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The Big Picture

Raw Data

Point clouds
Networks

X-ray CT scans

Topological Summary

Mapper graphs
Persistence Diagrams
Euler Characteristic

Analysis

Statistics
Machine Learning

Prediction
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Shape is Data, and Data has Shape

Main goal of TDA: Provide summaries of the shape of data that are

quantifiable
Rigorously describe qualitative properties

comparable
Establish a distance metric to compare any two summaries

robust
A small change in the data set should result in a small change in the summary

concise
Summaries should simplify the data

TDA October 14, 2024 3 / 23



Shape is Data, and Data has Shape

Main goal of TDA: Provide summaries of the shape of data that are

quantifiable
Rigorously describe qualitative properties

comparable
Establish a distance metric to compare any two summaries

robust
A small change in the data set should result in a small change in the summary

concise
Summaries should simplify the data

TDA October 14, 2024 3 / 23



Shape is Data, and Data has Shape

Main goal of TDA: Provide summaries of the shape of data that are

quantifiable
Rigorously describe qualitative properties

comparable
Establish a distance metric to compare any two summaries

robust
A small change in the data set should result in a small change in the summary

concise
Summaries should simplify the data

TDA October 14, 2024 3 / 23



Shape is Data, and Data has Shape

Main goal of TDA: Provide summaries of the shape of data that are

quantifiable
Rigorously describe qualitative properties

comparable
Establish a distance metric to compare any two summaries

robust
A small change in the data set should result in a small change in the summary

concise
Summaries should simplify the data

TDA October 14, 2024 3 / 23



What is Topological Data Analysis?

Topological data analysis (TDA) uses techniques from topology to analyze the underlying
structure of data.
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Persistent Homology
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Simplicial Complex
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Čech Complex
We need a way to construct a simplicial complex from point cloud data.

Draw a small ball around each point.
Expand the balls according to time r .
When n balls intersect, draw an n − 1-simplex between their vertices.
As r increases, the simplicial complex changes.
The resulting complexes are called Čech complexes. At time r , the given Čech complex is
denoted C(r).
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Vietoris-Rips Complex

There are many ways to create a simplicial complex from point cloud data
Draw a small ball around each point.
Expand the balls according to time r .
When n balls pairwise intersect, draw an n − 1-simplex between their vertices.
As r increases, the simplicial complex changes.
The resulting complexes are called Vietoris-Rips complexes.
Vietoris-Rips complexes can be computed more efficiently than Čech complexes
At time r , the given Vietoris-Rips complex is denoted VR(r).
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The Nerve Theorem

How do we know that the union of balls and the corresponding simplicial complex have the
same topological structure?

The Čech complex captures the hole but the Vietoris-Rips complex does not!
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The Nerve Theorem

The Nerve Theorem
Let X be a set of point cloud data. Let X (r) be the union of balls with radius r around the
points of X , and let C(r) be the corresponding Cech complex. Then X (r) and C(r) are
homotopy equivalent.

As we saw on the previous slide, the Nerve Theorem is not true for the Vietoris-Rips complex.
However, we have the nice inclusion

C(r) ⊂ VR(r) ⊂ C(2r)

So if C(r) and C(2r) are good approximations of the structure of the point cloud data, then
VR(r) is as well.
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Persistent Homology
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Persistence Diagram

Persistent homology groups
Start with a filtration of simplicial complexes ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K . Let
fi : Ki → Ki+1 be the inclusion map. From this filtration, we obtain a sequence of
homomorphisms f i ,j

p : Hp(Ki) → Hp(Kj).

Definition
The p-th persistent homology groups are the images of the homomorphisms induced by the
inclusion H i ,j

p = im f i ,j
p for 0 ≤ i ≤ j ≤ n. The corresponding p-th persistent Betti numbers are

βi ,j
p = rank H i ,j

p .

TDA October 14, 2024 12 / 23



Persistence Diagram

Persistent homology groups
Start with a filtration of simplicial complexes ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K . Let
fi : Ki → Ki+1 be the inclusion map. From this filtration, we obtain a sequence of
homomorphisms f i ,j

p : Hp(Ki) → Hp(Kj).

Definition
The p-th persistent homology groups are the images of the homomorphisms induced by the
inclusion H i ,j

p = im f i ,j
p for 0 ≤ i ≤ j ≤ n. The corresponding p-th persistent Betti numbers are

βi ,j
p = rank H i ,j

p .

TDA October 14, 2024 12 / 23



Birth and Death

Birth and Death
We say that a homology class γ ∈ Hp(Ki) is born at Ki if

γ /∈ H i−1,i
p = im f i−1,i

p

If γ is born at Ki , then it dies entering Kj if it merges with an older class as we go from Kj−1
to Kj .

The Elder Rule
If γ is born at Ki and dies entering Kj , then the index persistence of γ is j − i . If γ is born at
Ki and never dies, then the persistence index is infinity.
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Application: Cancer

Tumor (left) and non-tumor (right) patches of colorectal tissue.
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Application: Cancer

Take images of tissue and divide them into patches.
These images are processed into a greyscale image.
Each pixel has a intensity value between 0 and 255. Let B(n) be the union of all pixels
with intensity ≤ n. To form a filtration, let Ki = B(i) for 0 ≤ i ≤ 255.
Nuclei in tumor regions lie much closer to each other than in non-tumor regions, so the
homology of tumor regions does not change much compared to the homology of
non-tumor regions.

This method was able to identify tumor tissue that expert analysis missed!
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Reeb spaces
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The Reeb Graph

Let S be a topological space, and let f : S → R be a continuous function. The Reeb graph of
f , denoted Reeb(f ), is the space S/ ∼, where s1 ∼ s2 if and only if f (s1) = f (s2) and s1 and
s2 are in the same connected component of f −1(f (s1)) = f −1(f (s2)).

The Reeb graph depends both on the space X and the function f .
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The Reeb space of a function

Let S and X be semi-algebraic sets, and let f : S → X be a semi-algebraic map continuous.
The Reeb space of f , denoted Reeb(f ), is the space S/ ∼, where s1 ∼ s2 if f (s1) = f (s2) and
s1 and s2 are in the same connected component of f −1(f (s1)) = f −1(f (s2)).

Letting f : D2 → S2 be the map shown above, the resulting Reeb space is S2.
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Topological complexity

Dey et al. (2017)
If f : X → Y is a proper map and X is connected, then β1(Reeb(f ))) ≤ β1(X ).

The previous example shows that this theorem does not generalize to β(Reeb(f )). However,
β(Reeb(f )) can be bounded in terms of the complexity of the map f .

Theorem (Basu et al. (2018))
Let S ⊂ Rn be a bounded P-closed semi-algebraic set, and f = (f1, . . . , fm) : S → Rm be a
polynomial map. Suppose that s = card(P) and the maximum of the degrees of the
polynomials in P and f1, . . . , fm is bounded by d . Then,

β(Reeb(f )) ≤ (sd)(n+m)O(1)
.
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Applications of Reeb Graphs

Ge et al. (2012) use the Reeb graph to obtain a
skeleton graph of a metric graph.

Nicolau et al. (2011) used Mapper, a discrete
approximation of the Reeb graph, to analyze breast
cancer tumor expression.
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Mapper
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The Mapper Algorithm Captures the Shape of Data
The Mapper algorithm produces a one-dimensional abstract graph that reflects the underlying
structure of the input data.

Singh et al. (2007). Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object
Recognition. PBG@Eurographics.
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