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2 For v € R there is a short exact sequence
0>R%5R—>R/vR—>0

where a(v') = vv’ for v’ € R, which is a free presentation of R/vR. For any
R module B, Hom (R,B) = B and the homomorphism Hom (a,1): Hom (R,B)—
Hom (R,B) corresponds to a*: B — B, where a* (b) = vb. Hence there is an
isomorphism coker Hom (a,1) = B/vB, and we have proved

Ext (R/vR,B) =~ B/vB = (R/vR) ® B
Since Hom commutes with finite direct sums, it follows that for any finitely
generated torsion module A there is an isomorphism (nonfunctorial)
Ext (A B)=<A®B
because such a module A is a finite direct sum of cyclic modules (by theorem
4.14 in the Introduction).
An extension of B by A is a short exact sequence

0>B—>E—>A->0

With a suitable definition of equivalence of extensions (by a commutative
diagram), of the sum of two extensions, and of the product of an extension
by an element of R, there is obtained a module whose elements are equiva-
lence classes of extensions of B by A. This module is isomorphic to Ext (A,B). In
fact, given an extension 0 > B — E — A — 0 and a free presentation of A,
0 — C; > Cy —> A — 0, there is, by theorem 5.2.1, a commutative diagram

0—)C1—)Co
~N
nl el A->0
A
0—-> B - E

uniquely determined up to chain homotopy. Then ¢; € Hom (C1,B) is unique
up to im [Hom (Co,B) — Hom (Cy,B)], and so determines an element of
Ext (A,B). This function from extensions of B by A to Ext (A,B) induces an
isomorphism of the module of equivalence classes of extensions with Ext (A,B).

Given a graded module C = {C,}, there is a graded module Ext (C,B) =
{[Ext (C,B)]? = Ext (Cg,B)}. If C is a chain complex, Ext (C,B) is a cochain
complex with

87 = Ext (3441,1): Ext (Cq,B}— Ext (Cg41,B)
A homomorphism ‘
h: Hy(C;G) — Hom (Hy(G;G), G ® @)
natural in C and G is defined by
AFNE o ® g} = = fle) © g
for {f} € HY(C;G) and {Z¢; ® g} € Hy(C;G') [after verification that
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2 f(ci) ® gi is independent -of the choice of f in its cohomology class
and 2 ¢; ® g in its homology class]. For u € H?(C;G) and z € H,(C;G’) we
define (u,z) € G ® G’ to be 0 if p # g and to be h(u)(z) if p = q. In this

notation

Ufh {(2a®g)y =Z(fey O g

The homomorphism h enters in the following universal-coefficient
theorem for cohomology.

3 THEOREM Given a chain complex C and module G such that Ext (C,G)
is an acyclic cochain complex, there is a functorial short exact sequence

0 — Ext (H,_1(C),G) — H4(C,G) 2> Hom (H,(C),G) — 0
and this sequence is split.

PROOF  We first consider the case in which C is a free chain complex. There
is then a short exact sequence of chain complexes

0-Z—->C—->B—>0

where Z, = Z4(C) and By = B,_1(C). This seduence is split because B is free,
and by theorem 5.4.8, there is an exact cohomology sequence

.- = H(Z;G) 55 HyB;G) — HY(C;G) — HY(Z;G) &5 Hi+1(B;G) — - - -

Since Z and B have trivial boundary operators, H4(Z;G) = Hom (Z,(C),G)
and H4(B;G) = Hom (B,_1(C),G). Furthermore, the homomorphism

8%: HY(Z;G) — He*1(B;G)

equals Hom (y,,1): Hom (Z4(C),G) — Hom (By(C),G), where y4: B,(C) C Z,(C).
Hence there is a functorial short exact sequence

0 — coker [Hom (y4-1,1)] — H%(C;G) — ker [Hom (y4,1)] — 0

To interpret the modules in the above sequence we have the short exact
sequence

0 — B,(C) I Z4(C) — Hy(C) — 0

which is a free presentation of H,(C). By the characteristic property of Ext,
there is an exact sequence

0 — Hom (H,(C),G) — Hom (Z,(C),G) Hom (v,,1)
Hom (B,(C),G) — Ext (Hy(C),G) — 0

Therefore, ker [Hom (v4,1)] = Hom (Hy(C),G) and coker [Hom (y4,1)] =
Ext (Hy(C),G). Substituting these into the short exact sequence containing
H9(C;G) yields the desired short exact sequence

0 — Ext (H;_1(C),G) — HYC;G) — Hom (H,C),G) —» 0
with the homomorphism H%(C;G) — Hom (H,(C),G) easily verified to equal h.
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This sequence is functorial and is split (because the sequence of chain
complexes

0>Z—-C—>B—>0

is split).
For arbitrary C such that Ext (C,G) is acyclic, the result follows by using
a free approximation to C (as in the proof of theorem 5.2.14) to reduce it to

the case of a free complex. =

It follows from theorem 3 that if X is a path-connected topological
space, then HO(X;R) is a cyclic R module generated by 1 [or, in other words,
the augmentation map is an isomorphism 7: R =~ H°(X;R)]. From theorems 3
and 5.4.10, it follows that for any X, H(X;G) is isomorphic to the direct product
of as many copies of G as path components of X.

4  cororLARY If (X,A) is a topological pair such that Hy(X,A;R) is finitely
generated for all q, then the free submodules of HY(X,A; R) and Hq(X,A;R)
are isomorphic and the torsion submodules of Hi(X,A; R) and H,_1(X,A; R)
are isomorphic.

PROOF Let Hy(X,A; R) = F, ® T,, where F, is free and T, is the torsion
module of H,. Then

Hom (H,(X,A; R), R) =~ Hom (F,,R) ® Hom (T,,R) = F,
and by example 2,
Ext (Hy(X,A; R), R) = Ext (F,,R) ® Ext (T,,R) = T,
The result follows from theorem 3. =

For many purposes it would be more useful to have a formula expressing
H*(C;G) in terms of H*(C;R). Such a formula can be proved in the case of
C or G finitely generated. We begin by establishing some properties of

finitely generated modules.
Let p: Hom (A,G) ® G’ — Hom (A, G ® G') be the functorial homo-

morphism defined by u(f ® g')(a) = fla) ® ¢ for f € Hom (A,G), g € &,
and a € A.

5 v1EmMa If Ais a free module and G’ if finitely generated, then for any
module G, p is an isomorphism.

prROOF The result is trivially true if G’ = R. Because the tensor product and
Hom functors both commute with finite direct sums, it is also true if G’ is a
finitely generated free module. G’ is assumed to be finitely generated, so there
is a short exact sequence

05>G>G>G -0
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where G (hence also G) is a finitely generated free module. There is a com-
mutative diagram

Hom (A,G) ® G — Hom (A,G) ® G — Hom (A,G) ® G’ — 0
i il n)
Hom (A, G ® G) — Hom (A, G® G) — Hom (A, G ® &) — 0
with exact rows (exactness follows from corollary 5.1.6 and, for the bottom

row, from the fact that A is free). Because i and i are isomorphisms, it
follows from the five lemma that p is also an isomorphism. =

There is also a functorial homomorphism
1: Hom (A,G) ® Hom (B,G’) — Hom (A ® B, G ® Q)

defined by u(f ® f')(a ® b) = fla) ® f'(b) for f € Hom (A,G),f’ € Hom (B,G'),
a € A,and b € B. In case B = R, Hom (B,G') = G', and corresponds to
the homomorphism in lemma 5.

6 vremma If Bis a finitely generated free module, for arbitrary modules
A and G, p is an isomorphism

p: Hom (A,G) ® Hom (B,R) =~ Hom (A ® B, G)
PROOF  The result is trivially true for B = R and follows for a finite sum of

copies of R because both sides commute with finite direct sums. =

7 COROLLARY If A and B are free modules and either A and B or B and G’
are finitely generated, p. is an isomorphism

p: Hom (A,G) ® Hom (B,G’) ~ Hom (A ® B, G ® G)
PROOF Since A and B are free, sois A ® B. If A and B are finitely ge
' , . ner-
ated, so is A ® B, and there is a commutative diagram Y gener
[Hom (R,G) ® Hom (A,R)] ® [Hom (R,G’) ® Hom (B,R)] & Hom (R,G® G') ® Hom (A ® B, R)
B®p |
Le

Hom (A,G) ® Hom (B,G) £ Hom (A® B,G® @)

in which i((f1 ® fo) ® (fs ® fu)) = p(f1 ® f3) ® w(fo ® f). By lemma 6, i

%'s an isomorphism and so are both vertical maps. Therefore the bottom map
is also an isomorphism.

If B and G’ are finitely generated, there is a commutative diagram
Hom (A,G) ® Hom (B,R) ® G’ L2 Hom (A,G) ® Hom (B,G)
p®L| e
Hom (A®B,G)® G' % Hom (A®B,G® @)

By lemma 5, both horizontal maps are isomorphisms, and by lemma 6, the
left-hand vertical map is an isomorphism. Therefore the right-hand map
is also an isomorphism. =



