Linear Functions

1. Are the functions given below linear or nonlinear? If a function is linear, determine the equation that defines y = f(x)

x	f(x)	x	f(x)
-1	-7	-1	-3
0	3	0	4
1	8	1	7
3	18	2	6
6	33	3	1

2. Suppose f(x) = 3x - 1 and g(x) = -2x + 3.

(a) Graph f and g on the same set of axes.

	······												
	:												
	i						. i						
	:												
	:												
	:	: :									: :		
	:												
	1												
	_	_				_	_					_	<u> </u>
	:												
	h					·							
	:												
	:												
	:												
	·												
						J	l						
							· · · ·						
a > a 1		0	. /	1		~							
(b) Solve $f(x) = 0$													
(0) Solve (1) (-0)													
(-) ~	-	J	1			-							
			`	/									

- (c) Solve f(x) > 0
- (d) Solve f(x) = g(x)
- (e) Solve f(x) > g(x)
- 3. The weekly rental cost of a 20-foot recreational vehicle is \$129.50 plus \$0.15 per mile. Write a linear function that expresses the cost *C* as a function of miles driven, *m*. That is, write the linear function C(m).

Quadratics

4. Find the zeros of the following quadratic functions. What are the *x*-intercepts of the graph of the function?

$$f(x) = x^{2} + x - 72 \qquad f(x) = (x - 3)^{2} - 4 \qquad f(x) = -2x^{2} + 4x + 1 \qquad f(x) = 3x^{2} - 2x - 8$$

5. Given $f(x) = x^2 + 3x$, g(x) = 5x + 3, solve f(x) = g(x). Then graph each function and label the points of intersection.

6. Determine the quadratic function whose vertex is at (1, -32) and which goes through the point (0, -30)

Graphing Quadratic Functions

- 7. Graph each of the following functions. Determine
 - a) whether the graph opens up or down.
 - b) the vertex of the graph of the quadratic function.
 - c) the axis of symmetry
 - d) the intercepts
 - e) the domain and range
 - f) where the function is increasing or decreasing.

Quadratic Applications

- 7. A projectile is launched vertically upward and its height (in feet) at time t (in seconds) is described by $h(t) = -16t^2 + 32t + 24$.
 - a. When does the projectile reach its maximum height?
 - b. What is the maximum height of the projectile?
 - c. At what height was the projectile when it was launched?
 - d. When does the projectile hit the ground?

- 8. The price p in dollars and the quantity sold, x, of a certain product obey the equation $p = -\frac{1}{10}x + 1000$.
 - a. Find a model that expresses the revenue, R, as a function of x.
 - b. What is the revenue if 400 units are sold?
 - c. What quantity *x* maximizes the revenue?
 - d. What is the maximum revenue?
- 9. A gardener has 120 meters of fencing to enclose two adjacent rectangular growing plots. One side is to be against a building, as shown, and so requires no fencing.
 - a) If x represents the width of the plot, express its area A(x) in terms of x.

b) Determine the dimensions of the rectangle that will make the area a maximum. What is the maximum growing area?

Quadratic Inequalities

8. Solve. Answer using interval notation

 $x^2 < 9x$

 $x^2 + 6x - 16 \ge 0$

Absolute Values

9. Solve. Answer using interval notation

$$|2x-3| = 7$$
 $2+|2-3x| \ge 4$

<i>x</i> +3	- 2
4	<u> </u>

Polynomials			degree:			
10. Graph the following function	Î		end behavior: x-int(s):			
$f(x) = x^{3}(x-2)(x+3)^{2}$						
			y-int(s):			
		,	max nun	nber of turning poin	nts :	
			zeros:	multiplicities:	cross/tur	
	ţ					

Rationals

11. Graph each. Final all intercepts and asymptotes that exist.

