
0 is obtained such
that nonlinear diffusion is dominated by the collisions between cells for the densities p > p0. An analytical
approximation of the pairwise collision time and semianalytical fit for the total jam time per reversal period are
also obtained. It is shown that cell populations with high reversal frequencies are able to spread out effectively at
high densities. If the cells rarely reverse, then they are able to spread out at lower densities but are less efficient
at spreading out at higher densities.
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I. INTRODUCTION

Many bacteria, including species found in diverse soil and
water environments, are able to spread rapidly over surfaces
by the process of swarming, which is the collective motion of
many thousands of cells. Bacteria capable of swarming range
from innocuous carbon-cycle organisms to harmful pathogens.
Swarming involves directional movement due to pulling with
type IV pili or either propulsion due to rotating flagella or slime
jets [1]. In certain cases, these mechanisms work together and
allow cells to swarm at a rate faster than each individual type
of motility [2,3].

For example, Myxococcus xanthus, ubiquitous bacteria
found in soil, are very efficient swarmers. These bacteria have
elongated rod-type shapes (about 7 µm in length and 0.5 µm
in width) and they move by gliding over a substrate in the
direction of their longer axis [1,2,4,5]. They align and travel
together in the same direction [see Fig. 1(a)] as well as reverse
direction of their motion about every 8 min [1,5,6]. Mutant
species of M. xanthus that are unable to reverse are also unable
to swarm [5,7].

After M. xanthus are inoculated in the center of agar plate,
they start growing and moving, and the swarm expands. Ninety
percent of the expansion is caused by cell movement and only
10% by growth [3]. It has been shown that a reversal period
of 8.8 min maximizes the expansion rate for a given average
cell velocity of 4 µm/min [5]. Such motion is limited by
new cells moving out from the center. Therefore, a cell, in
many cases, cannot move all 8 min in the direction toward
the center. When encountering a cell moving in the opposite
direction, the cell stops and waits until it is time to start moving
again away from the center. The swarm expands symmetrically
in all directions [see Fig. 1(b)]. This symmetry dictates that
there is a net movement only in radial directions. In a swarm
M. xanthus bacteria try to escape from the central region of
high cell density to the low density region at the swarm edge
and then to an unoccupied area where nutrient and oxygen

are abundant [5]. Here we study the role of reversals in this
process in relatively high-density domains close to the central
region.

Reversals of M. xanthus cells require an inversion of cell
polarity and coordination of the A and S motility systems
(slime production and pili IV motility) achieved by a set of
proteins encoded by the frz operon [9–11]. Reversals are
needed for cells to reorient themselves as part of a biased
random walk resulting in movement of groups of cells during
aggregation and fruiting body formation under starvation (see
Ref. [11] for a review). It was suggested in Ref. [5] that in
the presence of nutrient during swarming of M. xanthus the
oscillatory cell motion is used for the net migration of cells
from the center of the swarm to the swarm edge where nutrient
and oxygen are abundant and there is little contest for either.

The two-dimensional (2D) off-lattice microscopic stochas-
tic model (MSM) described in Ref. [2] has been able to
predict optimal reversal rates for specific choices of bacterial
velocities and aspect ratios leading to the maximal swarming
rates of the colony, which were confirmed in experiments [5].
It has been also shown in Ref. [5] that such a choice of the
optimal reversal rate allows cells to align better and resolve
traffic jams, resulting in the maximal order of alignment. The
model takes into account cell shape and direction of motion
of each M. xanthus in the colony determined by the two
motility mechanisms: pili IV and slime production. Recently,
the subcellular elements model (SCE) was developed and
calibrated to study the role of bending and slime capsule
adhesion of cells swarming in rafts [12].

Myxococcus. xanthus behaves differently in the presence of
nutrient and under starvation. Under starvation, M. xanthus is
observed to aggregate and form standing waves of cell density
(ripples) close to the edge of the colony. Individual cells are
aligned parallel to each other in ripples and move back and
forth in one direction, regularly reversing the direction of
their movement. Continuous models [13–15] and a lattice gas
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FIG. 3. (a) A single cell is represented in MSM as a cluster of
lattice sites (pixels). (b) A sketch of a typical formation of a cluster
shown as a sequence at three moments in time (time progress from top
to bottom). First, two neighboring cells moving in opposite directions
are jammed (upper line). The third cell then approaches to join a
cluster (center line) and, subsequently, the fourth cell joins the cluster
(bottom line).

This yields vdimTdim/Ldim = 8 corresponding to the dimen-
sionless values described above. This choice is consistent
with the cell length and reversal period used in previous
computational models [2,5] and observed in experiments [7].
Unless otherwise specified, we choose below �T1 = 0.1. For
T = 8 this results in �T0 � 0.9. Experiments with M. xanthus
typically show only small fluctuations of the reversal period
T so the probability distribution function is sharply peaked
near the average reversal period T [32]. Our typical choice
�T0 � 0.9 reflects these small fluctuations. We also show in
Sec. VII B that MSM simulations fail to match solutions of the
nonlinear diffusion equation (1) for any form of D(p) in the
absence of noise in the reversal period (i.e., for �T0 = 0). In
contrast, for a small but finite value of noise (�T0 	= 0), we
observe a very good agreement between MSM simulations and
the solutions of Eq. (1) with D(p) determined by BM analysis.
This suggests that noise (although small) in the reversal period
of bacteria contributes critically to their macroscopic behavior
by allowing them to diffuse.

The MSM is a stochastic model. During each time step, a
sequence of randomly chosen N cells attempt to move one at
a time. MSM determines the movement of each cell based on
the occupancy of the next lattice site in the direction of cell
motion determined by φ at the given time t . If this location is
free, the cell is moved one lattice site in that direction (keeping
constant length L = 1). If the location is not free, the cell does
not move, i.e., it is jammed [see Fig. 3(b) for a typical example
of jamming]. It is possible that the same cell may move more
than once during a time step, and, as a result, some other cells
may not move at all. Also, note that the random selection of
cells may create small gaps between cells that are following
each other side by side.

The creation of such gaps results in extra diffusion that each
cell experiences in addition to the directed motion with the
speed v. This diffusion is a pure artifact of the finite width �x

of each lattice site and it vanishes as �x → 0. We checked in
simulations that the reduction of �x from 0.1 to 0.001 results
in only small changes in the cellular density dynamics (see
Sec. VII B for more discussion on this topic). However, the
collision time between cells is more sensitive to the value of
�x. Therefore, we used a reduced grid �x = 0.001 for the
simulations in Sec. VIII. Generally, for all quantities plotted in
all figures in the paper we used �x = 0.1 unless we explicitly
specify a different value.

Unless otherwise specified, the simulations were run in a
one-dimensional lattice domain of length 4000 centered at
x = 0. Initial distribution of cells of width 1000 centered at
x = 0 of a top-hat shape was used (i.e., the density of cells
is approximately constant p ≡ pmax for −500 < x < 500 and
zero everywhere else). [See curve at t = 0 in Fig. 4(a) for
an example of a top-hat boundary condition.] Because the
domain is symmetric between x and −x, it replicates a no-flux
boundary condition at x = 0 after averaging over the statistical
ensemble of simulations. In general, we choose lattice domain
of a large enough length to avoid influence of the periodic
boundary conditions (i.e., to maintain zero cellular densities
at both right and left boundaries).

III. MSM SIMULATIONS

Cells near the edge of a bacterial swarm similar to the ones
shown in Fig. 1(a), move mostly in radial directions. Therefore,
their collective motion can be analyzed by averaging over
angles determining their radial motion. In what follows, we
also assume in our model that motion along the radius is
dominant while rotation is only a correction, which we neglect.

Multiple MSM simulations of 1D dynamics of initially lo-
calized distributions of bacterial density have been performed
followed by ensemble averaging over initial conditions chosen
to represent each desired spatial distribution of the average
initial density of cells p(x,t)|t=0. The result of such ensemble
averaging is the time- and spatial-dependent density p(x,t).
(The ensemble serves to approximate averaging over angles of
the full 2D problem.) We typically used the “top-hat” initial
distribution (constant density around the center of the domain
and zero density to the left and to the right of the center)
provided by a dense initial packing of bacteria in the domain
of width 1000 around x = 0. A typical number of stochastic
realizations in the statistical ensemble was chosen to be 20 000.
The cellular density (measured in units of volume fraction)
was determined by calculating the average number of times a
given location was occupied [see Fig. 4(a)]. Qualitatively, the
cell densities spread out symmetrically away from the center
of the top hat.

The cells’ movements frequently cause them to collide
with each other. When two cells are trying to move into
each other’s space, they stall (jam) until at least one reverses.
This stalling, on average, shifts the mean location of their
oscillatory movement away from the location at which they
stall. If no other cells are nearby, the cells may collide again or
separate further away due to fluctuations in the mean location
of their oscillatory movement. If other cells are nearby, these
outer cells have their mean location shifted outward while the
original cells’ mean locations are shifted closer together. As
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in space and time. In that case the center of mass of each cell
does not moving after averaging over time period 2T .

However, experimentally observed small noise in the
reversal time [32] results in the random walk of the average
position of the center of mass of each cell. (By average position
we mean here position averaged over period 2T .) This random
walk occurs because each cell moves to the right and to the
left for unequal time period determined by the fluctuations of
T . Thus, the random walk occurs at time scales above 2T . The
random walk results in collisions of cells for any finite cell
density. As the density goes to zero these collisions become
more and more rare because it takes more time for cells to
span the average distance between them through random walk.
Below, in this section, we consider the limiting case with the
random walk neglected, i.e., T = const to extract the major
features of such motion. In the next section we reintroduce
the finite noise in T to understand how it affects the system
dynamics.

There is a finite probability for two neighboring cells to
collide (jam) in case of a nonzero cell density. By jam we
mean that one cell tries to move where another cell is located,
but the excluded volume principle prevents it from moving.
The term jam in this paper is similar to the term collision. The
subtle difference is that by collision we mean that a cell jams
with another cell with subsequent unjamming, i.e., the cell is
free to move after a jam.

We distinguish two types of jams in this paper. The first
type is a pairwise jam. It occurs when two neighboring cells
are jammed directly because they try to move in opposite
directions toward each other but that motion is prevented by
the excluded volume principle. The second type of jam occurs
when cell 1 tries to move in the same direction as a neighboring
cell 2 but that cell 2 is jammed by another cell(s) (e.g., by cell
3). We refer to this type of a jam of cell 1 as indirect jam. Such
a jam is an indirect one because there is no direct (pairwise)
jam between cells 1 and 2. A typical example occurs when cell
1 moves toward neighboring cell 2 while cells 2 and 3 have a
pairwise jam. After cell 1 touches cell 2 they together (cells
1, 2, and 3) form three-cell cluster with pairwise jam between
cells 2 and 3 and indirect jam with cell 1. We also say that
a given cell is in a “cluster jam” if it is either in a pairwise
or an indirect jam. The pairwise collision time τpair is always
smaller or equal to T because of reversal of the direction of
cellular motion. In contrast, the cluster jam time τcluster can be
arbitrary large if cells stay inside a large cluster. In Sec. VIII,
moreover, we use total jam time τ per period T , i.e., the time
during which a given cell remains jammed (either directly
or indirectly) per period T . With such definition τ never
exceeds T .

Assume that the density is small so mostly pairwise jams
occur. In such a case the jamming of two cells lasts until
one of the cells reverses. After that they move together in
the same direction until the second cell reverses. After the
second cell reversal, cells move in opposite directions away
from each other. Assume that all other cells are still far away.
After the first cell reverses for a second time, both cells then
will move in the same direction, and after the second reversal
of the second cell they will move toward each other. Exact
calculation shows that these two cells will never jam again in
the absence of other cells. Instead, exactly at the moment when

these two cells touch each other, the first cell will reverse for
a third time and they will move in the same direction again.
This pattern of periodic motion without jamming of these two
cells will continue for an arbitrarily long time (or until another,
third cell, would approach them close enough to jam with one
of these two cells). It means that any two isolated cells jam
only once and after that both cells experience periodic motion
without disturbing one another.

A similar interaction pattern occurs if we consider a system
of three or more cells moving in an infinite spatial domain.
After several collisions (jams) between these three or more
cells, they also end up in the state where they no longer jam
and all cells experience periodic motion without touching each
other. The center of mass of each cell participating in a jam
shifts relative to its average position at a distance vτpair to the
left or to the right (depending on which side it has a jam), where
τpair is the collision time. However, after all collisions end, the
center of mass of each cell experiences periodic motion and
no averaged over the period 2T motion is observed. We refer
to such state as an equilibrium motion of M. xanthus. Note
that equilibrium motion differs markedly from the equilibrium
distribution (Gibbs distribution) in statistical mechanics [34]
because M. xanthus are always self-propelled and are not
subject to any type of thermal equilibrium. Starting with a
finite number of initially densely packed M. xanthus, after
finite number of collisions and provided M. xanthus divisions
are neglected, the bacterial colony expands to such size that
there will be no more collisions between cells. After that, the
average size of the colony remains the same with bacteria
moving periodically at equilibrium.

We now calculate the density of M. xanthus p0 at which a
transition occurs from motion with collisions to equilibrium
motion. First, consider two neighboring cells and assume that
they have phases φ1 and φ2, respectively. Generally −2T �
φ1 − φ2 � 2T , but assuming periodicity over time 2T , we
can always add a multiple of 2T to each of the phases, φ̃j ≡
φj + nj 2T , j = 1,2 (nj are integers), to keep the difference of
modified phases inside a twice smaller interval: −T � φ̃1 −
φ̃2 � T . For p = p0 cells do not jam but during a part of the
time interval 2T they move together (attaching to each other)
in the same direction until one of them reverses. After that,
they move in opposite directions from each other for the time
interval |φ̃1 − φ̃2|. After that, the second cell reverses and both
cells move in the same direction, and so on. The minimum
separation between the centers of mass of these two cells is L

and the maximum separation is L + 2v|φ̃1 − φ̃2|. The distance
Ldist between the average positions of the centers of mass is
equal to Ldist = L + v|φ̃1 − φ̃2|.

Now, to calculate the average density p0 of many cells
we average Ldist over phase differences 0 � |φ̃1 − φ̃2| � T ,
resulting in the critical density

p0 ≡ L

〈Ldist〉 =
[
T −1

∫ T

0
(L + vφ)dφ

]−1

= L

L + vT /2
. (4)

For the standard values v = L = 1, T = 8 it yields that
p0 = 0.2. If initially there is a localized distribution of cells
with the average density p > p0, then these cells would spread
out with collisions until their density reaches p = p0. If
initially p < p0, then some redistribution of cellular density
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may occur when the average distance between centers of mass
of two neighboring cells is Ldist < L + v|φ̃1 − φ̃2|. Because
average density is low, this would result only in a local
redistribution of the positions of cells without much change
in the macroscopic cellular density. After cells initially spread
out no collisions or cellular density transport is observed. This
conclusion is supported by observing a dynamic sequence
of experimental images of cells moving in a raft, which is
presented in Fig. 2.

We conclude that in order to observe transport of a system
of self-propelled rods without noise in the reversal period T at
long times one needs to incorporate in the model a source of the
density gradient. In M. xanthus swarms such a source is present
due to division of cells in the center of the bacterial colony.
Thus, any transport of self-propelled rods without noise in T is
a collective phenomena with the threshold density p0 required
for transport.

V. REINTRODUCTION OF THE NOISE OF THE
REVERSAL PERIOD IN THE SMALL DENSITY LIMIT

We now add noise in the reversal period T to the analysis
described in the previous section. With noise, collisions
between cells occur, even for p < p0, because the random
walk of the average position of cells causes them to move at
arbitrary large distances until they finally collide with other
cells. When the density approaches zero, the frequency of
collisions also goes to zero. But, if p → p0 from below, then
cells collide typically at each period 2T with the collision
time ∼�T0 (so for �T0 → 0 collision time would vanish).
Thus, p0 separates two regimes of collisions. If p < p0, then
collisions are rare because of the noise in T while, if p > p0,
collisions are frequent. At the transition densities p ∼ p0 the
contributions of both of these effects are comparable with each
other.

Thus, a transport of M. xanthus is a mixture of two effects.
The first effect is the diffusion of individual cells due to the
noise in the reversal period T that dominates for small densities
p < p0. The second effect is due to the frequent collisions of
cells during each period 2T making that effect essentially a
collective one. Two regimes markedly distnguish M. xanthus
from bacteria like E. coli or amoeba Dictyostelium discoideum,

which diffuse as randomly moving Brownian-like particles
[22–24] without any periodic motion.

VI. MULTIPLE COLLISIONS AND CELL CLUSTERING
FOR LARGE CELLULAR DENSITIES

If the cellular density p is not small (p > p0) so cells
typically experience collisions during each period 2T , then
cell motion is more complicated than the one described in
Sec. IV based on rare pairwise collisions. In addition, we
assume below that there is nonzero noise in T as in Sec. V.
Figures 5(a) and 5(d) show pairwise jam time (duration) versus
number of collisions that occur between three adjacent cells
for the average cellular density p = 0.95. In that case, cells
occupy 95% of the total volume and each cell can cover up to
vT /L = 8 cell volumes between two reversals, meaning that
it could collide with multiple cells. Figure 5 demonstrates that
distribution of pairwise jam time τpair is random. This typically
occurs closer to the bacterial colony center, where cell flux
caused by cell divisions is large. It keeps the system far from
the equilibrium motion state as described in Sec. IV. There are
at least two situations where such a far from equilibrium state
is possible. The first is the high-density gradient case caused
by bacterial division (as mentioned above). The second case
occurs if no-flux boundary conditions maintain a large density
of M. xanthus in a domain with fixed volume. In both cases,
the rate of bacterial jamming is high and the collision times
are randomly distributed.

Another effect that occurs in the case of large densities is
the high probability of the formation of clusters consisting of
more than two bacteria. As the density of bacteria approaches
1, all bacteria jam in large clusters. Unjamming bacteria from
a large cluster might take a lot of time because the leftmost or
rightmost bacteria in the cluster needs to move away to provide
space for the bacteria in the center of the cluster to move. As a
result, many cells stay jammed in a cluster for a long time for
large densities. Figure 6 shows that the averaged over ensemble
of MSM simulations cluster collision time τcluster diverges for
p → 1. Values of τcluster for different �x converge fast to
the continuous limit �x → 0, e.g., curves for �x = 0.01 and
�x = 0.001 are almost indistinguishable.
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FIG. 5. (Color online) Two stochastic realizations of the pairwise jam time that a single cell experiences with its two adjacent neighbors.
Collisions with the left and right neighbors are colored blue and green, respectively, for a total of 1000 different collisions at average cellular
density 0.95 and �x = 0.001.
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FIG. 6. (Color online) Average cluster collision time τcluster as
a function of density p for different values of �x. It is seen that
τcluster → ∞ for p → 1.

Figure 4(b) shows the distribution of cluster sizes for
MSM simulations starting from the top-hat initial condition.
Figure 4(d) provides cluster-size distribution for different
densities p obtained in MSM simulations with uniform average
density and periodic boundary conditions. (That second type of
MSM simulations is described in Sec. III.) Figure 4(d) shows
that the cluster-size probability density distribution becomes
much wider for p � p0 indicating multiple collisions.

VII. MACROSCOPIC NONLINEAR DIFFUSION MODEL
AND MSM SIMULATIONS

A. Nonlinear diffusion model and its limitations

If collisions are frequent and, additionally, the distribution
of the reversal phases and initial position of cells are random,
then we assume that collective dynamics of cells is diffusion-
like and it is described by the equation of the general type
Eq. (1). In this section, we obtain an approximation of the
diffusion coefficient D(p) in Eq. (1) to match the results
of MSM simulations. This is achieved by running MSM
simulations with a top-hat initial distribution and using BM
analysis [33] applied to the ensemble-averaged MSM density
profile on the right half of the spatial domain at time t = tD .
Here and below tD describes the time at which we apply the
BM analysis. (A description of the BM analysis is given in
Appendix A). We then demonstrate that numerical solutions of
Eq. (1) with D(p) obtained using a BM analysis yield density
dependence on space and time that is in very good agreement
with the one obtained using MSM simulations. This justifies
the initial assumption of collective dynamics of cells being of
a diffusion-like type.

Results of MSM simulations unavoidably have noise due
to the finite size of the stochastic ensemble used to determine
cellular densities. Boltzmann-Matano analysis relies on cal-
culating derivatives of density and we apply a Gaussian filter
to the MSM density data to smooth out both p and all its
derivatives [35]. We checked that the change of parameters of
the Gaussian filter resulted in only small corrections without
any systematic error.

Typically, to perform BM analysis we run MSM using an
initial top-hat distribution of length 1000 in a domain of size
4000 (see the end of Sec. II for more details). For most of our

simulations, the top hat is wide enough so during simulation
time the density at the middle of the domain remains close to
the initial density pmax (in most simulations pmax = 1). This
means that cells mostly move near the boundary of initial
top-hat distribution while at the middle of the domain the
cellular density is almost constant. This allows us to ignore
the left half of the domain and treat the cell distribution as if it
were stepwise shaped in an infinite domain. This is necessary in
order to perform BM analysis that is exact for an infinite spatial
interval with stepwise initial conditions only. In Appendix B
we study the accuracy of BM analysis for a finite width of the
top-hat initial conditions.

Another limitation of the BM analysis is that it requires
calculating [dp(x)/dx]−1. Due to the presence of the regions
where the density is constant, singularities of [dp(x)/dx]−1

may be generated during calculation of the non-linear diffusion
coefficient near the end of the diffusion curves where p is close
to 0 or pmax. These artificial singularities result from a loss of
numerical precision near singularity of [dp(x)/dx]−1 which is
clearly seen near p = 0 and p = 1 in all figures that include
D(p). To reduce such a loss of numerical precision, we perform
only BM analysis in the neighborhood of the interface that en-
compasses the initial step of a top hat instead of the entire right
half of the domain. It can be also mitigated by performing a
cubic spline interpolation of D(p) from the domain 0 < p < 1
to values around p = 0 and p = 1. This, however, appears to
be unnecessary because the loss of precision does not affect
prediction of the density dynamics in Eq. (1) in any significant
way.

Since the BM analysis approach for calculating the
diffusion coefficient assumes that the nonlinear diffusion
equation (1) is solved on an infinite domain, there will be
errors in calculating the diffusion coefficient in cases of
significantly high density near the boundaries of the finite
computation domain. Therefore, if tD were too large, the
analysis would fail. Also, if tD were too small, then not
enough cells would reverse to generate diffusion. We found
that any time between tD = 125 and tD = 10 000 appears to be
sufficient for generating reasonably universal diffusion curves
for T = 8, as shown in Fig. 7(a). In other words, diffusion
coefficient D(p) curves generated at different times tD are
close to each other. This near independence of D(p) from tD
justifies our assumption of the collective dynamics of cells
being diffusion-like and being described by Eq. (1).

Unless otherwise specified below, we use tD = 500 to
generate the diffusion curves. To demonstrate that there is little
difference in the numerical solutions of Eq. (1) with diffusion
coefficients D(p) chosen based on BM analysis with tD = 500
versus tD = 10 000, we compared the resulting numerical solu-
tions with the densities obtained using microscopic stochastic
model simulations. Figure 7(c) shows that partial differential
equation (PDE) density profiles p(x) are almost indistinguish-
able for both values of tD . Furthermore, the difference between
the numerical solutions of the nonlinear diffusion equation
and stochastic simulation results are negligible, except for the
region p < p0.

Diffusion curves for different reversal periods T were also
calculated [see Fig. 7(b)]. Large reversal periods produce high
diffusion at low densities and low diffusion at high densities.
Small reversal periods result in low diffusion at low densities
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FIG. 7. (Color online) (a) Diffusion coefficient D(p) generated by BM analysis at different times tD for T = 8. (b) D(p) generated by
BM analysis for varying reversal periods T for diffusion curves calculated from BM analysis at tD = 500. (c) Density profiles from MSM
simulations vs. PDE density profiles [solutions of Eq. (1)] at t = 60 and t = 30 000 obtained using diffusion coefficients from (a) with tD = 500
and tD = 10 000. Only the right half of the spatial domain is shown. It is seen that the agreement between two types of density profiles is very
good, except the region of small density, p < p0 = 0.2.

and high diffusion at high densities. In the first case cells move
left or right until they collide and they stay jammed for a long
time. In the second case, the cells rapidly oscillate left and
right. Once cells spread out, collisions become infrequent.

We now discuss the limitations of nonlinear diffusion
model. Figure 7(c) demonstrates that there is a difference
between MSM and BM prediction for small densities, namely
diffusion appears to be suppressed in MSM simulations
in comparison with the BM predictions. This difference
qualitatively explains the small difference between diffusion
curves D(p) generated at different times tD in Fig. 7(a). The
discrepancy between MSM and BM occurs for p � p0, where
the critical density p0 is defined in Eq. (4). For p < p0 there are
not many jams between cells (see Sec. IV) and, subsequently,
the diffusion occurs mostly due to the fluctuations of T only.
The diffusion coefficient D0 of this collision-independent limit
p → 0 can be estimated from Eqs. (2) and (3) as

D0 = �T 2
0 /(2T ). (5)

For the parameter values used in Fig. 7(a) it yields D0 = 0.05,
which is significantly smaller than D(0) in Fig. 7(a). In addi-
tion, the finite values of �x also contribute to D0, modifying
it as D0 = (�T 2

0 + T �x)/(2T ), but this contribution is small
for typical values of �x we use in simulations.

This difference between D0 and D(0) can be attributed
to two effects. The first effect is the loss of the numerical
precision of BM analysis for p → 0 as described above in this
section. The second effect is due to the lack of the diffusion

of MSM at small times, t ∼ T . To understand the second
effect we recall that the diffusion equation for the Brownian
motion of particles can be derived from the Newton equation
with random force if we neglect the mass, i.e., neglect the
inertia [36]. As a result, the speed of propagation of the
density in the diffusion equation can be infinite (which is
apparent, e.g., if we look at the evolution of the fundamental
solution of the linear diffusion equation). In contrast, MSM
always describes finite propagation speed because, during
period T , each cell can move for a distance no larger than
vT , creating effective inertia with the maximum allowed
propagation speed v = 1. That inertia effect is not important
if the density gradients are small. But for the top-hat initial
condition, required for BM analysis, the initial gradient is
singular. Thus, the diffusion approximation is not applicable
for initial evolution of MSM at times t ∼ T . In addition,
the finite size of cells can also contribute to a break of the
nonlinear diffusion approximation at these small times. A
profound effect of such finite propagation speed occurs for
small densities which explains difference between MSM and
BM for small densities. To describe these corrections from the
initial large-density gradient, one can introduce the inertia-like
effect, i.e., through either the introduction of the second time
derivative into Eq. (1) (see, e.g., Ref. [37]) or the development
of the version of 1D ballistic coalescence model [38]. We,
however, do not pursue such corrected models here because
they would create a significant effect only at small densities
p < p0, which is of limited interest in describing the growth
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FIG. 14. (Color online) Comparison of ensemble-averaged MSM
simulations with numerical solution of Eq. (1) [with D(p) obtained
using BM analysis and the top-hat distribution] obtained from the
parabolic initial density. Seven hundred cells were used in the
MSM simulations in the domain of size 4000 (only a central part
of the spatial domain is shown). PDE results provide a very good
approximation for the MSM simulation results forp > p 0. Curves
are plotted fort = 0, 10 000, and 50 000. Other parameters are the
same as in Fig.10.

would mean the nonlocality of diffusion. However, extensive
comparison of the MSM with BM-basedD(p) in this section
suggests that it is not the case (assumingp > p 0 and Þnite
�T 0 as discussed above). [IfD(p) were to be obtained using
the BM analysis, then at different timestD this analysis would
produce different values ofD(p). Moreover, eachD(p) from
the BM analysis would reproduce MSM density only for Þxed
t = tD .] We show in this section that all of this is not true.
Our results suggest thatD(p) obtained from the BM analysis
is not a result of an uncontrolled Þt but, instead, it reßects
fundamental properties of the MSM which, at this time, we
cannot derive from the Þrst principles. To strengthen this
argument, we also compared the MSM dynamics simulations
with the initial distribution in the form of a parabola (not a
top-hat initial distribution as above) with the density dynamics
obtained using the BM analysis as shown in Fig.14. HereD(p)
was obtained from the BM analysis for the top-hat distribution,
i.e., completely independent from the form of the parabola. The
results show, again, very good agreement between MSM and
the nonlinear diffusion equation.

VIII. ANALYTICAL APPROXIMATIONS OF THE
PAIRWISE AND TOTAL COLLISION TIMES

In this section an analytical approximation of the pairwise
collision time and semianalytical Þt to the total collision times
are derived. We mostly focus on a limit of intermediate cellular
density whenp > p 0 but p is not very close to 1, so that a
majority of collisions between cells are still pairwise and they
do not result in larger clusters. Assume that a cell experiences
on average jam(s) of total duration� 1 from the left and� 2
from the right during each reversal period 2T. We include
both pairwise jams and indirect jams into the deÞnition of�
(see Sec.IV for detailed deÞnitions of jams). In such a case
a shift of the center of mass of a given cell per period 2T is
(� 1 Š � 2)v. The average collision time� in a given direction
(left or right) must be a slow function ofx (i.e., � 1 � � 2 
 � )
to avoid large microscopic gradients. Typically� can be
viewed as the average (ensemble or time average) over many

collisions (jamming events) for each given cell. It is necessary
to stress that� in this section is the (total) jam time (from
both direct and indirect jams) per periodT . This quantity
differs from� clusterin Sec.IV because� never exceedsT by its
deÞnition.

Although jam times can ßuctuate strongly from collision
to collision (as seen in Fig.5), after averaging over several
collisions, � becomes a slow function ofx and t. We also
neglect for now the inßuence of the ßuctuations of the reversal
time, i.e., we assume that all reversal phases are constant.
Below in this section we also separately discuss the effect of
these ßuctuations. Taking into account the Þnite value of�
we estimate the local cellular density asp = L/ �L dist� , where
the average distance between neighboring cells isL dist = L +
v| ÷� 1 Š ÷� 2| Š v� and �· · ·� means statistical averaging over
the uniformly distributed phases÷� 1 and ÷� 2. This expression is,
however, true only for| ÷� 1 Š ÷� 2| � � because distance between
centers of mass of two neighboring cells is� L . For pairs of
cells with smaller difference in phases| ÷� 1 Š ÷� 2| � � we have
to take into account simultaneous collisions (jams) of three
and more cells. During each triple collision two neighboring
cells have pairwise jams and the third one has an indirect
jam. If � is small, | ÷� 1 Š ÷� 2| � � , then cells 1 and 2 move
parallel to each other most of the time. They either attach to
each other or separate by a typical distance of 2v| ÷� 1 Š ÷� 2|.
After reversing direction, cells always alternate between these
two possibilities. A distance between average positions of the
centers of mass of these two cells is� v| ÷� 1 Š ÷� 2|. Almost all
the time cells 1 and 2 move together, separated by that average
small distance between them. After colliding with another
(third) cell on the left (referred to as cell 0) or with a cell on
the right (referred to as cell 3) they quickly form a three-cell
cluster. Assume that the lifetime of each such cluster is about
� . The pairwise jam time for cells 0 (with cell 1) or cell 3 (with
cell 2) then is� � . For cells 1 and 2 each collision is either
a pairwise jam with the jam time� � or a cluster jam with
the jam time� � . The average jam time is� � in both cases.
The distance between average positions of cells 0 and 1 (or
between cells 2 and 3) is� L + v(| ÷� 1 Š ÷� 2| Š � ). Based on
that we obtain the following approximate expression for the
average distance between two neighboring cells combining
contributions from| ÷� 1 Š ÷� 2| � � and| ÷� 1 Š ÷� 2| � � :

�L dist� = T Š1
� � T

�
(L + v[� Š � ])d� +

� �

0
[L + vO(� )]d�

�

= L + v
�

T
2

Š �
�

+ v�O
�

�
T

�
, (6)

where we included the contribution of the average distance
� v| ÷� 1 Š ÷� 2| between cells 1 and 2 for| ÷� 1 Š ÷� 2| � � into
theO(� ) term. Here and belowO(x) refers toO(x) = c1x +
c2x2 + c3x3 + . . . with constantsc1, c2, . . . generally� 1.

Terms v� 2/T , v� 3/T 2, v� 4/T 3, etc., in Eq. (6) result
from the three-cell, four-cell, Þve-cell, and so on, cluster con-
tributions, respectively. To establish scaling associated with the
number of cells in a cluster we note that the probability to have
ann-cell cluster is roughly proportional to the probabilityPnŠ2
of n Š 2 neighboring cells simultaneously having small dif-
ferences in phases|� i Š � i + 1| � �, i = 1, 2. . . . ,n Š 2. Here
PnŠ2  (� /T )nŠ2 because phases are statistically independent.

021903-12



MACROSCOPIC MODEL OF SELF-PROPELLED BACTERIA. . . PHYSICAL REVIEW E85, 021903 (2012)

An n-cell cluster is formed by thesen Š 2 cells together
with two surrounding cells involved in pairwise jams with the
average time� . Similarly to the case of the three-cell cluster,
the n Š 2 cells inside a cluster have an average jam time�
dominated by the indirect jams. The resulting contribution to
the�L dist� is � v�P nŠ2. Of course, for densely packed clusters
such an approximation is an oversimplifcation but the general
form of O(x) remains the same. These qualitative arguments
do not affect the quantitative calculations described below and
yield qualitative understanding of the MSM dynamics.

Qualitatively, we can also interpret the formation of a large
cluster as a loose analog of phase locking because cells with
similar phases have a tendency to form clusters more easily,
as explained earlier in this section (they push out other cells
less in the process of jamming). We would like to stress that
it is purely a kinematic effect because we assume here that
ßuctuations of the reversal phases of each cell are independent
and follow the Poisson distribution Eqs. (2) and (3).

Equation (6) results in the following relation between
cellular density and the collision time:

pan =
L

�L dist�
=

L
L + vT /2 Š v� + v�O (�/T )

. (7)

After solving Eq. (7) for � , we obtain the following analytical
approximation for the average collision time:

� (p) =
�

T
2

Š
L

v p
+

L
v

+ �O (�/T )
�

� (p Š p0), (8)

wherep0 is given by Eq. (4), � (y) is a Heaviside step function
[� (y) = 1 for y > 0 and� (y) = 0 for y < 0], and the factor
� (p Š p0) is obtained from the condition that� � 0 (recall
that it is shown in Sec.IV that jams are absent forp < p 0
ßuctuations of the reversal time are neglected).

Neglecting�O (�/T ) in Eq. (8) means that we take into
account only pairwise jams and neglect indirect jams resulting
in the average pairwise collision time� pair:

� pair(p) =
�

T
2

Š
L

v p
+

L
v

�
� (p Š p0). (9)

Figure 15(a) compares� pair(p)/T simulations that were
obtained using MSM with simulations from Eq. (9). MSM
simulations were performed with the periodic boundary con-
ditions at the spatial interval of length 1000 and initial random
placement ofN cells (avoiding conÞgurations forbidden by
excluded volume principle). We used� x = 0.05 and� x =
0.005.N was chosen for each simulation to match givenp (i.e.,
N = 1000p). All types of collision times were calculated by
running simulations through the Þnal simulation timetÞnal =
106. We also assumed ergodicity and recorded collisions of
all cells during each simulation. Convergence was tested by
comparing the results for a subset of densities to results
obtained withtÞnal = 107 and a good match was demonstrated.
Ergodicity was also tested by comparing the collision time
results from several different stochastic realizations with
tÞnal = 106 and a very good match was shown for tested density
values.

Figure15(a)shows that MSM simulations and Eq. (9) are
in a reasonably good agreement forp > p 0. For p < p 0 one
would need to modify Eq. (9) to include ßuctuations of the
reversal time. Comprehensive analysis of such a modiÞcation
is outside the scope of this paper. Here we consider the
particular value of densityp = p0 as well as the limit of small
densities,p � p0.

For p = p0, cells do not collide without ßuctuations ofT
but they often get next to each other and move in parallel,
as explained in Sec.IV. This means that with inclusion of
ßuctuations ofT the typical pairwise collision time would
be� �T 0, i.e., � pair(p0) � �T 0 [in contrast to� pair(p0) = 0 in
Eq. (9)], which is in good agreement with Fig.15(a)[�T 0/T =
0.09 for the parameter values of MSM simulations in Fig.15(a)
while � pair(p0)/T � 0.1 for the dashed curve of Fig.15(a)].
In the case ofp < p 0, such a modiÞcation is smaller because,
for smaller densities, cells collide only as a result of a random
walk due to the ßuctuations ofT . The smaller the density
the longer it takes for random walk to ensure collisions. This
results in the decay of� pair(p) to zero asp � 0.

Consider now the limitp � p0, where collisions between
cells are rare (a typical time between collision is much
aboveT). We average the cellular dynamics over period 2T and
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FIG. 15. (Color online) (a) Dependence of� pair(p)/T from MSM simulations on the lattice size�x = 0.05 (dash-dotted line) and
�x = 0.005 (dashed line) in comparison with the analytical expression Eq. (9) for � pair/T (solid line). (b) Relative amount of time cells spend
without moving per periodT (dashed line) vs. relative total jam time�/T (solid line) with�x = 0.005;� includes both indirect and pairwise
collisions. Decrease of� x results in a better match between each pair of curves;T = 8 for all simulations.
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consider time scales larger than 2T . After averaging, each cell
experiences a random walk with jumps at the average distance
±�T v at times 0, T ,2T , . . .; that is, we obtain a random walk
at a discrete grid and in discrete time. To take into account
collisions we introduce the effective size of cells from Eq. (6)
in the limit of τ → 0:

Leff = L + vT /2. (10)

We now look at each cell as the effective object with the average
size Leff and we introduce the effective average distance
�xeff between neighboring cells based on the normalization
(p/L)(Leff + �xeff) = 1 [see also Eq. (7) for the definition of
p]. That normalization means that at the distance Leff + �xeff

there is exactly one cell. Together [Eq. (10)] it gives

�xeff = L

p
− L − vT

2
. (11)

Thus, in the limit p � p0 we reduce, by averaging over
period 2T , the dynamics of the full MSM problem to 1D
discrete random walk of cells with the effective length Leff

and the effective average intercellular distance �xeff . These
effective cells are subject to excluded volume constraint.
A problem of that type was studied in Ref. [24] in the
continuous limit of infinitely small spatial jumps. In particular,
the nonlinear diffusion equation of the general type Eq. (1)
was derived. Using the diffusion coefficient D0 (5) of the cells
without collision (corresponds to the limit p → 0), we obtain
from Eq. (1) of Ref. [24] the following nonlinear diffusion
coefficient:

D(p) = D0

{
P

1 + (Leff/L)2p2

[1 − (Leff/L)p]2

}
, (12)

where Leff is given by Eq. (10). For p → p0 the nonlinear dif-
fusion coefficient Eq. (12) diverges because the approximation
of the discrete random walk is valid only for p � p0, which
means that �xeff � �T v. However, the tendency of the fast
increase of D(p) for p ∼ p0/2 explains the quick growth of the
diffusion coefficient from D0 to the typical values determined
by BM analysis in Sec. VII A.

We now calculate the collision time τcoll for p � p0.
Assume that, at some moment in time, two cells collide.
Similarly to Ref. [24], we introduce an “extended collision”
time τextend as the average time over which two initially collided
cells will be separated by the distance �xeff . The problem
of finding τextend can be formulated as a mean escape time
problem for the motion of a pointwise particle in a domain of
size �xeff with the reflecting boundary condition ∂xp = 0 at
one boundary (corresponding to the collision between cells)
and the absorbing boundary condition p = 0 at the second
boundary (corresponding to the escape of cells from the
extended collision because, if the distance between cells is
above �xeff , then collisions with other neighboring cells are
equally probable [24]).

We define

m ≡ �xeff

�T v
, (13)

where m is the value of �xeff in units of elementary jumps
�T v. In the limit �xeff � �T v, the average number of jumps
until the cells will be separated by �xeff is m2, giving the

average time τextend (the extended collision duration), during
which the extended collision lasts

τextend = m2T . (14)

During that time the number of elementary collisions between
two cells is m (similar to the number of times that a random
walker passes through the initial point during m2 jumps). It
gives the cumulative collision time τcoll,cumulative (a sum of all
times when a cell is not moving because of collision) during
the extended collision duration τextend as follows:

τcoll,cumulative = m�T. (15)

It follows from Eqs. (11), (13), (14), and (15) that the pairwise
collision time τpair ≡ T τcoll,cumulative/τextend per period T is
given by

τpair/T = �T 2v(
L
p

− L − vT
2

)
T

. (16)

Figure 16 shows τpair/T versus p for T = 8. It is seen that
for p � 0.12, the analytical approximation Eq. (16) is quite
accurate. For 0.12 � p � 0.2 = p0, the number of effective
jumps in the discrete random walk approximation, necessary
to span �xeff , is no longer large compared with 1. But the
approximation of Eq. (16) is based on continuous random
walk (limit of infinitely small jumps). Thus, for 0.12 � p �
0.2 = p0, the approximation in Eq. (16) breaks down and the
effect of discreteness of the number of effective jumps needs to
be taken into account, which is beyond the scope of this paper.
The solid line in Fig. 16 represents the simplest reduction of
Eq. (16) for p � L/Leff , when the effective size Leff can be
neglected, giving

τpair/T = �T 2vpL−1T −1. (17)

Also note that for p < p0 the difference between the pairwise
and the total collision times is negligible because clustering
is insignificant for these densities so Eq. (16) is equally
good for the description of both pairwise and total collision
times. For p > p0, the fluctuations of T result in a more
efficient exploration of the space by cells that increases τpair

in comparison with Eq. (9), explaining the difference between
the solid curve and dashed curve in Fig. 15(a).
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FIG. 16. Dependence of τpair/T on the density p from MSM
simulations (solid line), Eq. (16) (dashed line), and Eq. (17) (dotted
line).
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We also performed simulations with decreased values of
�x to demonstrate that �x = 0.05 is already small enough to
provide a good approximation of τpair(p) in comparison with
the continuous limit �x → 0. Figure 15(a) shows convergence
of τpair(p) to the analytical expression of Eq. (9) with the
decrease of �x.

The same MSM simulations were used to calculate the total
collision time per period T . In simulations we distinguish two
types of the total collision time. The first type is the total
collision time τ itself (total jam time per period T ), which
includes both pairwise jams and indirect jams. The second
type is the average time (per period T ) cells spend without
movement, which includes pairwise jams, indirect jams, and
jams due to finite values of �x. The third contribution occurs
when two cells are attached to each other and move in the same
direction. If a cell that follows another one is chosen by the
MSM algorithm, then its movement is prevented by the second
cell. This artificial effect is due to discretization and finite value
of �x. It disappears for �x → 0 so both types of the total
collision time are the same in that limit. Figure 15(b) shows
the time cells spend without movement per period T versus τ .
It demonstrates that these total collision times (normalized to
T ) are very close to each other for �x → 0.005.

In contrast to the pairwise collision time used in Eq. (9), the
Eq. (8) includes an extra term, τO(τ/T ), which corresponds
to the total jam time τ per period T . The dashed line in Fig. 17
shows the dependence of MSM simulations with the noise in T

on τ (p) (with the standard �T0 = 0.9). We now approximate
the term τO(τ/T ) in Eq. (8) in the simplest possible way,
neglecting noise in T as O(x) = c1x with c1 = 2, which yields

τapprox(p) = τpair(p)

[
1 + 2

τpair(p)

T

]
�(p − p0), (18)

where τpair(p) is given by Eq. (9). The � function reflects the
neglect of noise in T similar to Eq. (9). We choose c1 = 2 here
to ensure correct asymptotic value τapprox(1) = T for p = 1
because all cells are jammed all the time in that case. Figure 17
shows a good fit between Eq. (18) (solid line 2) and the total
collision time per period τ/T from MSM simulations with
�T0 = 0.9 (dashed line 1). It suggests that the addition of
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FIG. 17. (Color online) Plots of the total collision time per
period τ/T from MSM simulations (dashed line 1) and from the
analytic approximation of τapprox (18) (solid line 2). The lattice size is
�x = 0.005 and T = 8.

noise in Eq. (18) might result in a very good fit. Exact analytical
theory is needed in order to verify this hypothesis, which is
quite a challenging problem and which is outside of the scope
of this paper.

IX. CONCLUSIONS AND DISCUSSION

A connection was established in this paper between a
stochastic 1D model (MSM) of microscopic motion of the
system of regularly reversing self-propelled rod-shaped cells
and a nonlinear diffusion equation describing the macroscopic
behavior of this system. Stochastic dynamics averaged over an
ensemble was shown to be in a very good agreement with the
numerical solutions of the nonlinear diffusion equation (1),
where the diffusion coefficient was obtained using BM
analysis. Critical density p0 was found such that for p < p0

the cellular diffusion is dominated by the diffusion (random
walk) of individual cells while for p > p0 the diffusion is
dominated by the collisions between cells. p0 was determined
Eq. (4) from the condition that cells do not jam with each other
in the no-noise limit. We found that the role of noise in the
reversal period is crucial. Without noise, BM analysis cannot
reproduce the MSM dynamics, which means that nonlinear
diffusion is not a good approximation for it. However, even
a relatively small level (�T0/T � 0.1) of noise produces
excellent agreement between BM-based nonlinear diffusion
and MSM simulations. The primary role of a small noise is to
ensure randomization of collisions among different cells.

An analytical approximation of the pairwise collision
time τpair [Eq. (9)] and semianalytical fit for the total jam
time per reversal period τapprox(p) [Eq. (18)] have also been
obtained. Frequent collisions for p > p0 are responsible for
the nonlinear diffusion of the cellular density. For p < p0, cells
tend to spread out so they collide only if fluctuations of the
reversal time are taken into account. Without such fluctuations
there are no collisions and no cellular transport is possible
because cells experience periodic motion in space and time.
There still remains quite a challenging problem of developing
a full statistical theory of 1D self-propelled rod dynamics with
reversals that would be applicable for all densities. Such a
theory would require a detailed description of formation and
interaction of large cellular clusters.

It was also shown that the nonlinear diffusion coefficient
D(p) used to describe the macroscopic process, changes
depending on the reversal period. Small and large reversal
periods yield diffusion coefficients that favor high and low
cell-density diffusion, respectively, as is shown in Fig. 8. Since
the dynamics of the system is determined by the dimensionless
parameters vT /L (the ratio of distance traveled by cells
between reversals and the cell length) and p, increase of the
speed at which cells move is equivalent to the increase of the
reversal period. Thus, cell populations with small T are able to
spread out effectively at high densities while large T promotes
cell population swarming at smaller densities.

An interesting problem to be studied in future work is to
determine the optimal choice of reversal time T maximizing
the swarming rate of an M. xanthus colony using a nonlinear
diffusion equation and then to compare it with the one obtained
in Ref. [5] using a stochastic model.
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APPENDIX A: BOLTZMANN-MATANO ANALYSIS

In this appendix we review BM analysis (see Ref. [33]
for details) for the readers’ convenience. Assume that the
process we are studying can be modeled using the nonlinear
diffusion equation (1) with some unknown nonlinear diffusion
coefficient, D(p).

Boltzmann-Matano analysis allows us to recover D(p) from
the 1D dynamics of the cellular density p with the stepwise
initial condition

p(x,0) =
{
pL, if x < xM

pR if x > xM
(A1)

at infinite 1D domain. Here we assume that pL > pR .
The special property of the stepwise initial condition is that

it has no spatial scale (the spatial size of the system is infinite
and the spatial scale of the jump at x = xM is zero). The only
possible solution then has a self-similar form, p(ζ ), which was
found by Boltzmann in 1894. Here

ζ = (x − xM )/t1/2, (A2)

which is motivated by a self-similar solution of a heat equation
(for D = const). xM is a reference point also known as the
Matano interface. Assuming that p(ζ ) does not depend on t

explicitly, we obtain that ∂
∂t

p(ζ ) = − 1
2

ζ

t
∂
∂ζ

p(ζ ) and ∂
∂x

p(ζ ) =
1

t1/2
∂
∂ζ

p(ζ ), which allows us to reduce Eq. (1) to

−ζ

2

∂

∂ζ
p = ∂

∂ζ

[
D(p)

∂

∂ζ
p

]
. (A3)

Since the solutions to a nonlinear diffusion equation with
stepwise initial conditions are monotonic, it follows that for
any given fixed time the function p(x) is invertible with respect
to x. Below we use the notation x(p) for the inverse of p(x).
Integrating both sides of Eq. (A3) with respect to ζ yields

− 1

2t1/2

∫ p

pL

(x(p) − xM )dp = D(p)pζ ,

where the left-hand side follows from∫ ζ

−∞
ζ

∂p

∂ζ
dζ =

∫ p

pL

ζ (p)dp = 1

t1/2

∫ p

pL

(x(p) − xM )dp.

Since ∂p

∂ζ
= t1/2 ∂p

∂x
, the equation can be rewritten as

D(p) = − 1

2t

[
∂p

∂x

]−1 ∫ p

pL

(x(p) − xM )dp,

which gives the Boltzmann description of the diffusion
equation. It is now possible to calculate the appropriate value
of the interface, xM , to ensure that the diffusion calculation is
consistent. Specifically, since mass diffuses from left to right
across the interface, there is a mass conservation equation

where the mass lost on the left of the interface should equal
the mass gained on the right of the interface,∫ xM

−∞
[pL − p(x)]dx =

∫ ∞

xM

[p(x) − pR]dx.

Again inverting p(x), we can calculate the area under of the
integrals in terms of x(p) to get the following equivalent
expression:∫ pL

pM

[x(p) − xM ]dp =
∫ pM

pR

[xM − x(p)]dp,

which simplifies to∫ pR

pL

[x(p) − xM ]dp = 0.

Mass conservation occurs precisely when

xM =
∫ pR

pL
x(p)dp

pL − pR

, (A4)

which is Matano’s result to determine xM if it is unknown in
advance.

In our simulations we know xM in advance so, in fact,
we use Boltzmann analysis but not BM analysis (except the
additional tests discussed in Appendix B). Moreover, in our
simulations pL = pmax and pR = 0.

APPENDIX B: ACCURACY OF BOLTZMANN-MATANO
ANALYSIS

Boltzmann-Matano analysis, described in Appendix A, is
defined on an infinite spatial interval with stepwise initial
conditions only. Assume now that we apply BM analysis for
the top-hat initial conditions as described in Sec. II. In that case,
BM analysis is only approximate because initial conditions
include spatial scale, xwidth, which is the spatial width of
the top hat. A self-similar solution of Appendix A does not
agree with the top hat. That solution is only approximately
valid in the neighborhood of each of two steps of the top
hat. Because of spatial symmetry it is enough to consider
any of these two steps. To estimate the accuracy of the BM
analysis in that case we note that if the density at x = 0 (middle
of the top hat) remains nearly constant, then BM analysis is
still applicable (except small unavoidable corrections because
for any t > 0 density is never exactly constant). Assuming
that the diffusion coefficient D(p) ∼ 1, we roughly estimate
that the width of the initial top hat doubles with time when
D(p)t0/x2

width ∼ 1, which gives t0 ∼ 106 for xwidth = 1000.
For t � t0 a change of density in the middle of top hat is
small in agreement with Fig. 7. A similar limitation of the BM
analysis is that the total spatial width of the simulation domain
must exceed the width of the top hat several times to ensure
that the cellular density remains low at boundaries as seen
in Fig. 7.

As additional test of BM analysis we varied the domain
length and width of the initial top-hat distribution calculating
diffusion coefficient by BM analysis from MSM simulations
[Fig. 18(a)]. We observed that small top-hat width ∼100 is not
enough for applicability of BM analysis [dash-dotted curve in
Fig. 18(a)] while top-hat widths �1000 total domain lengths
�4000 are far enough for such applicability. Figure 18(b)
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FIG. 18. (Color online) (a) The nonlinear diffusion coefficient
D(p) determined from BM analysis of MSM simulations with
different initial top-hat widths. The density profiles at tD = 500
were used for all curves. It is seen that curves for the widths
1000 and above are almost undistinguishable. (b) D(p) obtained
from MSM simulations (dashed line, curve 1) and PDE simulation
(solid line, curve 2) for the top-hat initial conditions of width 600.
Density profile at time tD = 1000 is used for BM analysis. (c)
Comparison of BM analysis with Boltzmann analysis from PDE
density profile at tD = 500. Dashed line is D(p) used to produce
density profiles from PDE simulations. All curves at (b) and (c) are
almost indistinguishable.

compares D(p) obtained from PDE simulation (solid line)
and MSM simulations (dashed line) for the top-hat initial
conditions of width 600. Difference between these curves
is almost indistinguishable. This indicates that our statistical
ensemble in MSM simulations is large enough to avoid
influence of noise in the data on the diffusion curve. We also

tested MSM data with and without the Gaussian filter and
obtained the same diffusion curves. Larger widths were also
tested and proven to match very well, but the results are not
displayed here. From these observations, we conclude that the
generated diffusion curves are independent of the width of the
top hat if the top hat is wide enough. This means that the center
and boundaries of the spatial domain have constant density in
time.

We would like to point out, to avoid confusion, that the BM
analysis is needed only to determine the diffusion curves at
reasonably small times (t � t0). After that, PDE simulations
can be run with these diffusion curves for much longer times
(when density is changing both at the middle of the top hat and
at the boundaries). For these much longer times a very good
agreement has been also observed between MSM simulations
and PDE simulations (see, e.g., Figs. 4 and 8).

As discussed in Sec. VII, another limitation of the BM
analysis is the loss of numerical precision near p(x) = const
because it requires calculating [dp(x)/dx]−1. Figures 7(a),
7(b), and 18 show jumps of D(p) near p = 1 due to such a loss
of numerical precision, which can be fixed by the polynomial
extrapolation. This is, however, not necessary because these
jumps do not change the results of the PDE simulations in a
significant way.

We also tested BM analysis versus Boltzmann analysis as
shown in Fig. 18(c). Although xM is known from the top-hat
initial conditions, for the finite width of the top-hat one can
ask whether allowing xM to be located around the step of
the top hat could improve the accuracy of the BM analysis
to determine D(p). In this sense, xM could be viewed as an
additional fitting parameter needed for accommodating the
top-hat width. Figure 18(c) compares the diffusion curves
obtained using BM analysis, Boltzmann analysis, and an exact
diffusion curve. The difference in accuracy between the BM
analysis and Boltzmann analysis is very small. It appears that
the advantage of using BM analysis versus Bolztmann analysis
is insignificant in our case.
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