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1 Review of linear algebra.

Definition 1.1. A field is a set F with operations of addition and multiplication on
elements of F (called scalars) satisfying the following axioms:

(i) Closure of F under addition and multiplication.

(ii) Associativity of addition and multiplication.

(iii) Commutativity of addition and multiplication.

(iv) Existence of additive and multiplicative identity elements (i.e., 0 and 1).

(v) Existence of additive inverses and multiplicative inverses.

(vi) Distributivity of multiplication over addition.

Examples of fields include real numbers R, complex numbers C, rational numbers Q, and
finite fields Zp, where addition and multiplication are defined modulo a prime number p.

Definition 1.2. A vector space over a field F is a set V with two operations: 1) addition
of elements of V (called vectors) and 2) multiplication of elements of V by elements of F
(called scalars) satisfying the following axioms:

(i) Closure of V under addition and multiplication.

(ii) Associativity of addition and multiplication.

(iii) Commutativity of addition and multiplication.

(iv) Existence of an additive identity element (i.e., ~0).

(v) Existence of an additive inverse.

(vi) Multiplicative identity 1~v = ~v for all ~v ∈ V .

(vii) Distributivity of multiplication over the field and vector addition.

Examples of vector spaces include spaces of n-tuples Fn, n×mmatrices Fn×m, polynomials,
and functions with a common domain.
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Definition 1.3. Transposition of a matrix or a vector is the operation of interchanging
the rows and columns and is denoted by a superscript T . For example,[

1 2 3
4 5 6

]T
=

1 4
2 5
3 6

 .
Hermitian adjoint (or simply adjoint) of a matrix or a vector is the transposition followed
by the complex conjugation and is denoted by a superscript ∗. For example,1 + i

i− 3
5

∗ =
[
1− i,−i− 3, 5

]
.

Definition 1.4. An inner product space V is a vector space with an additional product
structure called inner product (or scalar product) denoted by 〈·, ·〉 which satisfies the
following axioms:

(i) 〈~x, ~x〉 ≥ 0 for all ~x ∈ V with 〈~x, ~x〉 = 0 if and only if ~x = ~0.

(ii) 〈α~x+ β~y, ~z〉 = α〈~x, ~z〉+ β〈~y, ~z〉 for all α, β ∈ F and ~x, ~y, ~z ∈ V .

(iii) 〈~x, ~y〉 = 〈~y, ~x〉 for all ~x, ~y ∈ V .

Examples of inner product spaces include Rn, Cn, Znp , Fn. The canonical inner product
in these spaces is defined by

〈~x, ~y〉 =
n∑
j=1

xj yj, where ~x =

x1...
xn

 , ~y =

y1...
yn

 . (1.1)

Exercises 1.5. (i) Make sure that (1.1) satisfies the properties of the inner product
and explain why the complex conjugation is crucial in the inner product (1.1) on
Cn, as distinct from the canonical inner product on Rn.

(ii) Verify that

〈
A,B

〉
=

m∑
i=1

n∑
j=1

aijbij (1.2)

defines an inner product on the space of m × n matrices. Conclude that
√〈

A,A
〉

defines a norm on the space on m×n matrices. The latter norm is denoted by ‖A‖2
and called the Hilbert-Schmidt (or Frobenius) norm of A.

Definition 1.6. A norm on a vector space V is a real-valued function on V denoted by
‖ · ‖ which satisfies the following axioms:

2



(i) ‖~x‖ ≥ 0 for all ~x ∈ V with ‖~x‖ = 0 if and only if ~x = ~0.

(ii) ‖α~x‖ = |α|‖~x‖ for all α ∈ F and ~x ∈ V .

(iii) ‖~x+ ~y‖ ≤ ‖~x‖+ ‖~y‖ for all ~x, ~y ∈ V .

Theorem 1.7 (The Cauchy-Schwarz inequality). For any ~f,~g ∈ V ,∣∣〈~f,~g〉∣∣ ≤ ∥∥~f∥∥ · ∥∥~g∥∥.
Theorem 1.8. Every inner product space has the canonical norm ‖~x‖ =

√
〈~x, ~x〉.

Exercises 1.9. (i) Prove that
√
〈~x, ~x〉 indeed defines a norm.

(ii) Show that the canonical norm satisfies the Parallelogram Law:

2
(
‖~x‖2 + ‖~y‖2

)
= ‖~x− ~y‖2 + ‖~x+ ~y‖2 for all ~x, ~y ∈ V.

(iii) Prove the Polarization Identity for the canonical norm:

〈~x, ~y〉 =
1

4

(
‖~x+ ~y‖2 − ‖~x− ~y‖2 + i‖~x+ i~y‖2 − i‖~x− i~y‖2

)
for all ~x, ~y ∈ V.

Definition 1.10. (i) Vectors ~v1, ..., ~vn are called linearly independent if and only if
the only linear combination c1~v1 + · · ·+ cn~vn that equals ~0 is the trivial one, that is,
c1 = 0, ..., cn = 0. Otherwise, the vectors are called linearly dependent.

(ii) The set of all linear combinations of vectors ~v1, ..., ~vn is called span and is denoted
span{~v1, ..., ~vn}. A collection of vectors whose span equals V is called spanning.

(iii) An ordered collection of vectors is called a basis of V if an only if the collection is
linearly independent and spanning. A basis is called orthogonal if the basis vectors
are mutually orthogonal. If, in addition, the basis vectors are all of norm 1 then the
basis is called orthonormal. The canonical basis in the space Fn is given by

~e1 =


1
0
...
0

 , ~e2 =


0
1
...
0

 , . . . , ~en =


0
0
...
1

 .

(iv) The dimension of a vector space V is the number of elements in a basis of V . The
dimension is independent of the choice of a basis.
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Theorem 1.11. An ordered collection of vectors B = {~v1, ..., ~vn} ⊂ V is a basis of

V if and only if for every ~x ∈ V there is a unique vector
[
c1, ..., cn

]T ∈ Fn such that

~x = c1~v1 + · · ·+ cn~vn. The vector
[
c1, ..., cn

]T ∈ Fn is called the representation of ~x in the
basis B and is denoted by [~x]B. The map Rep : V → Fn given by Rep(~x) = [~x]B is a linear
invertible map. In addition, if the basis is orthonormal, then 〈~x, ~y〉V = 〈[~x]B, [~y]B〉Fn for
all ~x, ~y ∈ V .

Definition 1.12. A subset S of a vector space V is called a subspace of V if and only if
S is closed under addition and multiplication. Each subspace can, itself, be viewed as a
vector space. The orthogonal complement of a subspace S in an inner product space
V is the subspace S⊥ given by

S⊥ = {~x ∈ V : 〈~x, ~y〉 = 0 for all ~y ∈ S}.

Definition 1.13. A map L : V → W from a vector space V to a vector space W is called
a linear operator if and only if it satisfies

L(α~x+ β~y) = αL(~x) + βL(~y) for all α, β ∈ F and all ~x, ~y ∈ V.

Each linear operator L from Cn to Cm is given as a multiplication by a matrix, that
is, there is an m × n matrix A such that L(~x) = A~x for every ~x ∈ Cn. The matrix A is
called the representation of the operator L in the canonical bases of Cn and Cm and is
often identified with L. The columns of the matrix A are the coordinates of the vectors
L(~ej), j = 1, ..., n, in the canonical basis {~ek}mk=1.

Application 1.14 (Rigid Motions in Rn). A map M : Rn → Rn is called a rigid
motion if and only if ‖M(~x)−M(~y)‖ = ‖~x− ~y‖ for all ~x, ~y ∈ Rn.

Theorem 1.15. If M is a rigid motion of Rn then there is a vector ~s ∈ Rn and a liner
transformation L such that M(~x) = ~s+ L(~x).

Proof. Let ~s = M(~0) and L(~x) = M(~x)− ~s. Then for all ~x, ~y ∈ Rn we have

‖L(~x)− L(~y)‖ = ‖M(~x)− ~s−M(~y) + ~s‖ = ‖M(~x)−M(~y)‖ = ‖~x− ~y‖.

Hence,

‖L(~x)‖ = ‖L(~x)−~0‖ = ‖L(~x)− L(~0)‖ = ‖M(~x)−M(~0)‖ = ‖~x−~0‖ = ‖~x‖

and

‖~x‖2 − 2〈~x, ~y〉+ ‖~y‖2 = ‖~x− ~y‖2 = ‖L(~x)−L(~y)‖2 = ‖L(~x)‖2 − 2〈L(~x), L(~y)〉+ ‖L(~y)‖2.

It follows that 〈L(~x), L(~y)〉 = 〈~x, ~y〉. Now let ~x, ~y ∈ Rn and ~z = ~x+ ~y, then

‖L(~z)− L(~x)− L(~y)‖2

= ‖L(~z)‖2 + ‖L(~x)‖2 + ‖L(~y)‖2 − 2〈L(~z), L(~x)〉 − 2〈L(~z), L(~y)〉+ 2〈L(~x), L(~y)〉
= ‖~z‖2 + ‖~x‖2 + ‖~y‖2 − 2〈~z, ~x〉 − 2〈~z, ~y〉+ 2〈~x, ~y〉
= ‖~z − ~x− ~y‖2 = 0.
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Thus, L(~x+ ~y) = L(~z) = L(~x) + L(~y). Next, let α ∈ R, ~x ∈ Rn and z = α~x, then

‖L(~z)− αL(~x)‖2 = ‖L(~z)‖2 + ‖αL(~x)‖2 − 2〈L(~z), αL(~x)〉
= ‖L(~z)‖2 + |α|2‖L(~x)‖2 − 2α〈L(~z), L(~x)〉
= ‖~z‖2 + |α|2‖~x‖2 − 2α〈~z, ~x〉
= ‖~z‖2 + ‖α~x‖2 − 2〈~z, α~x〉 = ‖~z − α~x‖2 = 0.

Thus, L(α~x) = L(~z) = αL(~x) and it follows that L is linear.

Definition 1.16. Each m× n matrix A is associated with three important subspaces:

(i) Null space Nul(A) is the space of all solutions of A~x = ~0. The dimension of the
null space is called nullity of A.

(ii) Row space Row(A) is the span of rows of A.

(iii) Column space Col(A) is the span of columns of A. The dimensions of the row and
column spaces are equal and are called rank of A.

Similarly, for a linear operator L : V → W there are two important subspaces:

(iv) Kernel Ker(L) = {~x ∈ V : L(~x) = ~0}.

(v) Range Ran(L) = {~y ∈ W : ~y = L(~x) for some ~x ∈ V }.

For a linear operator L given by a multiplication by a matrix A it follows that
Ker(L) = Nul(A) and Ran(L) = Col(A).

Theorem 1.17 (Rank-Nullity). For any m× n matrix A,

rank(A) + nullity(A) = n.

Theorem 1.18 (Fundamental Subspaces). For any linear operator A : Cn → Cm,

Ran(A)⊥ = Ker(A∗) and Ran(A∗)⊥ = Ker(A).

Definition 1.19. A matrix A is called left invertible if and only if there is a matrix B
such that BA = I. A matrix A is called right invertible if and only if there is a matrix
B such that AB = I. A matrix A is called invertible if and only if it is both left and
right invertible.

Theorem 1.20. A matrix A is left invertible if and only if the columns of A are linearly
independent. A matrix A is right invertible if and only if the rows of A are linearly
independent. A matrix A is invertible if and only if A is a square matrix with det(A) 6= 0.
For square matrices A and B it follows from the Rank-Nullity Theorem that B is the left
inverse of A if and only if B is the right inverse of A.
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2 Application: error correcting codes.

In real world applications, transmission and storage of data is always subject to noise.
It is important, therefore, to be able to encode data beforehand in such a way that it
can be decoded to its original form after noise scrambles it. One way to achieve this is
by repeating a message two or three times, something very common in human speech.
However, transmitting/storing multiple copies of data requires extra space and time. In
this application, we will examine more efficient ways of coding. A code that detects errors
in a scrambled message is called error-detecting. If, in addition, it can correct the error it
is called error-correcting. It is much harder to find error-correcting than error-detecting
codes. In the following we will consider messages represented by digital-sequences of 0’s
and 1’s, for example [1, 0, 0, 1]. In addition, we will assume that errors do not occur
too often. For simplicity, we will assume that noise can produce at most one error per
message.

One way to achieve error-detection is to encode a message, say [1, 0, 1, 1], by repeating
it twice, such as [1, 0, 1, 1|1, 0, 1, 1]. Then if [0, 0, 1, 1|1, 0, 1, 1] were received, we know
that one of the two halves was distorted and the error is in position 1. A more efficient
approach to the error-detection is the code called parity check. In this code one attaches
to each message a binary tail which is 1 or 0, depending on whether we have an odd or
an even number of 1’s in the message (i.e., the sum of all bits in the message modulo
2). This way all encoded messages will have an even number of 1’s (i.e. the sum of all
bits in the encoded message is 0 modulo 2). For example, [1, 0, 1, 1] will be encoded as
[1, 0, 1, 1, 1]. Now if this is distorted to [0, 0, 1, 1, 1] we know that an error has occurred,
because we only received an odd number of 1’s. This error-detecting code is very simple
and efficient but it fails to detect multiple errors and it is not error-correcting.

Next, we consider error-correcting codes. A naive error-correcting code consists of en-
coding a message by repeating it three times. Then since we assumed that the transmitted
message could have at most one error, we can recover the original message using the major-
ity. For example, if [0, 0, 1, 0|0, 1, 1, 0|0, 1, 1, 0] were received, we know that the first copy is
distorted and the two equal copies contain the original message [0, 1, 1, 0]. A more efficient
error-correcting code may be obtained from a combination of the previous ideas. From
now on we will use addition modulo 2 and denote it by “+”. Suppose [x1, x2, x3] is a mes-
sage we would like to transmit and let [y1, . . . , y6] = [x1, x2, x3, x1 + x2, x2 + x3, x1 + x3]
be it’s encoding. To check for errors after the transmission we look at [z1, z2, z3] =
[y1 + y2 + y4, y2 + y3 + y5, y1 + y3 + y6] which equal [0, 0, 0] if no error, [1, 0, 1] if y1 is
distorted, [1, 1, 0] if y2 is distorted, etc. The situation becomes much more transparent in
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the matrix notation,

~y =


y1
y2
y3
y4
y5
y6

 = G~x =


1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1


x1x2
x3

 , ~z =

z1z2
z3

 = P~y =

1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1



y1
y2
y3
y4
y5
y6


Since PG = O mod 2 we have ~z = ~0 if ~y has no errors. By linearity of the matrix
multiplication we also have ~z = ~Pj (the j-th column of P ) if ~y is distorted at the j-th
position (i.e., yj is changed to yj + 1). Now, since the columns of P are all distinct we

conclude that ~z = ~Pj if and only if yj is distorted. This allows us to correct a possible
error in the transmitted message ~y and then recover the original message ~x.

Exercises 2.1. Find a (4, 2) code that encodes 2 bits messages into 4 bits messages and
allows error correction.

In the 1950, Richard Hamming introduced even more efficient error-correcting codes
that became known as the Hamming codes. These codes take 2n− 1− n bits of data and
encode them as 2n − 1 bits allowing error-correction. Next, we describe a construction
of the (7, 4) Hamming code. Start with a parity matrix P of height n = 3 containing all
possible distinct nonzero columns modulo 2:

P =

1 1 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1


Now we look for a matrix G with as many linearly independent columns as possible and
such that PG = 0. It follows that the columns of G must be in the null space of P hence
we can take the columns of G to be basis vectors of the null space of P ,

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
1 0 1 1
1 1 0 1


The rest is as before. To encode a message ~x we multiply it by G, ~y = G~x. To check for
errors after the transmission we compute P~y which becomes equal to the j-th column of
P if and only if ~y is distorted at the j-th position. After the error is corrected we recover
~x from ~y via xk = yk, k = 1, ..., 4. (In more general situations we can recover ~x from ~y
via ~x = (GTG)−1GT~y.)

Exercises 2.2. Find the (15, 11) Hamming code.
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3 Spectrum of a matrix and diagonalization.

Application 3.1 (Differential equations). Let A be an n×n and ~x0 an n×1 matrices
with given scalar entries; let ~x(t) be a vector-valued function of the variable t whose entries
are unknown continuously differentiable functions, such that for every t the dimension of
the matrix ~x(t) is n × 1. The solution of the matrix differential equation with initial
condition {

d
dt
~x(t) = A~x(t)

~x(0) = ~x0
(3.1)

can be found by the formula mimicking the one for the solution of the scalar linear first
order initial value problem x′(t) = a · x(t), x(0) = x0. That is, the solution of (3.1) can
be found by

~x(t) = etA · ~x0. (3.2)

To verify that the solution of (3.1) is given by (3.2) and to compute the matrix exponential
function etA, we need to know eigenvalues, eigenvectors, and how to diagonalize matrices.

Definition 3.2. Let A be an n×n matrix. A complex number λ is called an eigenvalue
of A if there exists a nonzero vector ~x (called eigenvector corresponding to λ) such that

A~x = λ~x. (3.3)

The set of all eigenvalues of A is called the spectrum of A and is denoted by σ(A).

To find the eigenvalues of A, we need to solve the equation A~x = λ~x for λ, but the
vector ~x is also unknown. To simplify the task, we use the standard linear algebra:

A~x = λ~x, ~x 6= ~0 ⇔
(
A− λI) ~x = ~0 has a nontrivial solution

⇔ det(A− λI) = 0.

Thus, the eigenvalues of A are exactly the solutions of the characteristic equation

det(A− λI) = 0 (3.4)

of the matrix A. The eigenvectors of A corresponding to an eigenvalue λ are nontrivial
solutions of (3.3).

Exercises 3.3. (i) Prove that every n×n matrix has n (not necessarily distinct) eigen-
values.

(ii) Prove that the eigenvectors corresponding to an eigenvalue λ of an n × n matrix
A along with ~0 form a subspace of Cn. (This subspace is called the eigenspace
associated with the eigenvalue λ.)

8



(iii) Conclude that given an eigenvalue of a matrix, there are infinitely many correspond-
ing eigenvectors.

(iv) Find the eigenvalues, eigenspaces, and bases of eigenspaces for each of the following

matrices: (a)

1 1 1
0 2 1
0 0 1

, (b)

 1 i 0
−i 1 0
0 0 1

, (c)

0 1 0
0 0 1
0 0 0

.

(v) Conclude how to find the eigenvalues of a triangular matrix quickly.

(vi) Prove that σ(A) = σ(AT ). (Hint: use properties of the determinant.)

(vii) A matrix A is called nilpotent if there is a natural number n such that the product
of n copies of A equals the zero matrix. Which of the matrices in 3.3(iv) is nilpotent?
Prove that σ(A) = {0} for any nilpotent matrix A.

Diagonal matrices are the most convenient matrices to work with. We have seen this
in problems on multiplication of matrices and on computation of determinants. There
are many other problems in which it is desirable to work with diagonal matrices. When
a matrix is similar to a diagonal matrix (such matrix is also called diagonalizable), many
problems involving this matrix can be significantly simplified via reduction to a diagonal
matrix.

Definition 3.4. A square matrix A is called diagonalizable if there is a diagonal matrix
D and an invertible matrix S such that

A = SDS−1. (3.5)

Theorem 3.5. An n × n matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors. In this case, the diagonal elements of the matrix D in the
decomposition (3.5) are the eigenvalues of A and the columns of S are the respective
eigenvectors of A.

Proof. For every diagonalizable matrix A, there exist a diagonal matrix D with entries
λ1, . . . , λn and a matrix S whose columns ~x1, . . . , ~xn are linearly independent and such
that AS = SD. This implies A ~xj = λj ~xj, j = 1, . . . , n, that is, ~xj is an eigenvector
associated with the eigenvalue λj.

Suppose now that λ1, . . . , λn are eigenvalues of A and ~x1, . . . , ~xn are the respective

linearly independent eigenvectors of A. Define the matrices D =

λ1 . . . 0

0
. . . 0

0 . . . λn

 and S =

( ~x1, . . . , ~xn). Multiplying out the matrices gives

AS = (A ~x1, . . . , A ~xn) = (λ1 ~x1, . . . , λn ~xn) = SD.
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Exercises 3.6. (i) Diagonalize those matrices in 3.3(iv) that are diagonalizable.

(ii) Prove that no nilpotent matrix other than the zero matrix is diagonalizable.

Now we establish useful sufficient conditions for diagonalizability of a matrix.

Corollary 3.7. If an n×n matrix A has n distinct eigenvalues, then A is diagonalizable,
that is, there exists a basis of eigenvectors of A.

Proof. We prove by contradiction that A has n linearly independent eigenvectors. Suppose
that the maximal number of linearly independent eigenvectors of A is k < n. Enumerate
those eigenvectors from 1 to k: ~x1, . . . , ~xk. Let ~xk+1 be another eigenvector. Due to linear
dependence, there exist complex numbers c1, . . . , ck+1, not all zero, such that

c1 ~x1 + . . .+ ck+1~xk+1 = ~0. (3.6)

Note that the constant ck+1 cannot be zero because otherwise we would have had ci 6= 0
for some 1 ≤ i ≤ k and c1 ~x1 + . . . + ck~xk = ~0, contradicting the linear independence of
~x1, . . . , ~xk. Since ck+1~xk+1 6= ~0, we also have c1 ~x1 + . . .+ ck~xk 6= ~0 and, hence, there exists
1 ≤ j ≤ k such that cj 6= 0. By applying A to (3.6) and also by multiplying (3.6) by λk+1,
we obtain {

c1λ1 ~x1 + . . .+ ckλk ~xk + ck+1λk+1~xk+1 = ~0

c1λk+1 ~x1 + . . .+ ckλk+1 ~xk + ck+1λk+1~xk+1 = ~0.
(3.7)

Subtracting the second equation from the first one in (3.7) gives

c1(λ1 − λk+1) ~x1 + . . .+ ck(λk − λk+1) ~xk = ~0,

with cj(λj − λk+1) 6= 0, contradicting the linear independence of ~x1, . . . , ~xk.

Remark 3.8. Let A be a linear operator on Cn given by a diagonalizable matrix (also
denoted by A) in the canonical base of Cn. The matrix S in (3.5) is the transition (also
called the change of basis) matrix from the basis of eigenvectors of A to the canonical
basis of Cn, so D = S−1AS is the matrix representation of the operator A in the basis of
eigenvectors of A.

Definition 3.9. The matrix obtained from a matrix A by applying complex conjugation
entriwise and then taking the transpose is called adjoint to a matrix A and is denoted
by A∗. That is, if the ij-th entry of A is aij, then the ij-th entry of A∗ is aji.

Definition 3.10. (i) A matrix A is called normal if and only if AA∗ = A∗A (in this
case, we say “A commutes with its adjoint”).
(ii) A matrix is called self-adjoint (or Hermitian) if and only if A = A∗.
(iii) A matrix is called unitary if and only if U∗ = U−1, that is, U∗U = I = UU∗.
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Exercises 3.11. (i) Show that self-adjoint and unitary matrices are normal.

(ii) Determine which of the matrices in Exercise 3.3(iv) is normal, which is self-adjoint.

(iii) Prove that a matrix U on Cn is unitary if and only if U∗U = I or UU∗ = I. (Hint:
Analyze properties of the kernel of U or U∗.)

(iv) Prove that a matrix U on Cn is unitary if and only if its column vectors form an
orthonormal basis in Cn.

Theorem 3.12 (Spectral theorem). An n× n matrix A is normal if and only if A is
diagonalizable and the matrix S in (3.6) is unitary.

Exercises 3.13. (i) Conclude that for any normal n × n matrix A, there exists an
orthonormal basis in Cn consisting of eigenvectors of A.

(ii) Find a nonnormal diagonalizable matrix in Exercise 3.3(iv) and explain why there
is no contradiction with the spectral theorem.

(iii) Prove that if A = A∗, then the spectrum of A is a subset of R. (Hint: determine a
type of the matrix D in (3.5).)

(iv) Is it true that σ(A) ⊆ R always implies that the matrix A is self-adjoint?

(v) Let
〈
~x, ~y
〉

denote the canonical inner product of ~x = (x1, . . . , xn)T and ~y = (y1, . . . , yn)T .

Verify that for any n× n matrix A, and any vectors ~f and ~g in Cn, we have〈
A~f,~g

〉
=
〈
~f,A∗~g

〉
. (3.8)

(vi) Prove that if λ 6= µ are eigenvalues of a self-adjoint matrix A and ~f,~g ∈ Cn are such

that A~f = λ~f and A~g = µ~g, then ~f is orthogonal to ~g. (Hint: apply (3.8).)

(vii) Prove that if U is unitary, then the spectrum of U is a subset of the unit circle.

(Hint: work with
〈
U ~f, U ~f

〉
, where ~f is an eigenvector.)

(viii) Verify that any unitary operator maps an orthonormal system to an orthonormal
system. Prove that the matrix implementing the change of any orthonormal basis
to the canonical basis is unitary.

Along with the notion of the adjoint of a matrix, we also have notion of the adjoint
of a linear operator.

Definition 3.14. Let L be a linear operator from Cn to Cn. A linear operator L∗ is
called adjoint of the operator L if for all ~f,~g ∈ Cn,〈

L(~f), ~g
〉

=
〈
~f, L∗(~g)

〉
. (3.9)
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Exercises 3.15. Let L be a linear operator.

(i) Verify that the operator L∗ defined by (3.9) is linear.

(ii) Justify that if A is the matrix of L in the canonical basis, then A∗ is the matrix of
L∗.

Answers to selected exercises.

3.3(iv): (a) λ1 = λ2 = 1, span


1

0
0

 ,

 0
1
−1

; λ3 = 2, span


1

1
0

.

(b) λ1 = 0, span


1

i
0

; λ2 = 1, span


0

0
1

; λ3 = 2, span


 1
−i
0

.

(c) λ1 = λ2 = λ3 = 0, span


1

0
0

.

3.3(v): The eigenvalues of a triangular matrix are its diagonal entries.

3.13(ii): For A in (a), the matrix S is not unitary.

4 Functions of matrices.

We start with defining the exponential of a matrix and solving the initial value problem
(3.1).

Having in mind the power xk and exponential ex scalar functions, we define the power
of a matrix A via

Ak = A · . . . · A︸ ︷︷ ︸
k times

, (4.1)

and the exponential of a matrix A via

eA =
∞∑
k=0

1

k!
Ak = I + tA+

1

2!
t2A2 +

1

3!
t3A3 + . . . . (4.2)

The series in (4.2) converges, in particular, entriwise to a matrix which we denoted by eA.
Note that we preserve the property of the exponential function eO = I.

Exercises 4.1. (i) Calculate eA for A =

0 3 0
0 0 3
0 0 0

.
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(ii) Calculate eA for A =

0 0 0
0 3 0
0 0 6

. Calculate eD, where D is an arbitrary diagonal

matrix.

(iii) Find convenient formulas for Ak, with k ∈ N, and eA, where A is a diagonalizable

matrix. Apply these formulas to calculate eA for A =

 1 i 0
−i 1 0
0 0 1

.

Theorem 4.2. The function ~x(t) = etA~x0 is the solution to the IVP (3.1).

Proof. We differentiate entriwise the vector-valued function etA~x0 and obtain

d

dt

(
etA~x0

)
=

d

dt

(
∞∑
k=0

1

k!
tkAk~x0

)
=
∞∑
k=1

1

(k − 1)!
tk−1Ak~x0 = A

∞∑
k=0

1

k!
tkAk~x0

= AetA~x0,

so ~x(t) = etA~x0 is a solution to (3.1), whose uniqueness follows from the uniqueness
theorem for systems of ordinary differential equations.

Exercises 4.3. (i) Solve the IVP (3.1), with A =

 1 i 0
−i 1 0
0 0 1

 and ~x0 =

1
2
3

.

(ii) For a self-adjoint invertible matrix A, solve the IVP
~x ′′(t) = −A2~x(t)

~x(0) = ~x0

~x ′(0) = ~x1.

Every matrix A = (aij)
n
i,j=1 can be written as a linear combination of n2 elementary

matrices A =
n∑
i=1

n∑
j=1

aijEij. Recall that the only nonzero entry of the elementary matrix

Eij is the ij-th entry, which is equal to 1. A diagonal matrix D = diag(λ1, . . . , λn) can
be written as a linear combination of n elementary matrices

D = λ1E11 + . . .+ λnEnn. (4.3)

Every normal matrix can be written as a linear combination of n orthogonal projections.
As we will see below, the latter fact is an immediate consequence of the spectral theorem.

Recall that the orthogonal projection ~v of a vector ~u ∈ R2 onto a unit vector ~x1 ∈ R2

can be computed by the formula ~v =
〈
~u, ~x1

〉
~x1. Let ~x1, ~x2, ~x3 be an orthonormal basis in

R3. The orthogonal projection ~v of ~u ∈ R3 onto the plane spanned by ~x1 and ~x2 equals
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~v = ~u −
〈
~u, ~x3

〉
~x3 =

〈
~u, ~x1

〉
~x1 +

〈
~u, ~x2

〉
~x2. The projection ~v of ~u onto S = span{~x1, ~x2}

is called orthogonal because ~u − ~v ∈ S⊥. Often the name “orthogonal projection” refers
to a linear operator mapping ~u to ~v.

Definition 4.4. Let S be a subspace in Cn spanned by orthonormal vectors ~x1, . . . , ~xk.
The linear operator P defined by

P (~u) =
k∑
j=1

〈
~u, ~xj

〉
~xj, ~u ∈ Cn,

is called the orthogonal projection onto S.

Exercises 4.5. (i) (Independence of the choice of a basis of S.) Verify that P is an
orthogonal projection onto a subspace S of Cn if and only if P (~u) ∈ S and ~u−P (~u) ∈
S⊥ for every ~u ∈ Cn.

(ii) Verify that any every orthogonal projection satisfies properties P 2 = P and P ∗ = P .

(iii) Assume the notation of Definition 4.4 and find the matrix of an orthogonal projection
P in an orthonormal basis {~x1, . . . , ~xn} of Cn.

Proposition 4.6. Let P be a linear operator on Cn satisfying the properties P 2 = P and
P ∗ = P and let S denote its image space P (Cn). Then,

P (~x) = ~x, for every ~x ∈ S, (4.4)

and

P (~y) = ~0, for every ~y ∈ S⊥. (4.5)

Proof. Let ~x ∈ S. Then, there exist ~y ∈ Cn such that ~x = P (~y). Since P 2 = P , we have
P (~x) = P 2(~y) = P (~y) = ~x.

Since P ∗ = P and (3.9) holds, we have that for every ~x ∈ S and every ~y ∈ S⊥,〈
P (~y), ~x

〉
=
〈
~y, P (~x)

〉
=
〈
~y, ~x
〉

= 0 and, hence, P (~y) ∈ S⊥. However, P (Cn) = S, so we
also have P (~y) ∈ S. Thus, we obtain (4.5).

Corollary 4.7. If a linear operator P on Cn satisfies the properties P 2 = P and P ∗ = P ,
then P is an orthogonal projection onto its image space S = P (Cn).

Proof. We appeal to an equivalent definition of an orthogonal projection given in Exercise
4.5(i). Let ~x be an arbitrary vector in S. Then, by linearity of the scalar product and by
(3.9), 〈

~u− P (~u), ~x
〉

=
〈
~u, ~x
〉
−
〈
P (~u), ~x

〉
=
〈
~u, ~x
〉
−
〈
~u, P ∗(~x)

〉
,

which equals zero because P ∗ = P and (4.4) holds.

Combining Exercise 4.5(ii) and Corollary 4.7, we arrive at the following theorem.
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Theorem 4.8. A linear operator P on Cn is an orthogonal projection if and only if
P 2 = P and P ∗ = P .

Immediately from (4.3), we derive

Proposition 4.9. If A is a normal matrix with eigenvalues λ1, . . . , λn, then for S and D
from the decomposition (3.5),

A = λ1SE11S
−1 + . . .+ λnSEnnS

−1. (4.6)

Exercises 4.10. (i) Prove that the operators Pj = SEjjS
−1, for S and Ejj as in (4.6),

1 ≤ j ≤ n, are orthogonal projections. These projections are called spectral
projections of A.

(ii) Let λ1, . . . , λn be the eigenvalues of a normal n × n matrix A and let {~x1, . . . , ~xn}
be an orthonormal basis of eigenvectors of A such that A~xj = λj~xj, 1 ≤ j ≤ n.
Assuming the notation of 4.10(i), prove that Pj is the orthogonal projection onto
span{~xj}, 1 ≤ j ≤ n. (Hint: Write the matrix Pj as a linear combination of matrices
whose only nonzero rows are equal to a row of S−1 and apply S−1S = I.) Thus,
(4.6) rewrites as

A = λ1P1 + . . .+ λnPn. (4.7)

The representation (4.7) is a consequence of Theorem 3.12; it is often called “spec-
tral theorem”.

Definition 4.11. (i) Let D = diag(λ1, . . . , λn). Given a scalar function f defined on
σ(D), we define the function f of a matrix D as the matrix

f(D) = diag(f(λ1), . . . , f(λn)).

(ii) Let A be a normal matrix, for which we have the decomposition (3.5). Given a
scalar function f defined on σ(A), we define the function f of a matrix A by

f(A) = Sf(D)S−1.

Remark 4.12. Definition 4.11 is consistent with definitions (4.1) and (4.2) (see Exercise
4.1(iii)).

Exercises 4.13. (i) Assuming the notation of Definition 4.11 and Exercise 4.10(ii), let
Pj = SEjjS

−1 and verify that

f(A) =
n∑
j=1

f(λj)Pj. (4.8)
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(ii) Verify on an example of eA for A =

 1 i 0
−i 1 0
0 0 1

 that the formula (4.8) along with

the result of Exercise 4.10(ii) provides a quick way of finding a function of a normal
matrix.

(iii) Verify that if A is a normal matrix, then for all functions f and g defined on σ(A),
(f + g)(A) = f(A) + g(A) and (fg)(A) = f(A)g(A).

(iv) (Spectral mapping theorem for normal matrices.) Let A be a normal matrix
and f a function defined on σ(A). Find the spectrum of f(A). (Hint: Apply the
property of the determinant det(BC) = det(CB) or Theorem 3.5.)

(v) Let χR denote the characteristic (or indicator) function of a set R ⊂ C, that
is,

χR(x) =

{
1 if x ∈ R
0 if x /∈ R.

Let R = (0.5, 3) and calculate χR(A) for A =

 1 i 0
−i 1 0
0 0 1

.

For an arbitrary subset R of C and an arbitrary normal matrix A, prove that χR(A)
is an orthogonal projection and describe its image set.

Answers to selected exercises.

4.1(i):

1 3 4.5
0 1 3
0 0 1

.

4.1(ii):

1 0 0
0 e3 0
0 0 e6

. eD is the diagonal matrix whose diagonal entries are the

exponentiated respective diagonal entries of D.

4.1(iii): For A = SDS−1, Ak = SDkS−1 and eA = SeDS−1.

4.3(ii): X(t) = cos(tA)X0 + sin(tA)A−1X1.

4.5(ii): P = diag
(

1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

)
.

4.13(iv): f(σ(A)).
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4.13(v): χ(0.5,3)(A) is the orthogonal projection onto span


0

0
1

 ,

 1
−i
0

. χR(A)

is the sum of the orthogonal projections onto the eigenspaces corresponding to those
eigenvalues of A that belong to the set R.

5 Applications to mechanics

Application 5.1 (Coupled Oscillators). First, we consider the simple case of a single
harmonic oscillator consisting of a spring with the spring constant k and one end attached
to a wall and the other end attached to a mass m. If x(t) denotes the displacement of
the mass from the equilibrium position at time t, then Newton’s second law of motion
together with Hooke’s law give

mẍ(t) = −kx(t).

Introducing the velocity v(t) = ẋ(t), we may rewrite the above second order differential
equation as a system of first order coupled differential equations[

ẋ(t)
v̇(t)

]
=

[
0 1

−k/m 0

] [
x(t)
v(t)

]
.

Letting ω0 =

√
k

m
observe that the matrix A =

[
0 1

−k/m 0

]
is diagonalized by

[
0 1

−k/m 0

]
=

[
1 −1
iω0 iω0

] [
iω0 0
0 −iω0

] [
1 −1
iω0 iω0

]−1
.

Then changing variables to

[
y(t)
u(t)

]
=

[
1 −1
iω0 iω0

]−1 [
x(t)
v(t)

]
leads to a system of decoupled

first order differential equations,[
ẏ(t)
u̇(t)

]
=

[
iω0 0
0 −iω0

] [
y(t)
u(t)

]
=

[
iω0y(t)
−iω0u(t)

]
,

whose solution is readily given by[
y(t)
u(t)

]
=

[
y0e

iω0t

u0e
−iω0t

]
, where

[
y0
u0

]
=

[
1 −1
iω0 iω0

]−1 [
x0
v0

]
=

1

2

[
x0 + v0

iω0

−x0 + v0
iω0

]
.

Returning to the original variables

[
x(t)
v(t)

]
=

[
1 −1
iω0 iω0

] [
y(t)
u(t)

]
gives

[
x(t)
v(t)

]
=

[
y0e

iω0t − u0e−iω0t

iω0(y0e
iω0t + u0e

−iω0t)

]
=

[
x0 cos(ω0t) + v0

ω0
sin(ω0t)

−x0ω0 sin(ω0t) + v0 cos(ω0t)

]
.
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Alternatively, the solution could be obtained using the formula (3.2)[
x(t)
v(t)

]
= exp(tA)

[
x0
v0

]
=

[
1 −1
iω0 iω0

] [
eiω0t 0

0 e−iω0t

] [
1 −1
iω0 iω0

]−1 [
x0
v0

]
=

[
cos(ω0t)

1
ω0

sin(ω0t)

−ω0 sin(ω0t) cos(ω0t)

] [
x0
v0

]
.

It follows that x(t) = x0 cos(ω0t) + v0
ω0

sin(ω0t) = α cos(ω0t + β) where α, β are constants
determined by the initial conditions x0 and v0.

Next, we consider the case of N masses m1, ...,mN and N + 1 springs with spring
constants k0, ..., kN connecting the masses to each other and two walls. Denoting by
x1(t), ..., xN(t) the displacements of the masses from their equilibrium positions at time t
we get,
m1ẍ1(t)
m2ẍ2(t)
m3ẍ3(t)

...
mN ẍN(t)

 =


−(k0 + k1) k1 0 0 · · · 0

k1 −(k1 + k2) k2 0 · · · 0
0 k2 −(k2 + k3) k3 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · −(kN−1 + kN)




x1(t)
x2(t)
x3(t)

...
xN(t)

 .

Changing variables to yk(t) =
√
mkxk(t), k = 1, ..., n, leads to

ÿ1(t)
ÿ2(t)
ÿ3(t)

...
ÿN(t)

 =


−k0+k1

m1

k1√
m1m2

0 0 · · · 0
k1√
m1m2

−k1+k2
m2

k2√
m2m3

0 · · · 0

0 k2√
m2m3

−k2+k3
m3

k3√
m3m4

· · · 0
...

...
...

... · · · ...

0 0 0 0 · · · −kN−1+kN
mN




y1(t)
y2(t)
y3(t)

...
yN(t)

 . (5.1)

Next, for simplicity we assume that all masses are equal to m and all spring constants
are equal to k. Then

ẍ1(t)
ẍ2(t)
ẍ3(t)

...
ẍN(t)

 =
k

m


−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · −2




x1(t)
x2(t)
x3(t)

...
xN(t)

 .

The eigenvalues λk and the respective eigenvectors ~uk of the above matrix are given by

λk = −ω2
k, where ωk = 2ω0 sin

( πk

2(N + 1)

)
, ω0 =

√
k

m
, and ~ukn =

√
2

N + 1
sin
( πkn

N + 1

)
,
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k, n = 1, ..., N . Setting U = [~u1, ..., ~uN ] and ~z(t) = U−1~x(t) we get
z̈1(t)
z̈2(t)
z̈3(t)

...
z̈N(t)

 =


−ω2

1 0 0 · · · 0
0 −ω2

2 0 · · · 0
0 0 −ω2

3 · · · 0
...

...
... · · · ...

0 0 0 · · · −ω2
N




z1(t)
z2(t)
z3(t)

...
zN(t)


which has the solutions zk(t) = αk cos(ωkt+ βk), k = 1, ..., N , and hence

~x(t) = U~z(t) =
N∑
k=1

~ukαk cos(ωkt+ βk),

equivalently,

xn(t) =
N∑
k=1

αk sin
( πkn

N + 1

)
cos(ωkt+ βk).

Exercises 5.2. (i) Show that the matrix in (5.1) is not changed if all the masses and
spring constants are multiplied by a constant c.

(ii) Show that given a matrix as in (5.1) and if k0 = 0, then it is possible to recover
from the matrix entries the values of the masses m1, ...,mN and the spring constants
k0, ..., kN up to an overall constant c.

(iii) Give an alternative solution to the system (5.1) using the Exercise 4.3(ii).

(iv) The system of coupled oscillators can be used to model the response of a tall building
due to horizontal motion at the foundation generated by an earthquake. In this
model assume that a building consists of N floors of mass m connected by stiff
but flexible vertical walls. Restrict motion to the horizontal direction and assuming
that the walls exert a flexural restoring force on the adjacent floors proportional
to the relative displacement of the floors with the constant of proportionality k.
Denoting by x1(t), ..., xN(t) the displacement of the floors, relative to a fixed frame
of reference at equilibrium and by f(t) the horizontal displacement of the foundation
due to the earthquake, write down the system of differential equations for this model.
Diagonalize the matrix that you obtain for the system.

Answers to selected exercises.

5.2(iv):
ẍ1(t)
ẍ2(t)
ẍ3(t)

...
ẍN(t)

 =
k

m


−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · −1




x1(t)
x2(t)
x3(t)

...
xN(t)

+
k

m


f(t)

0
0
...
0

 ,
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The eigenvalues λk and the corresponding orthonormal eigenvectors ~uk of the above

matrix are given by λk = −ω2
k, where ωk = 2ω0 sin

( π(2k − 1)

2(2N + 1)

)
, ω0 =

√
k

m
, and

~ukn =
2√

2N + 1
sin
(π(2k − 1)n

2N + 1

)
, k, n = 1, ..., N .

6 Application: Markov process.

Application 6.1 (Prediction). Consider a simple model of population migration given

by the matrix A =

(
0.95 0.03
0.05 0.97

)
, where the value of a11 equals the portion of the

population that moves within a city every year, a22 the portion of the population that
moves within a suburb, a12 the portion that moves from the suburb to city, and a21 the
portion that moves from the city to suburb. Suppose that in 2013, the portion of the city
residents was x1 and the portion of the suburb residents was x2. Note that x1 + x2 = 1

and let ~x =

(
x1
x2

)
. Then, the distribution of the population in 2014 is given by the

column A~x, whose first entry is the portion of the city residents and second entry is
the portion of the suburb residents. In n years, the distribution of the population is
given by A · . . . · A︸ ︷︷ ︸

n

~x = An~x. We will find the population distribution in the long run

(mathematically, as n→∞) by analyzing eigenvalues and eigenvectors of the matrix A.

The list of eigenvalues and respective eigenvectors of A is as follows: λ = 1, ~u =

(
3/8
5/8

)
;

µ = 0.92, ~v =

(
1
−1

)
. It is straightforward to see that the vectors ~u and ~v form a basis

in R2. (This is also a consequence of Corollary 3.7.) Hence, there are α, β ∈ R such that
~x = α~u+ β~v. Next,

An~x = αAn~u+ βAn~v = αλn~u+ βµn~v = α~u+ β(0.92)n~v.

Since
‖β(0.92)n~v‖ = |β|(0.92)n

√
2→ 0, as n→∞,

we have
‖An~x− α~u‖ → 0, as n→∞.

Recalling that x1 + x2 = 1, we obtain

(
α · 3

8
+ β · 1

)
+

(
α · 5

8
+ β · (−1)

)
= 1, from

what we derive that α = 1. Therefore,

An~x→ ~u, as n→∞.

The latter means that, regardless of the initial distribution of the population, in the long
run the distribution of the population becomes ~u, the eigenvector of the migration matrix
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corresponding to the eigenvalue 1 and such that the sum of its entries equals 1. For the

given A =

(
0.95 0.03
0.05 0.97

)
, in the long run, 3/8 of the population concentrates in the city

and 5/8 in the suburb.

Terminology: the vector ~u is called a steady-state vector for the Markov chain
~x,A~x,A2~x, . . . , An~x, . . .. The matrix A is called a transition matrix. The vector ~x is
called a probability vector because its entries are nonnegative and add up to 1. Note
that ~u and An~x, for every natural n, are also probability vectors.

To handle more general models, we need general theory of Markov processes.

Definition 6.2. (i) We say that a matrix A is entriwise positive if all of its entries
are positive real numbers.

(ii) We say that a matrix with nonnegative entries is stochastic if the entries of every
column add up to 1.

Definition 6.3. An eigenvalue λ of a matrix A is called dominant if every other eigen-
value of A is less than λ in absolute value.

Theorem 6.4 (Perron’s theorem). Every entriwise positive matrix A has a dominant
eigenvalue λ with the following additional properties.

(i) λ is positive and there is an associated eigenvector ~u whose all entries are positive.

(ii) The dimension of the eigenspace associated with λ is 1, that is, λ is a simple eigen-
value.

(iii) Every eigenvector corresponding to an eigenvalue other than λ has nonpositive en-
tries.

Corollary 6.5. (i) The dominant eigenvalue of every entriwise positive stochastic ma-
trix is 1.

(ii) If A is an entriwise positive stochastic matrix and ~u is its dominant probability
eigenvector, then, for every probability vector ~x,

lim
m→∞

Am~x = ~u.

Proof. (i) Let A be an entriwise positive stochastic matrix. By Perron’s theorem, each of
A and AT has the dominant eigenvalue.

Let ~h denote the vector whose all entries are 1. Since every column of A, and hence,
every row ~rj of AT is a probability vector, we have

AT

1
...
1

 =


〈
~r1,~h

〉
...〈

~rn,~h
〉
 =

1
...
1

 .
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Thus, λ = 1 satisfies Theorem 6.4(i) and it is the dominant eigenvalue of AT . Since
σ(A) = σ(AT ), λ = 1 is the eigenvalue of A and all the other eigenvalues of A are less
than 1 in absolute value. Thus, λ = 1 is the dominant eigenvalue of A.

(ii) We prove this statement only for a diagonalizable matrix A. Let λ1, . . . , λn be the
eigenvalues and {~v1, . . . , ~vn} a basis of eigenvectors of A such that A = λj~vj, 1 ≤ j ≤ n,
λ1 = 1, and ~v1 = ~u. There are constants α1, . . . , αn such that

~x = α1~v1 + α2~v2 + . . .+ αn~vn, Am~x = α1~u+ α2λ
m
2 ~v2 + . . .+ αnλ

m
n ~vn.

Since |λj| < 1, 2 ≤ j ≤ n,

‖Am~x− α1~u‖ → 0, as m→∞. (6.1)

Now we prove that α1 = 1. Let ~h denote the vector whose all entries are 1 and recall
from part (i) that AT~h = ~h. Consider the scalar products〈

Am~x,~h
〉

=
〈
~x, (Am)T~h

〉
=
〈
~x, (AT )m~h

〉
=
〈
~x,~h
〉
. (6.2)

Since ~x and ~u are probability vectors, we have
〈
~x,~h
〉

= 1 and
〈
~u,~h
〉

= 1. Taking limit in
(6.2) gives

α1 = α1

〈
~u,~h
〉

= lim
m→∞

〈
Am~x,~h

〉
= 1. (6.3)

Exercises 6.6. (i) Explain where in the proof of Corollary 6.5(ii) we used diagonaliz-
ability of A.

(ii) Give an alternative proof that α1 in the proof of Corollary 6.5(ii) equals 1 by ana-
lyzing the sum of entries of the vector Am~x, for every natural m.

(iii) Prove that if ~v is an eigenvector of a stochastic matrix and all entries of ~v are
nonnegative, then the eigenvalue to which ~v is associated equals 1.

(iv) Prove that the components of every eigenvector of a stochastic matrix A associated
with an eigenvalue µ 6= 1 add up to zero.

(v) In (6.3) we used the fact that (6.1) implies lim
n→∞

〈
An~x,~h

〉
=
〈

lim
n→∞

An~x,~h
〉
. This

is a consequence of the continuity of the scalar product. Prove that lim
n→∞

〈
~fn, ~g

〉
=〈

~f,~g
〉
, where ~g is an arbitrary vector and ~fn → ~f . (Hint: apply the Cauchy-Schwarz

inequality.)
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Application 6.7 (Google page rank). Google search algorithm is a gigantic Markov
process. If n is the number of sites in the network, then the transition matrix of the
Markov process is the n × n matrix A, whose ij-th entry represents a probability that
a random surfer will link from web site j to web site i. This probability is computed
as follows. Suppose that a surfer follows one of the links on the current web page with
probability p ∈ (0, 1) and randomly opens any other page (including linked ones) with
probability 1 − p. Suppose that the surfer following only links on the current web page
selects each of the linked pages with equal probability; thus, if kj is the number of links

from page j to other pages, then each of these linked pages is selected with probability
1

kj
.

Suppose that the probability of opening any particular random page is
1

n
; in particular,

every surfer moves from a dangling page (that is, a page which has no hyperlinks to other

pages) to any other page with equal probability
1

n
. Then, we obtain

aij = pmij + (1− p) 1

n
, (6.4)

where

mij =


1
kj

if there is a link from page j to page i

0 if there is a link from page j, but not to page i
1
n

if page j is dangling.

Exercises 6.8. (i) Verify that the matrix A is entriwise positive.

(ii) Verify that the matrix A with entries given by (6.4) is stochastic.

From Exercises 6.8 and Corollary 6.5, we conclude that the Markov chain with the
transition matrix A = (aij)

n
i,j=1 has a steady-state vector ~u, which is the probability

eigenvector associated with the dominant eigenvalue 1. The entries of the steady-state
vector provide the page rankings. If the k-th component of the vector ~u is larger than
its j-th component, then page k is ranked higher than page j. When a web search is
conducted, the search engine first finds all sites that match all of the key words. It then
lists them in decreasing order of their page ranks.

Exercises 6.9. (i) Consider the above primitive Google search algorithm for 4 sites in
the network, if the first site references all the other sites, the second site references
the third and fourth sites, the third site references only the first site, and the fourth
site references the first and the third sites. Assume that a web surfer will follow a
link on the current page 85% of the time.

Find the transition matrix and the steady-state vector.

Let ~x = (0.25, 0.25, 0.25, 0.25)T and find the smallest number k for which Ak~x
coincides with the steady state vector in 9 decimal places.

To simplify computations, use MATLAB or Sage
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(ii) Consider the two-sites network connected by the diagram 1 −→ 2. Verify that a

matrix B =

(
0 0
1 0

)
is a natural candidate for a transition matrix judging by

the probabilities involved, but that for every initial probability vector ~x, lim
m→∞

Bm~x

gives no information about the relative importance of the pages 1 and 2. Find the
transition matrix given by (6.4) and the steady-vector of the Markov chain.

(iii) Consider the network consisting of three sites connected by the cycle 1→ 2→ 3→

1. Verify that B =

0 0 1
1 0 0
0 1 0

 is a natural candidate for a transition matrix, but,

for ~x = (1, 0, 0)T , the Markov chain ~x,B~x,B2~x,B3~x, . . . does not converge. Find
the transition matrix given by (6.4) and the steady-state vector.

(iv) The computation of Ak~x, where A = (aij)
n
i,j=1 is given by (6.4) and ~x is a probability

vector, can be simplified if we take advantage of the fact that many of the elements
mij are equal to 0. Let ~h be the vector with all entries equal to 1, let ~x1 = A~x, and
~xk+1 = A~xk, k ∈ N. Prove that

~xk+1 = pM~xk +
1− p
n

~h, where M = (mij)
n
i,j=1.

Answers to selected exercises.

6.9(i): A =


0.15/4 0.15/4 0.85 + 0.15/4 0.85/2 + 0.15/4

0.85/3 + 0.15/4 0.15/4 0.15/4 0.15/4
0.85/3 + 0.15/4 0.85/2 + 0.15/4 0.15/4 0.85/2 + 0.15/4
0.85/3 + 0.15/4 0.85/2 + 0.15/4 0.15/4 0.15/4

 .

Code:

A=[0.0375,0.0375,0.8875,0.4625;0.3208333333,0.0375,0.0375,0.0375;

0.3208333333,0.4625,0.0375,0.4625;0.3208333333,0.4625,0.0375,0.0375];

[V,D]=eig(A); % diagonalization of matrix A

y=V(:,[1]); % first column from matrix V, a dominant eigenvector

y=y/norm(y,1) % normalized vector: sum of moduli of coordinates equals 1

x=[1/4;1/4;1/4;1/4];

for n=1:26 % 26 iterations to the steady-state vector

x=A*x;

end

x

y-x
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Steady-state vector:

y =

0.368151

0.141809

0.287962

0.202078

7 Inverse spectral problems

In this section we will discuss ways of recovering a matrix from its spectral data. We will
consider two different types of spectral data. In the first problem we will take the spectral
data to be the eigenvalues and the norming constants which are the first entries of each
orthonormal eigenvector. In the second problem the spectral data will consist of two sets
of eigenvalues - the eigenvalues of a matrix and the eigenvalues of its perturbation at a
single entry.

To simplify the notation in the following, we recall the alternative form of the canonical
inner product on CN ,

〈~v, ~u〉 =
N∑
n=1

ūnvn = ~u ∗~v, ~u ∗ =
[
ū1, ..., ūN

]
, ~v =

v1...
vn

 .
Application 7.1 (Direct and Inverse Spectral Problems). Consider a three diagonal
self-adjoint matrix with coefficients a1, ..., aN−1 > 0 and b1, ..., bN ∈ R,

J =



b1 a1
a1 b2 a2

a2 b3 a3
. . . . . . . . .

aN−2 bN−1 aN−1
aN−1 bN


(7.1)

Such matrices are called Jacobi matrices.

Exercises 7.2. Suppose A is a N × N self-adjoint matrix such that for some ~x the
vectors {~x,A~x, ..., AN−1~x} form a basis of CN . Let {~v1, ..., ~vN} be the Gram–Schmidt
orthonormalization of these vectors. Show that A has a three diagonal form (7.1) in the
basis {~v1, ..., ~vN}.

Exercises 7.3. (i) Let P~v be a projection in Cn on the subspace spanned by a vector
~v ∈ Cn. Show that R~v = I − 2P~v is a unitary map that corresponds to a reflection
across the plane with the normal vector ~v.
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(ii) Show that for any vector ~a there is a vector ~v such that R~v~a = ~e1.

(iii) Derive Householder tri-diagonalization algorithm for a self-adjoint matrix A by find-
ing a reflection R1 such that


1 0 · · · 0
0
... R1
0

A


1 0 · · · 0
0
... R1
0


∗

=


b1 a1 0 · · · 0
a1
0
... A1
0


and then repeating the procedure for A1, A2, etc.

Theorem 7.4. Every Jacobi matrix J of the form (7.1) has N distinct real eigenvalues
λ1, ..., λN corresponding to eigenvectors ~u1, ..., ~uN with ‖~uk‖ = 1 and uk1 > 0 for all k =
1, ..., N . In addition, µk = uk1, called norming constants, satisfy

∑N
k=1 µ

2
k = 1.

Proof. Every eigenvector ~uk of J corresponding to an eigenvalue λk satisfies,

b1u
k
1 + a1u

k
2 = λku

k
1

a1u
k
1 + b2u

k
2 + a2u

k
3 = λku

k
2

. . .

aN−2u
k
N−2 + bN−1u

k
N−1 + aN−1u

k
N = λku

k
N−1

aN−1u
k
N−1 + bNu

k
N = λku

k
N .

equivalently,

a1u
k
2 = λku

k
1 − b1uk1

a2u
k
3 = λku

k
2 − a1uk1 − b2uk2

. . .

aN−1u
k
N = λku

k
N−1 − aN−2ukN−2 − bN−1ukN−1

0 = λku
k
N − aN−1ukN−1 − bNukN .

(7.2)

Suppose by contradiction that uk1 = 0 then it follows from the first equation that uk2 = 0,
then from the second that uk3 = 0, etc., hence ~uk = ~0 which is a contradiction. Thus,
uk1 6= 0 for all k = 1, ..., N , so replacing, if necessary, the eigenvector ~uk by the eigenvector
|uk1 |

uk1‖~uk‖
~uk we obtain uk1 > 0 and ‖~uk‖ = 1.

Since the Jacobi matrix J is self-adjoint, its eigenvalues are all real. Suppose by
contradiction that there are less than N distinct eigenvalues. Then some eigenvalue
λk must have multiplicity more than 1, so there are at least two linearly independent
eigenvectors ~uk and ~vk corresponding to the eigenvalue λk. Then ~wk = vk1~u

k−uk1~vk is also
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an eigenvector corresponding to the eigenvalue λk, but wk1 = 0 which is impossible by the
considerations in the previous paragraph.

Since eigenvectors corresponding to different eigenvalues of any self-adjoint matrix are
necessarily orthogonal, we have that the square matrix U =

[
~u1, ..., ~uN

]
has orthonormal

columns and, hence, satisfies U∗U = I. Since a square matrix is left invertible if and only
if it is right invertible, we also have UU∗ = I (see Exercise 3.11(iv)), that is, the rows of
U are also orthonormal so, in particular,

∑N
k=1 µ

2
k =

∑N
k=1 |uk1|2 = 1.

Theorem 7.5. Every Jacobi matrix J of the form (7.1) can be uniquely recovered from the
spectral data consisting of distinct eigenvalues λ1, ..., λN and norming constants µ1, ..., µN >
0 satisfying

∑N
k=1 µ

2
k = 1.

Proof. We will proceed by recovering the matrix U =
[
~u1, ..., ~uN

]
row by row. The

norming constants give us the first row ~r1 = [u11, ..., u
N
1 ] = [µ1, ..., µN ] of the matrix U . It

follows from the first line of (7.2) that the second row ~r2 = [u12, ..., u
N
2 ] of U is given by a

linear combination of ~ρ1 = [λ1u
1
1, ..., λNu

N
1 ] and the first row ~r1,

~r2 =
1

a1
(~ρ1 − b1~r1).

Since the rows of U should be orthonormal, we take the inner product with ~r1 to find

b1 = ~r1
∗~ρ1

and then we evaluate the norm on both sides to get

a1 = ‖~ρ1 − b1~r1‖.

The second line of (7.2) shows that the third row ~r3 = [u13, ..., u
N
3 ] of U is given by a linear

combination of ~ρ2 = [λ1u
1
2, ..., λNu

N
2 ] and the first and second rows ~r1, ~r2,

~r3 =
1

a2
(~ρ2 − b2~r2 − a1~r1).

Again using the orthonormality of the rows of U , we get

b2 = ~r2
∗~ρ2

a2 = ‖~ρ2 − b2~r2 − a1~r1‖.

Proceeding similarly, we recover all the coefficients a1, ..., aN−1 and b1, ..., bN .

Exercises 7.6. Verify that
[
µ1, ..., µN

]
,
[
λ1µ1, ..., λNµN

]
, . . . ,

[
λN−11 µ1, ..., λ

N−1
N µN

]
are

linearly independent. Conclude that in the above construction all the coefficients an are
going to be strictly positive.

Application 7.7 (Two Spectra Inverse Problem). Let c be a fixed nonzero real
number and suppose J is a Jacobi matrix as in (7.1) and J̃ is a perturbed Jacobi matrix
given by J̃ = J + c~e1~e1

∗, that is, J̃ has the same coefficients as J except b̃1 = b1 + c.
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Theorem 7.8. Given the constant c and the spectra of J and J̃ one can uniquely recover
the coefficients of the Jacobi matrices J and J̃ .

Proof. We start by introducing the function m(z) = ~e1
∗(J − z)−1~e1, called the Weyl–

Titchmarsh m-function. As before let U =
[
~u1, ..., ~uN

]
be the unitary matrix whose

columns are the eigenvectors of J corresponding to the eigenvalues λ1, ..., λN and µk =
uk1 > 0, k = 1, ..., N , be the norming constants. Then (J − z)−1 is the function (x− z)−1

of the matrix J , so

(J − z)−1 = Udiag
( 1

λ1 − z
, ...,

1

λN − z

)
U∗

and, hence,

m(z) = (U∗~e1)
∗diag

( 1

λ1 − z
, ...,

1

λN − z

)
(U∗~e1) =

N∑
k=1

|uk1|2

λk − z
=

N∑
k=1

µ2
k

λk − z
. (7.3)

It follows that m(z) is a rational function with poles precisely at the eigenvalues of J
and such that m(z) → 0 as z → ∞. Similarly, let m̃(z) be the Weyl–Titchmarsh m-
function associated with J̃ that has poles at the eigenvalues of J̃ . Next, we seek a formula
connecting m(z) and m̃(z). Consider the identity

(J̃ − z)−1 = (J + c~e1~e1
∗ − z)−1 = (I + (J − z)−1c~e1~e1

∗)−1(J − z)−1

which is equivalent to

(I + c(J − z)−1~e1~e1
∗)(J̃ − z)−1 = (J − z)−1.

Multiplying both sides by ~e1 on the right and by ~e1
∗ on the left gives,

(1 + cm(z))m̃(z) = m(z).

Solving for m(z), we get m(z) = (1/m̃(z) − c)−1, so at the eigenvalues of J̃ the function
m(z) takes the value −c−1 since m̃(z) blows up at these points. Thus, the function
m(z) + c−1 is a rational function with poles at λ1, ..., λN and zeros at λ̃1, ..., λ̃N ,

m(z) +
1

c
= d

(λ̃1 − z) · · · (λ̃N − z)

(λ1 − z) · · · (λN − z)
.

Taking limit as z → ∞, we get d = c−1, so the function m(z) is uniquely determined by
the constant c and the eigenvalues of J and J̃ ,

m(z) =
1

c

[
(λ̃1 − z) · · · (λ̃N − z)

(λ1 − z) · · · (λN − z)
− 1

]
.
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Finally, performing partial fraction decomposition and comparing with (7.3) gives,

µ2
k =

1

c

(λ̃1 − λk) · · · (λ̃N − λk)
(λ1 − λk) · · · (λk−1 − λk)(λk+1 − λk) · · · (λN − λk)

.

Thus, the norming constants µ1, ..., µN are also uniquely determined by the constant c
and the eigenvalues of J and J̃ . The Inverse Spectral Problem discussed above now allows
us to recover the coefficients of the matrix J from its eigenvalues λ1, ..., λN and norming
constants µ1, ..., µN .

Exercises 7.9. By considering the limit zm(z) as z →∞ show that the a priory knowl-
edge of the constant c is not necessary in Theorem 7.8 because the value of c can be
recovered from the eigenvalues by the formula

c =
N∑
k=1

(λ̃k − λk). (7.4)

Definition 7.10. The trace of a square matrix A = (aij)
n
i,j=1 is the sum of the diagonal

entries of A, that is,

tr(A) =
n∑
j=1

ajj.

Important properties of the trace are established in the following exercises.

Exercises 7.11. (i) Verify the linearity: tr(αA + βB) = α tr(A) + β tr(B) for any
α, β ∈ C and any square matrices A and B of the same dimension.

(ii) Verify the commutativity of the trace: tr(AB) = tr(BA) for arbitrary n×m matrix
A and m× n matrix B.

(iii) Verify the cyclicity of the trace: tr(ABC) = tr(CAB) for arbitrary square matrices
A, B, and C of the same dimension.

(iv) Prove that if the matrices A and B are similar, that is, there is an invertible matrix
C such that A = CBC−1, then tr(A) = tr(B).

(v) (Lidskii’s theorem for normal matrices.) Prove that for a normal matrix A with
eigenvalues λ1, . . . , λn,

tr(A) =
n∑
j=1

λj. (7.5)

(vi) Given an orthonormal basis {~x1, . . . , ~xn} in Cn and an n× n matrix A, prove

tr(A) =
n∑
j=1

〈A~xj, ~xj〉.

(Hint: Change to the canonical basis.)
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Exercises 7.12. Use the properties of the trace to derive the formula (7.4).

Exercises 7.13. Given a mass-spring system as in (5.1) suppose one performed an ex-
periment and obtained the frequencies of vibration ω1, ..., ωn. Suppose, in addition, that
one then managed to remove the spring k0, measured the value of k0, and performed a
second experiment and determined the frequencies ω1, ..., ωn for the mass spring system
with the spring k0 removed. Show that the above experimental data is enough to recover
the values of the remaining spring constants k1, ..., kN and the masses m1, ...,mN .

8 Toda lattice

In this section we consider a nonlinear system of coupled oscillators. Consider N unit
masses connected to each other by nonlinear springs that exert the following force when
stretched by x units,

F (x) = e−x − 1 = −x+
x2

2!
− x3

3!
+ · · · .

Denoting by x1(t),...,xN(t) the displacements of the masses from the equilibrium at time
t, we obtain the system of N nonlinear ordinary differential equations

ẍn(t) = F
(
xn(t)− xn−1(t)

)
− F

(
xn+1(t)− xn(t)

)
, n = 1, ..., N,

equivalently,

ẍn(t) = exn−1(t)−xn(t) − exn(t)−xn+1(t), n = 1, ..., N, (8.1)

where we set x0(t) = −∞ and xN+1 = +∞ for simplicity of notation. Changing variables
to Flaschke’s variables:

an(t) =
1

2
e(xn(t)−xn+1(t))/2 and bn(t) = −1

2
ẋn(t) (8.2)

with a0(t) = aN(t) = 0, the system of differential equations (8.1) rewrites as

ȧn(t) = an(t)[bn+1(t)− bn(t)], n = 1, ..., N − 1,

ḃn(t) = 2[a2n(t)− a2n−1(t)], n = 1, ..., N,

equivalently,

d

dt
J(t) = P (t)J(t)− J(t)P (t), (8.3)
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where

J(t) =



b1(t) a1(t)
a1(t) b2(t) a2(t)

a2(t) b3(t) a3(t)
. . . . . . . . .

aN−2(t) bN−1(t) aN−1(t)
aN−1(t) bN(t)


, (8.4)

P (t) =



0 a1(t)
−a1(t) 0 a2(t)

−a2(t) 0 a3(t)
. . . . . . . . .

−aN−2(t) 0 aN−1(t)
−aN−1(t) 0


. (8.5)

Let U(t) be the solution of the initial value problem,

d

dt
U(t) = P (t)U(t), U(0) = I. (8.6)

Then, since P (t)∗ = −P (t), it follows that,

d

dt
[U∗(t)U(t)] = [P (t)U(t)]∗U(t) + U∗(t)[P (t)U(t)] = U∗(t)[P ∗(t) + P (t)]U(t) = 0,

so U∗(t)U(t) = U∗(0)U(0) = I, that is, U(t) is unitary. Moreover, a straightforward
substitution shows that

J(t) = U(t)J(0)U−1(t) (8.7)

solves (8.3), hence the eigenvalues λ1, ..., λN of J(t) are time independent. Thus, to find
the solution J(t), it remains to find the time evolution of the norming constants. Let
~u1(t), ..., ~uN(t) be the orthonormal eigenvectors of J(t) corresponding to the eigenvalues
λ1, ..., λN . Then, by (8.7) and (8.6), we get

~uk(t) = U(t)~uk(0) ⇔ d

dt
~uk(t) = P (t)~uk(t)

and, by (8.5) and (7.2),

d

dt
uk1(t) = a1(t)u

k
2 = [λk − b1(t)]uk1(t)

so
uk1(t) = uk1(0)eλkte−

∫ t
0 b1(s)ds, k = 1, ..., N.
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Let f(t) = e−
∫ t
0 b1(s)ds. Then, recalling that the norming constants of J(t) are given by

µk(t) = uk1(t) > 0 and satisfy
∑N

k=1 µ
2
k(t) = 1 as discussed in Theorem 7.4, we get

µk(t) = µk(0)eλktf(t), k = 1, ..., N,

and
N∑
k=1

µ2
k(0)e2tλkf 2(t) = 1 ⇔ f(t) =

(
N∑
k=1

µ2
k(0)e2tλk

)−1/2
.

Thus,

µk(t) =
µk(0)etλk√∑N
k=1 µ

2
k(0)e2tλk

, k = 1, ..., N.

By solving the inverse spectral problem, we can reconstruct J(t) from the eigenvalues
λ1, ..., λN and the norming constants µ1(t), ..., µN(t) and, subsequently, recover the solu-
tion x1(t), ..., xN(t) from (8.2).

9 Singular value decomposition

Application 9.1 (Digital image compression). A photograph can be digitized by
breaking it up into a rectangular array of cells (pixels) and measuring the gray level of
each cell. The gray levels of any cell is generally close to the gray level of its neighboring
cells, so it is possible to reduce the amount of storage. One way to implement this is using
a singular values decomposition of the matrix that models the photograph. Singular values
provide a measure of how close A is to a matrix of lower rank.

Definition 9.2. Eigenvalues of |A| =
√
A∗A are called the singular values of a matrix A.

That is, if λ1, λ2, . . . , λn are the eigenvalues of A∗A, then σ1 =
√
λ1, σ2 =

√
λ2, . . . , σn =√

λn are the singular values of A.

Exercises 9.3. Prove that for any matrix A, the eigenvalues of A∗A are nonnegative.

Theorem 9.4. Let r be the rank of an m × n matrix A and σ1 ≥ σ2 ≥ . . . ≥ σn the
singular values of the matrix A. The following assertions hold.

(i) The number of nonzero singular values of A equals r.

(ii) If {~v1, . . . , ~vn} is an orthonormal basis consisting of the eigenvectors of A∗A such

that A∗A~vj = σ2
j~vj, 1 ≤ j ≤ n, and let ~uj =

1

σj
A~vj, 1 ≤ j ≤ r, then

A =
r∑
j=1

(A~vj)~v
∗
j =

r∑
j=1

σj~uj~v
∗
j . (9.1)
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Proof. (i) Firstly, we prove that rank(A) = rank(A∗A). Applying the rank-nullity theo-
rem to matrices A and A∗A gives

rank(A) = n− nullity(A), rank(A∗A) = n− nullity(A∗A).

Hence, it is enough to establish that nullity(A) = nullity(A∗A). Clearly, the null space of
the matrix A is a subspace of the null space of A∗A. Conversely, suppose that A∗A~x = ~0.
Then, 0 =

〈
A∗A~x, ~x

〉
=
〈
A~x,A~x

〉
= ‖A~x‖2, which implies A~x = ~0. Thus, Nul(A) =

Nul(A∗A).
SinceA∗A is self-adjoint, it can be factored into A∗A = SDS−1, where D = diag(σ2

1, . . . , σ
2
n)

and S is a unitary matrix. The rank of D, which is also the dimension of the range of
the linear operator D, equals r. By Exercise 3.13(viii), a unitary operator preserves the
dimension of a subspace to which it is applied, so the dimension of the range of A∗A is
also r.

(ii) Since
r∑
j=1

σj~uj~v
∗
j ~vk =

{
σk~uk = A~vk if k ≤ r

0 if k > r,

we obtain that the left and right hand sides of (9.1) coincide on every vector in Cn.

Exercises 9.5. (i) In case A is a normal matrix, relate (9.1) to the representation (4.7)
provided by the spectral theorem.

(ii) Prove that {~u1, . . . , ~ur} is an orthonormal system.

Returning to Application 9.1, we can approximate the matrix A by truncating the
sum in (9.1):

Ak =
k∑
j=1

σj~uj~v
∗
j , (9.2)

which requires k(m + n + 1) cells because each vector ~uj has m entries and each vector
~vj. The value of k is determined by the needed accuracy, which, as we will see below, can
be measured by (σ2

k+1 + . . . + σ2
r)

1/2. (By noticing that ~vj has n entries and ‖~vj‖ = 1
and agreeing that certain, for instance, the first, component of each ~vj is positive, we
could reduce the number of cells to k(m + n − 1 + 1) = km. Furthermore, if we use the
representation A =

∑r
j=1(A~vj)~v

∗
j , we can reduce to k(m+ n− 1) cells.)

Exercises 9.6. (i) Verify that ‖A−Ak‖2 =

(
n∑
i=1

n∑
j=1

|aij − aij,k|2
) 1

2

, where aij,k is the

ij-th entry of the matrix Ak.

33



(ii) Verify that tr(B∗A) =
〈
A,B

〉
and that ‖A‖2 =

(
n∑
j=1

σ2
j

)1/2

, where the inner

product of matrices is given by (1.2).

(iii) Verify that the matrix Ak given by (9.2) satisfies

‖Ak‖2 =

(
k∑
j=1

σ2
j

)1/2

, ‖A− Ak‖2 =

(
r∑

j=k+1

σ2
j

)1/2

.

(iv) Find the rank and singular values of Ak.

Definition 9.7. Let A be an m × n matrix. We say that the matrix Ak of rank k is
closest to A in the Hilbert-Schmidt norm if it satisfies

‖A− Ak‖2 = min
{
‖A−X‖2 : X is an m× n matrix of rank k

}
.

Theorem 9.8. Given an m × n matrix A of rank r with nonzero singular values σ1 ≥
σ2 ≥ . . . ≥ σr, the matrix Ak of rank k ≤ r closest to A in the Hilbert-Schmidt norm is
given by (9.2).

The decomposition (9.1) can be rewritten in the matrix form called a singular value
decomposition of A.

Definition 9.9. Let A be an m× n matrix. If

A = UΣV ∗,

where U is an m×m and V is an n×n unitary matrices, and Σ is an m×n matrix whose
off-diagonal entries are all zeros and whose “diagonal” entries are the singular values of
A written in the decreasing order

σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0,

where r = rank(A), then the factorization UΣV ∗ is called a singular value decompo-
sition of A.

Corollary 9.10. Every matrix has a singular value decomposition.

The proof of Corollary 9.10 is based on the following exercise.

Exercises 9.11. Assume the notations of Theorem 9.4. Show that A admits the reduced
singular value decomposition A = ŨΣ̃Ṽ ∗, where Σ̃ = diag(σ1, . . . , σr), Ṽ is the matrix

with columns ~v1, . . . , ~vr and Ũ is the matrix with columns ~u1, . . . , ~ur.
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Proof of Corollary 9.10. We assume the notations of Theorem 9.4 and complete the sys-
tem {~u1, . . . , ~ur} to an orthonormal basis {~u1, . . . , ~um}. It is possible to do the latter due
to the result of Exercise 9.5(ii). Let

Σ = diag(σ1, . . . , σn) = diag(σ1, . . . , σr, 0, . . . , 0),

V be the matrix with columns ~v1, . . . , ~vn, and U the matrix with columns ~u1, . . . , ~um.
Performing block multiplication of matrices and applying Exercise 9.11 completes the
proof.

Exercises 9.12. (i) Find the rank, singular values, the representation (9.1), and the

singular value decomposition for A =

1 1
1 1
0 0

.

(ii) Let A =

−0.02 0.08 0.2
0.14 0.19 0.1
0.02 −0.02 0.01

 be factored in the singular value decomposition

form

A =

3/5 −4/5 0
4/5 3/5 0
0 0 1

0.3 0 0
0 0.15 0
0 0 0.03

1/3 2/3 2/3
2/3 1/3 −2/3
2/3 −2/3 1/3

 .

Find the rank and singular values of A as well as the closest (in the Hilbert-Schmidt
norm) to A matrices A1 of rank 1 and A2 of rank 2. What is the total storage needed
in each of the cases? How close are the matrices?

Answers to selected exercises.

9.12(ii): A1 =

0.06 0.12 0.12
0.08 0.16 0.16

0 0 0

, storage = 5, distance≈ 0.153;

A2 =

−0.02 0.08 0.2
0.14 0.19 0.1

0 0 0

, storage = 10, distance = 0.03.

10 Compact operators

In this section we consider linear operators on infinite dimensional Hilbert spaces.

Definition 10.1. A sequence of vectors {~xn}∞n=1 in a normed vector space V is called a
Cauchy sequence if and only if ‖~xn − ~xk‖ → 0 as n, k →∞.
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Exercises 10.2. Show that every convergent sequence is a Cauchy sequence.

Definition 10.3. An inner product space V in which every Cauchy sequence is convergent
is called a Hilbert space.

An example of an infinite dimensional Hilbert space is the space of square summable
sequences `2 =

{
~x = (xn)∞n=1 : xn ∈ C for all n and

∑∞
n=1 |xn|2 < ∞

}
. The canonical

inner product on this space is defined by the familiar formula

〈~x, ~y〉 =
∞∑
n=1

xnyn, ~x, ~y ∈ `2.

Definition 10.4. An orthonormal basis {~bn}∞n=1 of a Hilbert space V is a sequence of
mutually orthogonal vectors of norm 1 that satisfy

∞∑
n=1

|〈~x,~bn〉|2 = ‖~x‖2 for all ~x ∈ V,

equivalently,
∞∑
n=1

〈~x,~bn〉~bn = ~x for all ~x ∈ V.

Definition 10.5. A linear operator A is called bounded if and only if the operator
norm of A defined by

‖A‖ = sup
‖~v‖=1

‖A~v‖

is finite. A linear operator A is called compact if and only if for every bounded sequence
of vectors {~vn}∞n=1, the sequence {A~vn}∞n=1 has a convergent subsequence.

Exercises 10.6. (i) Show that every finite rank operator, that is, an operator with
finite dimensional range is compact.

(ii) Show that every compact operator is a bounded operator.

(iii) Show that every bounded operator is a continuous map.

(iv) Show that a composition of a bounded operator and a compact one is compact.

(v) Show that a square of a compact operator is compact.

(vi) Show that self-adjoint operators can have only real eigenvalues.

(vii) Show that eigenvectors corresponding to different eigenvalues of a self-adjoint oper-
ator are necessarily orthogonal.
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Theorem 10.7. Suppose A is an operator and {An}∞n=1 are compact operators such that
‖A − An‖ → 0 as n → ∞, then A is also a compact operator. In particular, if A can be
approximated arbitrarily closely by finite rank operators in the operator norm, then A is
compact.

Proof. Let {~vn}∞n=1 be such that ‖~vn‖ ≤ C for all n. Since A1 is compact there is a
subsequence {~v1,n}∞n=1 of {~vn}∞n=1 such that A1~v1,n is convergent as n → ∞. Similarly,
since A2 is compact there is a subsequence {~v2,n}∞n=1 of {~v1,n}∞n=1 such that A2~v2,n is
convergent as n → ∞. Proceeding this way we get for each j = 1, 2..., a subsequence
{~vj,n}∞n=1 of {~vj−1,n}∞n=1 so that Aj~vj,n is convergent as n→∞.

Now consider the “diagonal” subsequence {~vn,n}∞n=1 which is a subsequence of the
original sequence {~vn}∞n=1. By construction, Aj~vn,n is convergent as n→∞ and hence is
Cauchy for every j. Therefore,

‖A~vn,n − A~vk,k‖ ≤ ‖(A− Aj)~vn,n‖+ ‖Aj~vn,n − Aj~vk,k‖+ ‖(Aj − A)~vk,k‖
≤ ‖A− Aj‖C + ‖Aj~vn,n − Aj~vk,k‖+ ‖Aj − A‖C,

implies limn,k→∞ ‖A~vn,n−A~vk,k‖ ≤ 2C‖A−Aj‖. Since j was arbitrary, we may also take
j →∞ to obtain limn,k→∞ ‖A~vn,n − A~vk,k‖ = 0, that is, {A~vn,n}∞n=1 is Cauchy and hence
is convergent.

Definition 10.8. An operator A is called Hilbert–Schmidt if and only if there is an
orthonormal basis {~bn}∞n=1 such that

∑∞
n=1 ‖A~bn‖2 <∞.

Theorem 10.9. Every Hilbert–Schmidt operator is compact.

Proof. Let {~bn}∞n=1 be an orthonormal basis such that
∑∞

n=1 ‖A~bn‖2 < ∞. For each k
define a finite rank operator Ak by

Ak~x :=
k∑

n=1

〈~x,~bn〉A~bn.

Then we have for all ~x with ‖~x‖ = 1,

‖(A− Ak)~x‖ =
∥∥∥ ∞∑
n=k+1

〈~x,~bn〉A~bn
∥∥∥ ≤ ∞∑

n=k+1

|〈~x,~bn〉| ‖A~bn‖

≤
( ∞∑
n=k+1

|〈~x,~bn〉|2
) 1

2
( ∞∑
n=k+1

‖A~bn‖2
) 1

2 ≤
( ∞∑
n=k+1

‖A~bn‖2
) 1

2
,

and hence,

‖(A− Ak)‖ ≤
( ∞∑
n=k+1

‖A~bn‖2
) 1

2 → 0 as k →∞.

Thus, A is compact by Theorem 10.7.
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Theorem 10.10. For every compact self-adjoint operator A either ‖A‖ or −‖A‖ is an
eigenvalue.

Proof. The case ‖A‖ = 0 is trivial therefore we assume α = ‖A‖ > 0. Since

‖A‖2 = sup
‖~v‖=1

‖A~v‖2 = sup
‖~v‖=1

〈A~v,A~v〉 = sup
‖~v‖=1

〈~v, A2~v〉

we have a sequence ~vn with ‖~vn‖ = 1 and such that 〈~vn, A2~vn〉 → α2 as n→∞. Since A
is compact, A2 is compact as well and so we may assume without loss of generality that
A2~vn → ~v 6= ~0. Then,

‖A2~vn − α2~vn‖2 = ‖A2vn‖2 − 2α2〈~vn, A2~vn〉+ α4 ≤ 2α2
(
α2 − 〈~vn, A2~vn〉

)
→ 0,

implies that ~vn → α2~v and hence (A2 − α2)~v = limn→∞(A2 − α2)~vn = ~0. Factoring out
(A2 − α2) = (A + α)(A − α) and letting ~u = (A − α)~v so that (A + α)~u = ~0, we get
that either ~u = ~0 in which case α is an eigenvalue of A or ~u 6= ~0 in which case −α is an
eigenvalue of A.

Theorem 10.11. Let A be a compact self-adjoint operator. Then there is a sequence of
real eigenvalues λ1, λ2, ... converging to 0. The corresponding normalized eigenvectors ~uk
form an orthonormal set such that for every ~f ∈ V ,

~f =
∞∑
k=1

P~uk
~f + ~h =

∞∑
k=1

〈~f, ~uk〉~uk + ~h,

where ~h ∈ Ker(A). As a consequence, the following spectral decomposition of A holds,

A~f =
∞∑
k=1

λkP~uk
~f =

∞∑
k=1

λk〈~f, ~uk〉~uk.

Proof. Let λ1 be an eigenvalue of A1 = A on V1 = V satisfying |λ1| = ‖A1‖ and ~u1 ∈ V1
be the corresponding normalized eigenvector of A1. Then A1 maps {~u1}⊥ into itself since
for any ~x ∈ {~u1}⊥,

〈A1~x, ~u1〉 = 〈~x,A1~u1〉 = λ1〈~x, ~u1〉 = 0.

Denoting by A2 the restriction of A1 to V2 = {~u1}⊥ = {~v ∈ V1 : ~v ⊥ ~u1} and noting that
A2 is a compact self-adjoint operator on V2, we obtain as above an eigenvalue λ2 such that
|λ2| = ‖A2‖ and the corresponding normalized eigenvector ~u2 ∈ V2 of A2 and hence of A.
Continuing this way we get a sequence of eigenvalues λ1, λ2, λ3, ... and the corresponding
normalized eigenvectors ~u1, ~u2, ~u3, ... of A which are mutually orthogonal by construction.

Next, proceeding by contradiction suppose that the eigenvalues do not converge to 0,
that is, there are infinitely many eigenvalues |λkm| ≥ ε > 0. Then ~vkm = λ−1km~ukm are
bounded ‖~vkm‖ ≤ 1/ε by our assumption, yet A~vkm = ~ukm do not have a convergent
subsequence since ‖~uk − ~um‖ =

√
2 for all k,m, a contradiction.
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Finally, let ~fn be the orthogonal projection of ~f onto the span{~u1, ..., ~un−1},

~fn =
n−1∑
k=1

〈~f, ~uk〉~uk.

Then ~f− ~fn ∈ Vn and since A = An on Vn and ‖An‖ = |αn| we get ‖A(~f− ~fn)‖ ≤ |αn| ‖~f−
~fn‖ ≤ 2|αn| ‖~f‖. As the eigenvalues of A go to zero, we conclude that ‖A(~f − ~fn)‖ → 0

as n→∞, and hence, ~h = ~f − lim
n→∞

~fn satisfies A~h = ~0.

Exercises 10.12. Show that every compact self-adjoint operator can be approximated
arbitrarily closely by finite rank self-adjoint operators in the operator norm.

Corollary 10.13. Every compact self-adjoint operator has an associated orthonormal
basis of eigenvectors.

Proof. If the sequence of eigenvectors obtained in Theorem 10.11 does not form a basis of
V then we extend it to a basis by adding vectors from Ker(A), which are automatically
eigenvectors of A corresponding to the eigenvalue 0.

11 Trace perturbation theory

As we can see from Theorem 4.2, the solution of the IVP (3.1) is determined by the
parameters of the problem reflected in the matrix of coefficients A. Change of the pa-
rameters of the problem entails change of the solution. To determine how the solution
changes, it is enough to determine how the function of a matrix given by Definition 4.11
and its spectrum changes when the matrix is perturbed. Simpler problems, but still hav-

ing physical meaning, ask how
1

n
tr(f(A)), the average of the eigenvalues of the function

of a matrix, changes when the matrix is perturbed.

Exercises 11.1. Let A =

0 1 0
1 0 0
0 0 0

 and B =

 1 i 0
−i 1 0
0 0 1

.

(i) Compare the sets σ(B − A) and {µ− λ : λ ∈ σ(A), µ ∈ σ(B)}.

(ii) Compare tr(f(B) − f(A)) and
3∑
j=1

(f(µj) − f(λj)), where µj are eigenvalues of B

and λj are eigenvalues of A.

Definition 11.2. Let A and B be two self-adjoint n× n matrices. Denote by λ1, . . . , λn
the eigenvalues of A and by µ1, . . . , µn the eigenvalues of B. The function

ξ(t) = #{j : λj < t} −#{k : µk < t} (11.1)
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is called the spectral shift function for the pair of matrices A and B. (Here # denotes
the cardinality of a set, that is, the number of the elements in the set.)

Remark 11.3. The function ξ admits the following interpretation: the value ξ(t) equals
the net number of the eigenvalues of a matrix that crossed t in the positive direction as A
is perturbed to B. (If the eigenvalues crossed t in the negative direction, then ξ(t) < 0.)

Exercises 11.4. (i) Calculate the spectral shift function for the pair of matrices with
the following spectra:

(a) eigenvalues of A are −1, 0, 1, eigenvalues of B are 0, 1, 2;

(b) eigenvalues of A are −1, 1, 2, eigenvalues of B are −2, 1, 3;

(c) eigenvalues of A are −4,−3,−3,−3, 2, 6, eigenvalues of B are −5,−2,−2, 4, 7, 8.

(ii) For f a continuously differentiable function on R and the pairs of matrices from part

(i), derive the formula tr(f(B)− f(A)) =

∫ ∞
−∞

f ′(t)ξ(t) dt.

Theorem 11.5. Let A, B be self-adjoint matrices of the same dimension. Then, for
every f ∈ C1(R),

tr(f(B)− f(A)) =

∫ ∞
−∞

f ′(t) ξ(t) dt. (11.2)

Note that (11.3) provides an analog of the fundamental theorem of calculus for func-
tions of matrices. Theorem 11.5 was designed for operators on infinite dimensional spaces,
whose spectra can be uncountable sets. It can be that the trace of f(B) − f(A) is not
defined, but the trace of the remainder of the higher order Taylor approximation of the
operator function f(B) is defined. For such cases, we have a more general version of
Theorem 11.5, which we state only for matrices.

Theorem 11.6. Let A, B be self-adjoint matrices of the same dimension and let k be
a natural number. Then, there exists an integrable function ηk(t) determined by k,A,B
such that for every f ∈ C1(R),

tr

(
f(B)− f(A)−

k−1∑
j=1

1

j!

dj

dtj

∣∣∣∣
t=0

f
(
A+ t(B − A)

))
=

∫ ∞
−∞

f (k)(t) ηk(t) dt. (11.3)

Project 11.7. Existence of the functions ηk in Theorem 11.6 is established implicitly.
Complicated explicit formulas for ηk are known only in very simple cases. The project
consists in understanding ηk better, in finding formulas for ηk and establishing properties
of ηk.
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