Math 1220 Final Review In Class Worksheet

Graphing

Basic Curves and Transformations Graph each function

Graph. Find the domain and all intercepts and asymptotes that exist.

Quadratics and Polynomials

Graph each. Final all intercepts.

$$f(x) = x^{2} + 2x - 8 \qquad f(x) = x^{3}(x - 2)(x + 3)^{2} \qquad f(x) = x^{4} - 2x^{3} - 3x^{2}$$

Rationals

Graph each. Final all intercepts and asymptotes that exist.

Ť

Piecewise

Graph

f

$$(x) = \begin{cases} 4 & x < -1 \\ x^2 & -1 \le x < 2 \\ 1 - x & 2 \le x \le 5 \end{cases}$$

Math 1220 Final Review Fall 2019

Functions Domain

(a)
$$f(x) = 7\ln(2x-5) + 3$$
 (b) $f(x) = \frac{\sqrt{3x-5}}{x-3}$ (c) $f(x) = \frac{x-3}{\sqrt{3x-5}}$ (d) $f(x) = \sqrt{\frac{x+5}{x-3}}$

Difference Quotient and Average Rate of Change

Let
$$f(x) = \frac{2}{x}$$
 and $g(x) = x^2 - x + 1$
Find (a) $\frac{f(1+h) - f(1)}{h}$ (b) $\frac{g(2+h) - g(2)}{h}$

Find the Average Rate of Change of the function $f(x) = 1 + 3x^2$ from x = -3 to x = 1.

Compositions and Inverses

Let
$$f(x) = \frac{x+1}{x-3}$$
, $g(x) = \frac{1}{x}$, $h(x) = \log_3(x+1)$. Find
(a) $(f \circ g)(x)$ and its domain. (b) $f^{-1}(x)$ and its range (c) $h^{-1}(x)$ and its range

Exponentials and Logarithms

Evaluate

Circles and Quadratics

Write the circle $2x^2 + 2y^2 + 16x - 12y + 16 = 0$ in standard form.

Write the quadratic $f(x) = 2x^2 + 16x + 16$ in vertex form.

Find the equation of a parabola with vertex (-1,2) whose graph goes through the point P(5,-3)

Math 1220 Final Review Fall 2019

Equations, Inequalities, and Applications

Solving Equations

Solve

(a)
$$2x^2 + 7x = 4$$
 (b) $2x^2 + 3x = 4$ (c) $2(x-3)^2 - 6 = 2$

(d)
$$\frac{2}{x-3} - 1 = 0$$
 (e) $\sqrt{x-3} + 5 = x$ (g) $4^{x-2} = 8^{3-x}$

(h)
$$10^{1-x} = 6^x$$
 (i) $2\ln x + \ln 9 = 4$ (g) $\ln(-x) + \ln(1-x) = \ln(4-x)$

Solving Inequalities

(a) Solve $x^2 < 9x$

Answer using interval notation

(b) Solve
$$\frac{\left(x-6\right)^2}{\left(x-1\right)\left(x+3\right)} \ge 0$$

Answer using set builder notation

(c) Solve for the cat. In words, say where the cat is and draw a picture that represents your words

$$|cat| \le 5$$
 $|cat| > 15$

(d) Solve for
$$x$$

$$\left| \begin{array}{c} 2x - 3 \end{array} \right| \le 5 \qquad \qquad \left| \begin{array}{c} 2x - 3 \end{array} \right| > 15$$

Applications

- 1. A car rental service charges \$100 to rent a car plus 50 cents per mile.
 - (a) Express the cost C(x) of renting a car from this service as a linear function of x, the number of miles driven.
 - (b) If the car is driven 200 miles, how much did the rental car cost?
- 2. A gardener has 120 meters of fencing to enclose two adjacent rectangular growing plots. One side is to be against a building, as shown, and so requires no fencing.

-

(a) If x represents the width of the plot, express its area A(x) in terms of x.

Building			
x			

(b) Determine the dimensions of the rectangle that will make the area a maximum. What is the maximum growing area?