2 For $v \in R$ there is a short exact sequence

$$0 \to R \xrightarrow{\alpha} R \to R/vR \to 0$$

where $\alpha(v') = vv'$ for $v' \in R$, which is a free presentation of R/vR. For any R module B, Hom $(R,B) \approx B$ and the homomorphism Hom $(\alpha,1)$: Hom $(R,B) \rightarrow$ Hom (R,B) corresponds to $\alpha^* : B \rightarrow B$, where $\alpha^*(b) = vb$. Hence there is an isomorphism coker Hom $(\alpha,1) \approx B/vB$, and we have proved

Ext
$$(R/vR,B) \approx B/vB \approx (R/vR) \otimes B$$

Since Hom commutes with finite direct sums, it follows that for any finitely generated torsion module A there is an isomorphism (nonfunctorial)

Ext
$$(A,B) \approx A \otimes B$$

because such a module A is a finite direct sum of cyclic modules (by theorem 4.14 in the Introduction).

An extension of B by A is a short exact sequence

$$0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$$

With a suitable definition of equivalence of extensions (by a commutative diagram), of the sum of two extensions, and of the product of an extension by an element of R, there is obtained a module whose elements are equivalence classes of extensions of B by A. This module is isomorphic to Ext (A,B). In fact, given an extension $0 \to B \to E \to A \to 0$ and a free presentation of A, $0 \to C_1 \to C_0 \to A \to 0$, there is, by theorem 5.2.1, a commutative diagram

$$0 \to C_1 \to C_0$$

$$\downarrow^{\varphi_1} \downarrow \qquad \downarrow^{\varphi_0} \downarrow \qquad A \to 0$$

$$0 \to B \to E$$

uniquely determined up to chain homotopy. Then $\varphi_1 \in \text{Hom } (C_1,B)$ is unique up to im $[\text{Hom } (C_0,B) \to \text{Hom } (C_1,B)]$, and so determines an element of Ext (A,B). This function from extensions of B by A to Ext (A,B) induces an isomorphism of the module of equivalence classes of extensions with Ext (A,B).

Given a graded module $C = \{C_q\}$, there is a graded module $\operatorname{Ext}(C,B) = \{[\operatorname{Ext}(C,B)]^q = \operatorname{Ext}(C_q,B)\}$. If C is a chain complex, $\operatorname{Ext}(C,B)$ is a cochain complex with

$$\delta^q = \operatorname{Ext} (\partial_{q+1}, 1) : \operatorname{Ext} (C_q, B) \to \operatorname{Ext} (C_{q+1}, B)$$

A homomorphism

$$h: H^q(C;G) \to \text{Hom } (H_q(C;G'), G \otimes G')$$

natural in C and G is defined by

$$(h\{f\})\{\sum c_i \otimes g_i'\} = \sum f(c_i) \otimes g_i'$$

for $\{f\} \in H^q(C;G)$ and $\{\sum c_i \otimes g_i'\} \in H_q(C;G')$ [after verification that

 $\sum f(c_i) \otimes g_i'$ is independent of the choice of f in its cohomology class and $\sum c_i \otimes g_i'$ in its homology class]. For $u \in H^p(C;G)$ and $z \in H_q(C;G')$ we define $\langle u,z \rangle \in G \otimes G'$ to be 0 if $p \neq q$ and to be h(u)(z) if p = q. In this notation

$$\langle \{f\}, \{\Sigma c_i \otimes g_i'\} \rangle = \Sigma \langle f, c_i \rangle \otimes g_i'$$

The homomorphism h enters in the following universal-coefficient theorem for cohomology.

3 THEOREM Given a chain complex C and module G such that Ext(C,G) is an acyclic cochain complex, there is a functorial short exact sequence

$$0 \to \operatorname{Ext} (H_{q-1}(C), G) \to H^q(C, G) \xrightarrow{h} \operatorname{Hom} (H_q(C), G) \to 0$$

and this sequence is split.

PROOF We first consider the case in which C is a free chain complex. There is then a short exact sequence of chain complexes

$$0 \to Z \to C \to B \to 0$$

where $Z_q = Z_q(C)$ and $B_q = B_{q-1}(C)$. This sequence is split because B is free, and by theorem 5.4.8, there is an exact cohomology sequence

$$\cdots \to H^{q-1}(Z;G) \xrightarrow{\delta^*} H^q(B;G) \to H^q(C;G) \to H^q(Z;G) \xrightarrow{\delta^*} H^{q+1}(B;G) \to \cdots$$

Since Z and B have trivial boundary operators, $H^q(Z;G) = \text{Hom } (Z_q(C),G)$ and $H^q(B;G) = \text{Hom } (B_{q-1}(C),G)$. Furthermore, the homomorphism

$$\delta^*: H^q(Z;G) \to H^{q+1}(B;G)$$

equals Hom $(\gamma_q, 1)$: Hom $(Z_q(C), G) \to \text{Hom } (B_q(C), G)$, where $\gamma_q: B_q(C) \subset Z_q(C)$. Hence there is a functorial short exact sequence

$$0 \to \operatorname{coker} [\operatorname{Hom} (\gamma_{q-1}, 1)] \to H^q(C; G) \to \ker [\operatorname{Hom} (\gamma_q, 1)] \to 0$$

To interpret the modules in the above sequence we have the short exact sequence

$$0 \to B_q(C) \xrightarrow{\gamma_q} Z_q(C) \to H_q(C) \to 0$$

which is a free presentation of $H_q(C)$. By the characteristic property of Ext, there is an exact sequence

$$0 \to \operatorname{Hom} (H_q(C), G) \to \operatorname{Hom} (Z_q(C), G) \xrightarrow{\operatorname{Hom} (\gamma_q, 1)}$$

Hom
$$(B_q(C),G) \to \operatorname{Ext} (H_q(C),G) \to 0$$

Therefore, ker [Hom $(\gamma_q, 1)$] \approx Hom $(H_q(C), G)$ and coker [Hom $(\gamma_q, 1)$] \approx Ext $(H_q(C), G)$. Substituting these into the short exact sequence containing $H^q(C; G)$ yields the desired short exact sequence

$$0 \to \operatorname{Ext} (H_{q-1}(C), G) \to H^q(C; G) \to \operatorname{Hom} (H_q(C), G) \to 0$$

with the homomorphism $H^q(C;G) \to \text{Hom } (H_q(C),G)$ easily verified to equal h.

This sequence is functorial and is split (because the sequence of chain complexes

$$0 \to Z \to C \to B \to 0$$

is split).

For arbitrary C such that Ext (C,G) is acyclic, the result follows by using a free approximation to C (as in the proof of theorem 5.2.14) to reduce it to the case of a free complex.

It follows from theorem 3 that if X is a path-connected topological space, then $H^0(X;R)$ is a cyclic R module generated by 1 [or, in other words, the augmentation map is an isomorphism $\eta\colon R \approx H^0(X;R)$]. From theorems 3 and 5.4.10, it follows that for any X, $H^0(X;G)$ is isomorphic to the direct product of as many copies of G as path components of X.

4 COROLLARY If (X,A) is a topological pair such that $H_q(X,A;R)$ is finitely generated for all q, then the free submodules of $H^q(X,A;R)$ and $H_q(X,A;R)$ are isomorphic and the torsion submodules of $H^q(X,A;R)$ and $H_{q-1}(X,A;R)$ are isomorphic.

PROOF Let $H_q(X,A;R) = F_q \oplus T_q$, where F_q is free and T_q is the torsion module of H_q . Then

$$\operatorname{Hom}(H_q(X,A;R),R) \approx \operatorname{Hom}(F_q,R) \oplus \operatorname{Hom}(T_q,R) \approx F_q$$

and by example 2,

Ext
$$(H_q(X,A;R),R) \approx \text{Ext } (F_q,R) \oplus \text{Ext } (T_q,R) \approx T_q$$

The result follows from theorem 3.

For many purposes it would be more useful to have a formula expressing $H^*(C;G)$ in terms of $H^*(C;R)$. Such a formula can be proved in the case of C or G finitely generated. We begin by establishing some properties of finitely generated modules.

Let μ : Hom $(A,G)\otimes G'\to \operatorname{Hom}(A,G\otimes G')$ be the functorial homomorphism defined by $\mu(f\otimes g')(a)=f(a)\otimes g'$ for $f\in \operatorname{Hom}(A,G), g'\in G',$ and $a\in A$.

5 LEMMA If A is a free module and G' is finitely generated, then for any module G, μ is an isomorphism.

PROOF The result is trivially true if G' = R. Because the tensor product and Hom functors both commute with finite direct sums, it is also true if G' is a finitely generated free module. G' is assumed to be finitely generated, so there is a short exact sequence

$$0 \to \bar{\bar{G}} \to \bar{G} \to G' \to 0$$

where \bar{G} (hence also $\bar{\bar{G}})$ is a finitely generated free module. There is a commutative diagram

$$\text{Hom } (A,\,G\otimes\bar{\bar{G}})\rightarrow \text{ Hom } (A,\,G\otimes\bar{G})\rightarrow \text{ Hom } (A,\,G\otimes G')\rightarrow 0$$

with exact rows (exactness follows from corollary 5.1.6 and, for the bottom row, from the fact that A is free). Because $\bar{\mu}$ and $\bar{\mu}$ are isomorphisms, it follows from the five lemma that μ is also an isomorphism.

There is also a functorial homomorphism

SEC. 5 THE UNIVERSAL-COEFFICIENT THEOREM FOR COHOMOLOGY

$$\mu$$
: Hom $(A,G) \otimes$ Hom $(B,G') \rightarrow$ Hom $(A \otimes B, G \otimes G')$

defined by $\mu(f\otimes f')(a\otimes b)=f(a)\otimes f'(b)$ for $f\in \operatorname{Hom}(A,G), f'\in \operatorname{Hom}(B,G'), a\in A,$ and $b\in B.$ In case B=R, Hom $(B,G')\approx G',$ and μ corresponds to the homomorphism in lemma 5.

6 Lemma If B is a finitely generated free module, for arbitrary modules A and G, μ is an isomorphism

$$\mu$$
: Hom $(A,G) \otimes$ Hom $(B,R) \approx$ Hom $(A \otimes B, G)$

PROOF The result is trivially true for B = R and follows for a finite sum of copies of R because both sides commute with finite direct sums.

7 COROLLARY If A and B are free modules and either A and B or B and G' are finitely generated, μ is an isomorphism

$$\mu$$
: Hom $(A,G) \otimes$ Hom $(B,G') \approx$ Hom $(A \otimes B, G \otimes G')$

PROOF Since A and B are free, so is $A \otimes B$. If A and B are finitely generated, so is $A \otimes B$, and there is a commutative diagram

in which $\bar{\mu}((f_1\otimes f_2)\otimes (f_3\otimes f_4))=\mu(f_1\otimes f_3)\otimes \mu(f_2\otimes f_4)$. By lemma 6, $\bar{\mu}$ is an isomorphism and so are both vertical maps. Therefore the bottom map is also an isomorphism.

If B and G' are finitely generated, there is a commutative diagram

$$\operatorname{Hom} (A,G) \otimes \operatorname{Hom} (B,R) \otimes G' \xrightarrow{1 \otimes \mu} \operatorname{Hom} (A,G) \otimes \operatorname{Hom} (B,G')$$

$$\downarrow^{\mu}$$

$$\downarrow^{\mu}$$

$$\operatorname{Hom} (A \otimes B, G) \otimes G' \stackrel{\mu}{\longrightarrow} \operatorname{Hom} (A \otimes B, G \otimes G')$$

By lemma 5, both horizontal maps are isomorphisms, and by lemma 6, the left-hand vertical map is an isomorphism. Therefore the right-hand map is also an isomorphism.