For phylogenetics, a useful package is called ape which stands for Analysis of Phylogenetic Evolution.
This package does not come with R, but is easy to install. To install it locally, type the following,

> install.packages("ape")

> library(ape)

> help(library=ape)

After typing install.packages("ape"), you’ll have to follow instructions on which mirror site to install
from. Pick something close like Texas or California for it to install more quickly. After it is done installing,
use the library command to have access to ape functions. The help statement shows all the functions in
the ape library with other information. For help on an individual function, type for example help(sort) or
help(mrca) for functions both in R and in ape.

6

After a library installed, you still have to type library(ape) each new session. I’m not sure if you’ll
have to reintall the package each day in the lab for the MCTP. If you install this on your laptop, you should
only have to use install.packages once, but will still need to type library(ape) each new session.

As an example of something that ape can do, try the following for plotting a phylogeny.

> birds <- read.tree("http://math.unm.edu/~james/steac") # or read.tree("steac")

#if steac is in the same directory as you

> plot.phylo(birds)

> plot.phylo(ladderize(birds))

> plot.phylo(birds,type="f",use.edge.length=F)

> plot.phylo(birds,type="fan")

> plot.phylo(birds,type="radial")

> plot.phylo(birds,type="unrooted")

> plot.phylo(birds,use.edge.length=F)

Try help(plot.phylo) for more options. The data comes from McCormack et al., PLOS ONE, 2013,
“A Phylogeny of Birds Based on Over 1,500 Loci Collected by Target Enrichment and High-Throughput
Sequencing”.

Often you read in more than one tree at a time. For example

> library(ape)

> x <- read.tree("http://math.unm.edu/~james/t5all")

> x

105 phylogenetic trees

> x[[1]]

Phylogenetic tree with 5 tips and 4 internal nodes.

Tip labels:

[1] "A" "B" "C" "D" "E"

Rooted; includes branch lengths.

> plot.phylo(x[[2]])

> plot.phylo(x[2])

NULL

Warning message:

In plot.phylo(x[2]) : found less than 2 tips in the tree

Note that to access the tree, you need the strange notation of double square brackets. I don’t quite understand
this, but it works.

The objects x and birds, having trees, are complex objects with different components to them. To see
what is stored with a tree, type

> names(birds)

> names(x[[1]])

You can access or even modify this information. For example

> birds$edge.length

[1] 0.019034969 0.019035000 0.022326002 0.000412000 0.000311000 0.011407364

[7] 0.030863606 0.000191000 0.000093000 0.000218000 0.000172000 0.024251703

[13] 0.022416507 0.001327000 0.008643469 0.013302251 0.000021000 0.000041000

[19] 0.000109000 0.000056000 0.000082000 0.000069000 0.000321000 0.010567210

[25] 0.013935630 0.014472210 0.000142000 0.000682000 0.000934000 0.003025000

7

[31] 0.016486000 0.022810429 0.029627311 0.061199713 0.024314493 0.034540527

[37] 0.026180195 0.018839491 0.013505608 0.000126000 0.000224000 0.014907216

[43] 0.011785674 0.000392000 0.000095000 0.012297652 0.011220488 0.000302000

[49] 0.001785000 0.010411341 0.008631659 0.015166363 0.000242000 0.022002929

[55] 0.015409571 0.000409000 0.027045184 0.020082836

> birds$edge.length <- sqrt(birds$edge.legnth)

> birds$edge.length

[1] 0.137967275 0.137967387 0.149418881 0.020297783 0.017635192 0.106805262

[7] 0.175680409 0.013820275 0.009643651 0.014764823 0.013114877 0.155729583

[13] 0.149721431 0.036428011 0.092970260 0.115335384 0.004582576 0.006403124

[19] 0.010440307 0.007483315 0.009055385 0.008306624 0.017916473 0.102796934

[25] 0.118049271 0.120300499 0.011916375 0.026115130 0.030561414 0.055000000

[31] 0.128397819 0.151031220 0.172125857 0.247385758 0.155931051 0.185850820

[37] 0.161802950 0.137257024 0.116213630 0.011224972 0.014966630 0.122095112

[43] 0.108561843 0.019798990 0.009746794 0.110894777 0.105926807 0.017378147

[49] 0.042249260 0.102035978 0.092906724 0.123151789 0.015556349 0.148333842

[55] 0.124135295 0.020223748 0.164454201 0.141713923

This transformation increases the edge lengths but preserves their relative lengths (i.e., if edge i is longer
than j, this will be true also after the square root transformation) but makes the nodes look more resolved
and easier to see (try it).

Day 2

In R, we’ll explore generating random variables and doing simulations to estimate probabilities.

A random variable in R can be generated using a built-in function like this

> x <- runif(10,0,2)

> x <- rexp(10,5)

> x <- rnorm(5,3,6)

Here, runif indicates that you are generating a random variable from a uniform distribution. The arguments
request a vector of 10 random variables from 0 to 2.
Built in distributions to simulate from include the uniform, exponential, normal, Poisson, gamma, and others.
In addition to simulating random variables, there are built in functions for the density or mass function, the
quantile of the distribution, and the cumulative.

To simulate fair dice, it easiest to do the following

> die <- 1:6

> X1 <- sample(die,2,replace=T)

The sample command samples from a vector representing a finite population of values. Sampling can be done
with replacement or without replacement. The second argument tells it the number of values to simulate.
Exercise. In the game of Dungeons & Dragons, sometimes you roll three six-sided dice and add the dice.
This can be used in character generations. For example your character’s intelligence in IQ might be the sum
of three six-sided dice times 10. Use simulation to find the probability that a character generated this way
has an IQ of 60 or less.

Exercise. A more complicated way of generating character values is to roll 4 dice and take the sum
of the three highest values (so that your character is “above average”, “on average”). Use simulation to

8

determine the probability that your character has an IQ of 60 or less under this method. (This is possible
to do by hand but extremely tedious.)

Exercsie. Try simulating a poker hand with 5 cards from a deck of 52 cards. Try using simulation
to determine the probabilities of a two-of-a-kind, a three-of-a-kind, and a four-of-a-kind. (Note, small
probabiities are hard to simulate!) For this problem it is hhelpful to use sampling without replacement, e.g.,
sample(1:52,5,replace=F). It is also helpful to use the modulus operator so that the value of the card is
determined by card %% 4.

0.1 Visualizing distributions

To visualize a distribution, you can generate a large number of simulated values and plot the values using
a histogram, which indicates how often observations fell in a certain range. Try this for the exponential
distribution

> x <- rexp(1000,1)

> x <- hist(x,nclass=50)

The optional argument nclass specifies how many bins you want for the histogram, so you can make it
more fine-grained than the default.

You can also try this with discrete distributions

> x <- rpois(1000,3) # Poisson distribution which generates integers 0, 1, 2, ...

> hist(x)

> plot(table(x),type="h") # I kind of prefer this approach since you see every integer value

A tricky mathematical problem can be to determine a formula for functions of random variables. Let X
and Y be exponential random variables with mean 1. Then what is the distribution of Z = X2 −

√
Y . This

would be unpleasant to do by hand but is easy to simulate.

> x <- rexp(10000,1)

> y <- rexp(10000,1)

> z <- x^2-sqrt(y)

> hist(z,nclass=50)

> length(z[z<1])/10000

The last line estimates the probability that Z < 1.
In some cases, you can figure out transformations of random variables by hand, and using simulation is

a good way to check your work.
In R, type

> source("http://math.unm.edu/~james/wf.r")

> WF

> WF()

The function WF() generates a Wright-Fisher based discrete-time coalescent. The coalescent is obtained
from this process as the population goes to infinity. Try different values of N, the population size, samplesize,
which is the number of individuals sampled in the present, tau, the number of generations that the function
simulates, and mycex, the size of the plot cymbals. The value returned at the end is the list of ancestors
from the original sample. For example, if you get (results may vary because this is random)

> WF(10,5,2,1)

[1] 5 3 2 3 6

9

This means that lineages 1 through 5 sampled in the present had ancestors numbered 5, 3, 2, 3, and 6. Since
3 is repeated, this means that individuals 2 and 4 share a common ancestor, so a coalescence occurred in
that one generation of time. If the list of 5 ancestors had 5 distinct values, then it would be the case that
none of the pairs of lineages experienced a coalescence. On the other hand, the following

> WF(10,5,2,1)

[1] 10 6 10 10 8

indicates that three individuals all had ancestor 10 in the previous generations. Thus, there was a 3-way
merger, which would form a polytomy within the gene tree if this process was extended further back in time
so that the lineages formed a tree. The list of ancestors that the program returns is intended to allow you
to simulate the probabilities of multiple mergers (more than two lineages coalescing at a time), probabilities
of coalescence, and probabilities of simultaneous coalescence events. The latter occurs in the following case,

> WF(10,5,2,1)

[1] 5 7 5 8 7

where there were two 2-mergers. For simulating this probabilties, it is helpful to surpress the plot, which
can be done like this

> WF(10,5,2,1,0)

[1] 5 7 5 8 7

> tempAncestors <- WF(10,5,2,1,0)

To put this process into a loop (in order to simulate), you’d want to assign the vector of ancestors to a
temporary variable. From this you can extract information about the existence of mergers. As an example,
no coalescence occurred if the list of ancestors has N distinct values, where N is the population size. Thus,
the following code estimates the probability of no coalescence:

> nocoalCount <- 0

> iter <- 10000 # number of iterations

> for(i in 1:iter) {

> tempAncestors <- WF(10,5,2,1,0)

> if(length(unique(tempAncestors==5))) nocoalCount <- nocoalCount +1

> print(nocoalCount/iter)

The simulation can be varied for different values of N and n, the population size and sample size. Try
determining the probability of no coalescence for N = 10, 20, 30, 40, 50 and for n = 5, 10.

PHYLIP

PHYLIP stands for PHYLogenetic Inference Package, and consists of a bunch of separate C programs that
are bundled together in one folder. It is freely available to download, including source code in C, from the
University of Washington. It was developed by Joseph Felsenstein who has been one of the most important
researchers in phylogenetics since the 1970s. The program has been used in thousands of research papers.
The program is located at

C:Users\Public\Documents\phylip-3.695\exe

On your system. This is the folder with the executables. The easiest way to use PHYLIP is to copy your
data files into the executable directory since PHYLIP assumes that input files are in the same directory as
the executable. In practice, I tend to copy the executable into the directory I am using for a project and just
use that local copy of the executable. If you want the executables available everywhere on your system, you
can copy them into an appropriate bin directory in your path, but this might vary from system to system,
and we won’t be doing enough to worry about that here.

Here is a description of what some of the most commonly used programs in PHYLIP do:

10

1. dnapars uses parsimony to infer a tree

2. dnamlk uses maximum likelihood (the probability of the DNA sequences under some model) to infer a
tree when there is a molecular clock (constant mutation rate)

3. dnaml uses maximum likelihood to infer a tree without assuming a clock

4. neighbor uses distance methods to infer trees using clustering

5. consense uses consensus methods to combine multiple trees into an overall tree

6. dnadist constructs a distance matrix from sequences that can be used as input for neighbor

7. treedist uses a couple of metrics to compute distances between pairs of trees

To use some of these functions, download DNA sequence files and a tree into the PHYLIP directory

C:Users\Public\Documents\phylip-3.695\exe

from

http://math.unm.edu/~james/temptrees

http://math.unm.edu/~james/align.565

http://math.unm.edu/~james/align.566

http://math.unm.edu/~james/align.567

The structure of the alignment file shows you the number of species and the length (number of columns)
in each alignment followed by DNA sequences. The file temptrees consists of phylogenetic trees estimated
from these species but from different loci. You should be able to look at the trees in R using commands
from last time, but to read them into PHYLIP, they should be downloaded locally into your computer.

PHYLIP typically takes an input file, by default called “infile”, which might consist of sequences, trees,
or a distance matrix, and then creates an output file, typically called “outfile” or ”outtrees” or something
similar. The outtrees file allows you see the tree in Newick format, and can best be visualized using software
such as R. So view a tree in R that is saved to your computer, do something like

> library(ape)

> x <- read.tree("C:Users/Public/Documents/phylip-3.695/exe/temptrees") # I believe R prefers forward slashes

> plot.phylo(x[[1]])

Try using dnapars, dnaml, and dnamlk on the alignments in align.565, align.566, and align.567 to
see if they result in different tree topologies or the same tree topology.

R programming with the Wright-Fisher model

To simulate genetic drift under the Wright-Fisher model, try the folloing code. This code is fairly long to
type at the R prompt, so you might want to save it in an external file, such as in Notepad, and then either
copy and paste into R, or use the source command.

p <- .9 #proportion of A allele

N <- 20 #2N is number of allele copies

g <- 100 #number of generations

I <- 10 #number of iterations

plot(c(1,g),c(0,1),type=’’n’’)

for(i in 1:I) { \

11

y1 <- rep(0, round(2*N*p)) # number of copies of allele 0

y2 <- rep(1, 2*N-round(2*N*p)) # number of copies of allele 1

x <- c(y1,y2)

ave <- mean(x)

for(j in 1:g) {

x <- sample(x,replace=T)

ave <- c(ave,mean(x))

}

points(ave,type=’’l’’)

}

To use the source command, suppose the code is in a file called drift.r, then type

> source("drift.r")

You can modify this code to simulate the probability that an allele fixates. The above graph simulated
the process 10 times. You would want to modify the code to simulate a large number of times (1000 or
10000) and suppress the plot. Here is one way to do it, and the code is at

http://math.unm.edu/~james/drift.r

12

p <- .9 #proportion of A allele

N <- 20 #2N is number of allele copies

g <- 100 #number of generations

I <- 10 #number of iterations

drift <- function(p=.9,N=20,g=100,I=10) {

#plot(c(1,g),c(0,1),type=’’n’’)

fix0 <- 0

fix1 <- 0

for(i in 1:I) {

y1 <- rep(0, round(2*N*p)) # number of copies of allele 0

y2 <- rep(1, 2*N-round(2*N*p)) # number of copies of allele 1

x <- c(y1,y2)

ave <- mean(x)

for(j in 1:g) {

x <- sample(x,replace=T)

ave <- c(ave,mean(x))

}

if(ave[g] == 0) fix0 <- fix0+1

if(ave[g] == 1) fix1 <- fix1+1

#points(ave,type=’’l’’)

}

return(c(fix0,fix1))

}

1 Coalescent, exponential, and expected value problems

1. What is the average (mean) IQ of a Dungeons & Dragons character whose intelligence is determined by
rolling 3 dice and multiplying by 10? What is the average IQ if intelligence is determined by rolling 4 dice
and taking the sum of the top 3 and multiplying the result by 10? Use simulation to determine these averages.

2. (a) Verify the lightbulb probability in class: simulate lifetimes of lightbulbs where one lightbulb dies
with rate 1, and the other dies with rate 2. Use simulation to verify the probability that the lighbulb with
rate 1 has a 2/3 chance of lasting longer. (b) Repeat (a) using lightbulbs with rates 1 and 3. (c) Repeat (a)
with rates 3 and 9. Can you guess a general pattern if lighbulb 1 has rate λ and lightbult 2 has rate β?

3. Use simulation to estimate

P (X1 > X2 > X3 > X4) =

∫ ∞

0

∫ ∞

x3

∫ ∞

x2

∫ ∞

x1

e−x1 · 2e−2x2 · 3e−3x · 4e−4x dx1 dx2 dx3 dx4

where Xi is exponential with rate i.

4. Write a simulation to verify that

g3,1(t) = 1− 3

2
e−t +

1

2
e−3t

To do this recall that this probability is P (T2 + T3 < t). Simulate random variables using

13

> T2 <- rexp(10000,1)

> T3 <- rexp(10000,3)

> T <- T2+T3

> length(T[T < 1])/10000

This simulates the probability g3,1(1). Check this against the formula to see if they reasonably agree. Of
course you can try other values of t against the formula for g3,1(t).

5. Consider two populations, one on the left, and one on the right. The left population has three lineages
sampled and the right population has two lineages sampled. If you go back far enough in time, the left
population lineages will coalesce as will the right population lineages. (There is never a coalescence between
lineages from different populations in this model.)

If you keep track of the sequence of coalescences, there are three possibilities: LLR, RLL, and LRL
depending on whether the two left coalescences occur first (most recently), the right coalescence happens
most recently, etc. Write a simulation to determine the probabilities of these three events (LLR, RLL, and
LRL). You might think of the times of the left coalescences as T3 and T3 + T2, while the time of the right
coalescence is R2, where R2 is exponential with rate 1. Are the three events equally likely?

6. Use simulation to try to verify the the values of E[T] and E[Ttot] where T is the height of a coalescent
tree and Ttot is the sum of the lengths of the branches. Do this for large values of i to see if the values
approach the limiting values. You don’t need to simulate trees to do this problem. Just simulate T2, . . . , Ti

for large values of i to determine T and Ttot.

7. Distributions of sums. Let X1, . . . , Xn be independent in the following

(a) Let Xi be the roll of a die, so that P (Xi) = 1/6. Use simulation to plot the distribution of X =
X1 +X2. This can be done with the following code:

> die <- 1:6

> x1 <- sample(die,10000,replace=T)

> x2 <- sample(die,10000,replace=T)

> x <- x1+x2

> plot(x,type="h")

Repeat this experiment for X = X1 +X2 +X3, X =
∑4

i=1 Xi and X =
∑5

i=1.
(b) Let Xi be exponential with rate 1. (All the Xis have the same rate). Use simulation to plot the

distribution of X =
∑k

i=1 Xi for k = 1, 2, 3, 4, 5.

(c) Let Xi be exponential with rate i. Use simulation to plot the distribution of X =
∑k

i=1 Xi for
k = 1, 2, 3, 4.

8. Write a function g <- function(i,j,t) that returns gi,j(t). Write another function g2 <- function(j,t)

that returns g∞,j(t). Compare the two functions for i = 10, 20, 30, 40, 50 for different values of i and j. See
how large i can be in the g(i,j,t) function in R. Recall that

ggi,j(t) =
i∑

k=j

e−(
k
2)t ·

(2k − 1)(−1)k−jj(k−1)i[k]

j!(k − j)!i(k)

g∞,j(t) =
∞∑
k=j

e−(
k
2)t ·

(2k − 1)(−1)k−jj(k−1)

j!(k − j)!

14

Here is one way to write the function. Note that the function calls other functions, and it is ok for all
functions to be in the same file. Functions don’t need to be defined in the order they are used. For example,
the first function calls the second and third function, and that is fine.

If I have a file called gij.r that has all three functions, I can type > source("gij.r"), and that gives
me access to all three functions (assuming I’m in the same directory as the file — otherwise type the path
to the file or the URL).

gij <- function(i,j,t) {

sum <- 0

for(k in j:i) {

e <- exp(-choose(k,2)*t)

num <- (2*k-1)*(-1)^(k-j)*up(j,k-1)*down(i,k)

den <- factorial(j)*factorial(k-j)*up(i,k)

sum <- sum + e*num/den

doing it all in one step is possible but more likely to have bugs

sum <- sum + exp(-choose(k,2)*t)*(2*k-1)*(-1)^(k-j)*up(j,k-1)*down(i,k)/(factorial(j)*factorial(k-j)*up(i,k))

#print(sum) for debugging

}

return(sum)

}

down <- function(i,k) {

value <- 1

for(j in i:(i-k+1)) {

value <- value*j

}

return(max(1,value)) # max is used so that the function doesn’t return 0.

}

up <- function(i,k) {

value <- 1

for(j in i:(i+k-1)) {

value <- value*j

}

return(max(1,value)) # I think this max isn’t needed, but doesn’t seem to hurt!

}

Species tree estimation

Copy and paste a subset of trees from http://math.unm.edu/ james/temptrees.txt and use as input to
STAR or MP-EST and find the resulting species tree estimate. Online versions of STAR and MP-EST exist
at http://bioinformatics.publichealth.uga.edu/SpeciesTreeAnalysis/index.php

Try to answer the following. How likely are you to get the correct species tree using 2, 4, 6, 8, 10, or 20
gene trees as input? Do STAR and MP-EST always agree?

15

