Math 1220 Final Review In Class Worksheet

Graphing

Basic Curves and Transformations

Graph each function
$f(x)=x^{3}$
$f(x)=\sqrt{x}$
$f(x)=\frac{1}{x}$
$f(x)=e^{x}$
$f(x)=\ln x$
$f(x)=\left(\frac{1}{2}\right)^{x}$

Graph. Find the domain and all intercepts and asymptotes that exist.

Quadratics and Polynomials

Graph each. Final all intercepts.

$$
f(x)=x^{2}+2 x-8
$$

$$
f(x)=x^{3}(x-2)(x+3)^{2}
$$

$f(x)=x^{4}-2 x^{3}-3 x^{2}$

Rationals

Graph each. Final all intercepts and asymptotes that exist.

$g(x)=\frac{x-1}{x^{2}+3 x} \quad$| $\mathrm{D}:$ | |
| :--- | :--- |
| $\mathrm{VA(s)} \ldots$ | $\mathrm{HA}(\mathrm{s}):$ |
| $\mathrm{x}-\mathrm{int(s):}$ | y -int(s): |

Piecewise

Graph
$f(x)=\left\{\begin{array}{cc}4 & x<-1 \\ x^{2} & -1 \leq x<2 \\ 1-x & 2 \leq x \leq 5\end{array}\right.$

Math 1220 Final Review Fall 2019

Functions

Domain
(a) $f(x)=7 \ln (2 x-5)+3$
(b) $f(x)=\frac{\sqrt{3 x-5}}{x-3}$
(c) $f(x)=\frac{x-3}{\sqrt{3 x-5}}$
(d) $f(x)=\sqrt{\frac{x+5}{x-3}}$

Difference Quotient and Average Rate of Change

Let $f(x)=\frac{2}{x} \quad$ and $\quad g(x)=x^{2}-x+1$
Find (a) $\frac{f(1+h)-f(1)}{h}$
(b) $\frac{g(2+h)-g(2)}{h}$

Find the Average Rate of Change of the function $f(x)=1+3 x^{2}$ from $x=-3$ to $x=1$.

Compositions and Inverses

Let $f(x)=\frac{x+1}{x-3}, \quad g(x)=\frac{1}{x}, \quad h(x)=\log _{3}(x+1)$. Find
(a) $(f \circ g)(x)$ and its domain.
(b) $f^{-1}(x)$ and its range
(c) $h^{-1}(x)$ and its range

Exponentials and Logarithms

Evaluate
(a) $\log _{2} 16=$ \qquad
(b) $\log _{2}\left(10^{3 \log 2}\right)=$ \qquad (c) $2 e^{3 \ln x+\ln 5 x}=$ \qquad
(b) $2 \log _{\pi} \pi=$ \qquad
(b) $\log \left(100^{-1}\right)=$ \qquad

Circles and Quadratics

Write the circle $2 x^{2}+2 y^{2}+16 x-12 y+16=0$ in standard form.

Write the quadratic $f(x)=2 x^{2}+16 x+16$ in vertex form.

Math 1220 Final Review Fall 2019

Equations, Inequalities, and Applications

Solving Equations

Solve
(a) $2 x^{2}+7 x=4$
(b) $2 x^{2}+3 x=4$
(c) $2(x-3)^{2}-6=2$
(d) $\frac{2}{x-3}-1=0$
(e) $\sqrt{x-3}+5=x$
(g) $4^{x-2}=8^{3-x}$
(h) $10^{1-x}=6^{x}$
(i) $2 \ln x+\ln 9=4$
(g) $\ln (-x)+\ln (1-x)=\ln (4-x)$

Solving Inequalities

(a) Solve $x^{2}<9 x$
(b) Solve $\frac{(x-6)^{2}}{(x-1)(x+3)} \geq 0$

Answer using interval notation
Answer using set builder notation
(c) Solve for the cat. In words, say where the cat is and draw a picture that represents your words

$$
|c a t| \leq 5
$$

$$
|c a t|>15
$$

(d) Solve for \boldsymbol{x}

$$
|2 x-3| \leq 5
$$

$$
|2 x-3|>15
$$

Applications

1. A car rental service charges $\$ 100$ to rent a car plus 50 cents per mile.
(a) Express the cost $C(x)$ of renting a car from this service as a linear function of x, the number of miles driven.
(b) If the car is driven 200 miles, how much did the rental car cost?
2. A gardener has 120 meters of fencing to enclose two adjacent rectangular growing plots. One side is to be against a building, as shown, and so requires no fencing.
(a) If x represents the width of the plot, express its area $A(x)$ in terms of x.

(b) Determine the dimensions of the rectangle that will make the area a maximum. What is the maximum growing area?
