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1. Entrywise positive maps

Fix a domain I ⊂ C and integers m, n ≥ 1. Let Pn(I) denote the set of n× n Hermitian positive
semidefinite matrices with all entries in I.

A function f : I → C acts entrywise on a matrix

A = (ajk)1≤j≤m, 1≤k≤n ∈ Im×n

by setting

f [A] := (f(ajk))1≤j≤m, 1≤k≤n ∈ Cm×n.

Below, we allow the dimensions m and n to vary, while keeping the uniform notation f [−].

We also let 1m×n denote the m× n matrix with each entry equal to one. Note that 1n×n ∈ Pn(R).

The main goal of the mini-course is to provide answers to the following question in various settings:

Which functions preserve positive semidefiniteness when applied entrywise to a class
of positive matrices?

In other words, when is it true that f [A] ∈ Pn for all matrices A ∈ S for a given set S ⊆ Pn?

Remark 1.1. More generally, if φ : A → B is a map between two C∗-algebras, then φ induces
amplified maps φ(k) :Mk(A)→Mk(B), where

φ(k)((aij)
n
i,j=1) = (φ(aij))

n
i,j=1.

We say that φ is k-positive if the map φ(k) is positive, and that φ is completely positive if φ is
k-positive for all k. In this mini-course, we focus on the case where φ : R → R, but where φ is an
arbitrary function (not necessarily linear).

1.1. The 2× 2 case

Obtaining a useful description of the entrywise positive maps on Pn for a fixed value of n is a
difficult problem that remains open. The 2× 2 case is easy to settle though.

Theorem 1.2 (Vasudeva [12]). Given a function f : (0,∞)→ R, the entrywise map f [−] preserves
positivity on P2

(
(0,∞)

)
if and only f is non-negative, non-decreasing, and multiplicatively mid-

convex:

f
(√
xy
)2 ≤ f(x)f(y) for all x, y > 0. (1.1)

In particular, f is either identically zero or never zero on (0,∞), and f is also continuous.
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Proof. Suppose f preserves positivity on K2. Then clearly f is non-negative and for 0 < x < y <∞,
the matrix

A =

(
y x
x y

)
is positive semidefinite. It follows immediately that 0 ≤ det f [A] = f(y)2 − f(x)2 and so f is
non-decreasing. Similarly, the matrix

B =

(
x

√
xy√

xy y

)
is positive semidefinite, and so 0 ≤ det f [B] = f(x)f(y) − f(

√
xy)2 from which Equation (3.2)

follows.

Conversely, suppose f is non-negative, non-decreasing, and multiplicatively mid-convex. Let a, b, c ∈
(0,∞) and assume

M =

(
a b
b c

)
∈ P2.

Then b2 ≤ ac and so b ≤
√
ac. Since f is non-decreasing and multiplicatively mid-convex, we

conclude that
f(b)2 ≤ f(

√
ac)2 ≤ f(a)f(c).

We conclude that f [M ] ∈ P2.

Next, suppose f(x) = 0 for some x > 0. We claim that f ≡ 0 on I(0,∞). To see the claim, first
define x0 := sup{x > 0 : f(x) = 0}. For any x ∈ (0, x0), there exists x1 ∈ (x, x0) such that
f(x1) = 0 by definition of x0. But then f(x) = 0 since f is non-decreasing. Thus, f vanishes on
(0, x0) ∩ I. We now produce a contradiction if x0 < ∞. Indeed if x0 < y < ∞, then choose any
x1 ∈ (x2

0/y, x0). Thus,
√
x1y ∈ (x0, y) ⊂ I, so by (3.2),

f(
√
x1y)2 ≤ f(x1)f(y) = 0.

This contradicts the definition of x0, and proves the claim.

Finally, define g(x) := ln f(ex). It is clear that g is nondecreasing and mid(point)-convex on R,
whenever f satisfies (3.2). Hence by [10, Theorem VII.C], g is necessarily continuous (and hence
convex) on R. We conclude that f is continuous on (0,∞).

Having characterized the functions f that preserve positivity on P2, can we find some examples of
functions that do so on Pn? The Schur product provide many more examples.

Definition 1.3. Let A = (aij), B = (bij) be two n × m matrices. The Hadamard product (or
Schur product, or entrywise product) of A and B, denoted A ◦B is the n×m matrix obtained by
multiplying the matrices entry-by-entry, i.e.,

A ◦B = (aijbij).

An important property of the Hadamard product is that it preserves positive semidefiniteness.

Theorem 1.4 (Schur product theorem [11]). Let A,B ∈ Pn. Then A ◦B ∈ Pn.

Proof. Let A =
∑n

i=1 λiuiu
T
i and B =

∑n
j=1 µjvjv

T
j be eigen-decompositions of A and B respec-

tively. Then

A ◦B =
n∑

i,j=1

λiµj(uiu
T
i ) ◦ (vjv

T
j ) =

n∑
i,j=1

λiµj(ui ◦ vj)(ui ◦ vj)T ∈ Pn,
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where we used the fact that for any x, y ∈ Rn,

(xxT ) ◦ (yyT ) = (xixjyiyj)
n
i,j=1 = (x ◦ y)(x ◦ y)T .

As a consequence of the Schur product theorem, for any A ∈ Pn, we have A ◦ A =: A◦2 ∈ Pn,
A ◦ A ◦ A =: A◦3, etc.. More generally, taking positive linear combinations and limits, we obtain
the following result.

Corollary 1.5. Let f(z) =
∑∞

i=0 ciz
i with ci ≥ 0. Assume the series is convergent on the entries

of A ∈ Pn. Then f [A] ∈ Pn.

1.2. Necessary conditions: the Horn–Loewner theorem

Obviously, if f : R → R preserves positivity on Pn(R), then f(x) ≥ 0 for all x ≥ 0 (since psd
matrices have non-negative diagonal entries). A much stronger necessary condition from R. Horn
(and attributed to C. Loewner).

Theorem 1.6 (Horn [6]). Let f : (0,∞)→ R be continuous. Fix a positive integer n and suppose
f [−] preserves positivity on Pn

(
(0,∞)

)
. Then f ∈ Cn−3((0,∞)),

f (k)(x) ≥ 0 whenever x ∈ (0,∞) and 0 ≤ k ≤ n− 3,

and f (n−3) is a convex non-decreasing function on (0,∞). Furthermore, if f ∈ Cn−1
(
(0,∞)

)
, then

f (k)(x) ≥ 0 whenever x ∈ (0,∞) and 0 ≤ k ≤ n− 1.

The proof of Theorem 1.6 is based on a clever determinant calculation. The key expression involves
Vandermonde determinants. Recall that the Vandermonde determinant V (u) associated to a vector
u = (u1, . . . , un)T is given by

V (u) :=
∏

1≤j<k≤n
(uk − uj) = det


1 u1 · · · un−1

1

1 u2 · · · un−1
2

...
...

. . .
...

1 un · · · un−1
n

 , if n > 1. (1.2)

and V (u) = 1 if n = 1.

Proposition 1.7. Fix an integer n > 0 and define N :=
(
n
2

)
. Suppose a ∈ R and let a function

f : (a − ε, a + ε) → R be N -times differentiable for some fixed ε > 0. For fixed vectors u,v ∈ Rn,
define ∆ : (−ε′, ε′)→ R via:

∆(t) := det f [a1n×n + tuvT ],

for a sufficiently small ε′ ∈ (0, ε). Then ∆(0) = ∆′(0) = · · · = ∆(N−1)(0) = 0, and

∆(N)(0) =

(
N

0, 1, . . . , n− 1

)
V (u)V (v)

n−1∏
k=0

f (k)
ε (a), (1.3)

where the first factor on the right is a multinomial coefficient.

Before proving Proposition 1.7, we will show how it implies Theorem 1.6.
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Proof of Theorem 1.6. The main idea of the proof is to use Equation (1.3) with u = v, and the
fact that

lim
t→0+

∆(t)

tN
=

∆(N)(0)

N !
≥ 0

to obtain information on the derivatives of f when they exist. That at least n− 3 derivatives must
exist is non-trivial though, and requires other arguments.

Case 1. Smooth case. Let us first consider the case where f is smooth. We proceed by induction.
The result is obvious when n = 1. Let us assume it holds for matrices of dimension up to n − 1.
Hence, f, f ′, . . . , f (n−2) are non-negative. For ε > 0, define,

fε(x) := f(x) + εxn.

Observe that fε preserves positivity on Pn by the Schur product theorem. Let us fix u0 ∈ (0, 1) and
apply Proposition 1.7 to fε with the vectors u = v = (1, u0, u

2
0, . . . , u

n−1
0 ) ∈ Rn. By assumption,

the function

∆(t) = det fε[a1n×n + tuuT ]

satisfies ∆(t) ≥ 0 for all t > 0. Hence

0 ≤ lim
t→0+

∆(t)

tN
, where N =

(
n

2

)
.

On the other hand, by Proposition 1.6 and de l’Hôpital’s rule,

lim
t→0+

∆(t)

tN
=

∆(N)(0)

N !
=

1

N !

(
N

0, 1, . . . , n− 1

)
V (u)2

n−1∏
k=0

f (k)
ε (a).

Since V (u)2 > 0, we conclude that
n−1∏
k=0

f (k)
ε (a) ≥ 0.

Now, f
(k)
ε (a) = f (k)(a)+εn(n−1) . . . (n−k+1)an−k. By the induction hypothesis, these derivatives

are non-negative for k = 0, 1, . . . , n− 2. We conclude that

f (n−1)
ε (a) = f (n−1)(a) + εn! ≥ 0 ∀ε, a > 0.

Letting ε → 0+, we conclude that f (n−1) is non-negative on (0,∞), as desired. This proves the
result in the case where f admits at least N =

(
n
2

)
derivatives.

Case 2. Non-smooth case. The non-smooth case is proved via a mollifier argument.

2a. Mollifiers. Let φ ∈ C∞(R) be a probability distribution with compact support in (−1, 0).
For δ > 0, define

fδ(x) :=
1

δ

∫
R
f(x− u)φ

(u
δ

)
du =

∫ 0

−δ
f(x− u)φ

(u
δ

) du

δ
.

One can show that the family of functions fδ satisfies:

1. For any δ > 0, the function fδ is smooth on (0,∞).

2. fδ → f uniformly on every compact subset of (0,∞).
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Observe that fδ preserves positivity on P(0,∞) since positive linear combinations and limits of

psd matrices are psd. We therefore conclude by the smooth case that fδ, f
′
δ, . . . , f

(n−1)
δ are all non-

negative on (0,∞). Now, we can’t simply let δ → 0+ since f may not admit derivatives. Instead,
we work with a discrete version of the derivative: divided differences.

2b. Divided differences.

Definition 1.8. Given h > 0 and a positive integer k, the k-th order forward differences with step
size h > 0 are defined as follows:

(∆0
hf)(x) := f(x), (∆k

hf)(x) = (∆k−1
h f)(x+ h)− (∆k−1

h f)(x) =
k∑
j=0

(
k

j

)
(−1)k−jf(x+ jh).

Similarly, the k-th order divided differences with step size h > 0 are given by

(Dk
hf)(x) =

1

hk
(∆k

hf)(x).

2c. Mean-value theorem and Boas–Wieder. To conclude the proof, we need the following
result.

Theorem 1.9. Let I ⊆ R be a bounded interval and let f : I → R. Then

1. (Mean-value theorem for divided differences) If f is k times differentiable on I and x, x+kh ∈
I for some h > 0, then there exists y ∈ (x, x+ kh) such that

(Dk
hf)(x) = f (k)(y)/k!.

2. (Boas–Widder, Duke Math. J., 1940.) Suppose k ≥ 2 is an integer, and f : I → R is
continuous and has all forward differences of order k non-negative on I:

(∆k
hf)(x) ≥ 0 whenever h > 0 and x, x+ kh ∈ I.

Then on all of I, the function f (k−2) exists, is continuous and convex, and has non-decreasing
left and right hand derivatives.

We can now conclude the proof of Theorem 1.6. Recall that fδ, f
′
δ, . . . , f

(n−1)
δ , where fδ is the

mollified version of f . By Theorem 1.9(1), the forward differences if fδ of order k = 0, 1, . . . , n− 1
are non-negative on (0,∞). The same holds for f since fδ(x)→ f(x) for all x ∈ (0,∞). By Theorem
1.9(2), it now follows that f is Cn−3 on (0,∞) and that f (n−3) is convex and non-decreasing on
(0,∞). This conclude the proof of the theorem.

We now return to Proposition 1.7. The following lemma will be useful in the proof.

Lemma 1.10. Let I ⊆ R be an interval and let A : I → Rn×n be a matrix valued function with
columns A1(t), A2(t), . . . , An(t), i.e.,

A(t) =

A1(t) A2(t) . . . An(t)

 .

and let ∆(t) := detA(t). Then

∆′(t) =

n∑
j=1

det Âj(t),
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where

Âj :=

A1(t) . . . Aj−1(t) A′j(t) Aj+1(t) . . . An(t)

 ,

and where A′j(t) denotes the entrywise derivative with respect to t of the column Aj.

Proof. By the Laplace expansion formula, for a matrix A = (aij),

detA =

n∑
i=1

aijAij ,

where Aij denotes the (i, j)-th cofactor of A. Hence,

∂A

∂aij
= Aij .

Now, in our case, each entry aij is a function of fij(t). Using the chain rule, we obtain

∆′(t) =
n∑

i,j=1

∂A(t)

∂aij
f ′ij(t) =

n∑
j=1

(
n∑
i=1

f ′ij(t)Aij(t)

)
=

n∑
j=1

Âj(t),

where the last equality follows by another application of Laplace’s expansion formula.

We now prove Proposition 1.7.

Proof of Proposition 1.7. Let wj denote the jth column of a1n×n + tuvT ; thus wj has ith entry
a+ tuivj . To differentiate ∆(t), we apply Lemma 1.10 repeatedly to

A(t) =

f [w1] f [w2] . . . f [wn]

 .

We obtain:

∆(k)(0) =
∑

m1,m2,...,mn≥0
m1+m2+···+mn=k

k!

m1!m2! . . .mn!
det Âm1,m2,...,mn(0), (1.4)

where Âm1,m2,...,mn(t) denotes the matrix whose j-th column is equal to

dmj

dtmj
f [wj ] = v

mj

j u◦mj ◦ f (mj)[wj ].

In particular, at t = 0,
dmj

dtmj
f [wj ](0) = v

mj

j u◦mj ◦ f (mj)[a1n×1].

Thus,

Âm1,m2,...,mn(0) =
(
vm1

1 f (m1)(a)u◦m1 vm2
2 f (m2)(a)u◦m2 . . . vmn

n f (mn)(a)u◦mn
)
. (1.5)

Notice that if any mj = mk for j 6= k then Âm1,m2,...,mn(0) vanishes. Thus, the lowest degree
derivative ∆(m)(0) whose expansion contains a non-vanishing determinant is when m = 0 + 1 +
· · ·+ (n− 1) = N =

(
n
2

)
. This proves the first part of the result.
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Now, consider ∆(N)(0). Using the above observation, we obtain

∆(N)(0) =

(
N

0, 1, . . . , n− 1

) ∑
σ∈Sn

det Âσ1−1,σ2−1,...,σn−1(0).

By Equation (1.5), we have

det Âσ1−1,σ2−1,...,σn−1(0) = sgn(σ) det(u◦0|u◦1| . . . |u◦(n−1))
n−1∏
j=0

f (j)(a)v
σj−1
j .

Hence,

∆(N)(0) =

(
N

0, 1, . . . , n− 1

)
V (u)

n−1∏
j=0

f (j)(a)
∑
σ∈Sn

sgn(σ)

n−1∏
j=0

v
σj−1
j

=

(
N

0, 1, . . . , n− 1

)
V (u)V (v)

n−1∏
j=0

f (j)(a).
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2. Polynomials preserving positivity

The Horn–Loewner theorem (Theorem 1.6) provides a necessary condition for preserving positivity.
Unfortunately, a useful characterization of the full class of functions that preserve positivity on PN
for a fixed value of N remains out of reach as of today. A natural subclass of functions to examine
is polynomials. In this lecture, we will provide a characterization of polynomials of degree at most
N that preserve positivity on PN .

Let p(z) = c0 + c1z + · · ·+ cNz
N and assume f [A] ∈ PN for all A ∈ P((0,∞)). Observe that:

1. By the Loewner–Horn theorem 1.6, the first N − 1 coefficients c0, c1, . . . , cN−1 of p have to
be non-negative. In particular polynomials of degree < N preserve positivity if and only if
all their coefficients are non-negative.

2. It suffices to determine how negative can cN be for given values of c0, c1, . . . , cN−1. Note that,
a priori, it is not even clear if cN can be negative. . .

The following theorem provides the sharp bound on how negative can aN be.

Theorem 2.1 (Belton-Guillot-Khare-Putinar [1]). Fix ρ > 0 and integers N ≥ 1, M ≥ 0 and let
f(z) =

∑N−1
j=0 cjz

j + c′zM be a polynomial with real coefficients. Also denote by D(0, ρ) the closed
disc in C with radius ρ > 0 and center the origin. For any vector d := (d0, . . . , dN−1) with non-zero
entries, let

C(d) = C(d; zM ;N, ρ) :=
N−1∑
j=0

(
M

j

)2(M − j − 1

N − j − 1

)2 ρM−j

dj
, (2.1)

and let c := (c0, . . . , cN−1). The following are equivalent.

1. f [−] preserves positivity on PN (D(0, ρ)).

2. The coefficients cj satisfy either c0, . . . , cN−1, c′ ≥ 0, or c0, . . . , cN−1 > 0 and c′ ≥ −C(c)−1.

3. f [−] preserves positivity on P1
N ((0, ρ)), the set of matrices in PN ((0, ρ)) having rank at most 1.

In particular, observe that there exists polynomials preserving positivity on PN and with cN < 0.
The theorem also provides examples of polynomials that preserve positivity on PN but not on
PN+1. In the special case M = N , Theorem 2.1 provides an exact description of the coefficients of
polynomials of degree N that preserve positivity on PN . Note the surprising fact that preserving
positivity on rank 1 matrices with entries in (0, ρ) immediately implies preserving positivity on all
of PN (D(0, ρ)).

2.1. Schur polynomials

The proof of Theorem 2.1 reveals new exciting connections between positivity preservers and the
theory of symmetric functions. To elaborate, we need a few notions from algebra.

Definition 2.2. A partition λ of an integer n is a sequence of positive integers λ = (λ1, λ2, . . . , λN )
such that

1. The terms are weakly decreasing, i.e., λ1 ≥ λ2 ≥ · · · ≥ λN ;

2. λ1 + λ2 + · · ·+ λN = n.
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For example, there are seven possible partitions of 5:

5, 41, 32, 311, 221, 2111, 11111.

Associated to every partition λ = (λ1, . . . λN ) is a N ×N determinant:

aλ := det(x
λj
i ).

In particular, if δ := (N − 1, N − 2, . . . , 1, 0), then aδ is the Vandermonde determinant V (x) =∏
1≤j<k≤N (xk − xj).

Definition 2.3. The Schur polynomial sλ : RN → R is defined as (the unique polynomial extension
to RN of )

sλ :=
aλ+δ

aδ
.

Schur polynomials also have a nice combinatorial definition. Partitions are represented using Young
diagrams: a finite collection of boxes, or cells, arranged in left-justified rows, with the row lengths
in non-increasing order.

Example:

corresponds to 4 + 1; corresponds to 2 + 2 + 1.

A Young tableau is obtained by filling the boxes of a Young diagram with symbols taken from some
alphabet.

Definition 2.4. A semi-standard (or column strict) Young tableau with shape λ = (λ1, . . . , λN )
and cell entries 1, 2, . . . ,m is obtained by filling the Young diagram corresponding to λ using only
integers in {1, . . . ,m} in such a way that (1) the numbers in each row are non-decreasing, and (2)
the numbers in each column are strictly increasing.

One can show that

sλ(x1, . . . , xN ) = sλ(x) :=
∑
T

xT =
∑
T

xt11 . . . xtNN , (2.2)

where the summation is over all semistandard Young tableaux T of shape λ with entries in
{1, . . . , N}. Each Schur polynomial sλ is a homogeneous symmetric polynomial with integer co-
efficients. Schur polynomials form a basis of the space of homogeneous symmetric polynomials,
and may be interpreted as characters of irreducible polynomials representations of the Lie group
GLn(C) [9]. At the heart of Theorem 2.1 is a novel identity for symmetric functions over any field
F.

Theorem 2.5 (Belton–Guillot–Khare–Putinar, Adv. Math. [1]). Fix integers k ≥ 0 and M ≥ N ≥
1. Given a variable t and scalars c0, . . . , cN−1 ∈ F×, let the polynomial

pt(x) := t(c0x
k + · · ·+ cN−1x

k+N−1)− xk+M .

Also define the hook partition µ(M,N, j) := (M −N + 1, 1, . . . , 1, 0, . . . , 0), where N − j− 1 entries
after the first are 1 and the remaining j entries are 0. Then for all u = (u1, . . . , uN )T ,v :=
(v1, . . . , vN )T ∈ FN :

det pt[uvT ] = tN−1V (u)V (v)

N∏
j=1

cj−1u
k
j v
k
j ·
(
t−

N−1∑
j=0

sµ(M,N,j)(u)sµ(M,N,j)(v)

cj

)
. (2.3)
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Let us see how the constant C(d; zM ;N, ρ) arises from Proposition 2.5.

Sketch of proof of the (3) =⇒ (2) implication in Theorem 2.1. To see how the constant C(c; zM , N, ρ)
in Theorem 2.1 arises from Theorem 2.5, we examine the case where A = uuT , i.e., the (3) =⇒ (2)
implication in Theorem 2.1. Assume cM < 0 < c0, . . . , cN−1. Define pt(z) as in Theorem 2.5, and
set t := |cM |−1. Suppose pt[A] ∈ PN for all A = uuT ∈ P1

N ((0, ρ)). By Equation (2.3),

0 ≤ det pt[uuT ] = tN−1V (u)2c0 · · · cN−1

(
t−

N−1∑
j=0

sµ(M,N,j)(u)2

cj

)
. (2.4)

Set uk :=
√
ρ(1− t′εk), with pairwise distinct εk ∈ (0, 1) , and t′ ∈ (0, 1). Thus, V (u) 6= 0. Taking

the limit as t′ → 0+, since the final term in (2.4) must be non-negative, it follows by the monomial
positivity of Schur polynomials (2.2) that

t = |cM |−1 ≥
N−1∑
j=0

sµ(M,N,j)(
√
ρ, . . . ,

√
ρ)2

cj
=

N−1∑
j=0

sµ(M,N,j)(1, . . . , 1)2
ρM−j

cj
= C(c; zM ;N, ρ). (2.5)

That the condition is also sufficient to preserve positivity on all of PN (D(0, ρ)) is highly non-trivial.
The reader is referred to [1] for the details.

2.2. Determinant identities for entrywise powers

The proof of of Proposition 2.5 depends on the following application of the Cauchy–Binet formula.

Proposition 2.6. Let A := uvT , where u = (u1, . . . , uN )T and v := (v1, . . . , vN )T ∈ FN for
N ≥ 1. Given m-tuples of non-negative integers n = (nm > nm−1 > · · · > n1) and scalars
(cn1 , . . . , cnm) ∈ Fm, the following determinantal identity holds:

det
m∑
j=1

cnjA
◦nj = V (u)V (v)

∑
n′⊂n, |n′|=N

sλ(n′)(u)sλ(n′)(v)
N∏
k=1

cn′
k
. (2.6)

Here, λ(n′) := (n′N − N + 1 ≥ n′N−1 − N + 2 ≥ · · · ≥ n′1) is obtained by subtracting the stair-
case partition (N − 1, . . . , 0) from n′ := (n′N > · · · > n′1), and the sum is over all subsets n′ of
cardinality N . In particular, if m < N then the determinant is zero.

Proof. If there are m < N summands then the matrix in question has rank at most m < N , so it
is singular; henceforth we suppose m ≥ N . Note first that if c := (cn1 , . . . , cnm) and

X(u,n, c) := (
√
cnk

unk
j )1≤j≤N,1≤k≤m

where we work over an algebraic closure of F, then

m∑
j=1

cnjA
◦nj = X(u,n, c)X(v,n, c)T . (2.7)

Next, let c|n′ := (cn′
1
, . . . , cn′

N
) and note that, by the Cauchy–Binet formula applied to (2.7),

det
m∑
j=1

cnjA
◦nj =

∑
n′⊂n, |n′|=N

det
(
X(u,n′, c|n′)X(v,n′, c|n′)T

)
=

∑
n′⊂n, |n′|=N

detX(u,n′, c|n′) detX(v,n′, c|n′)

=
∑

n′⊂n, |n′|=N

det(u
n′
k
j ) det(v

n′
k
j )

N∏
k=1

cn′
k
.
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Each of the last two determinants is precisely the product of the appropriate Vandermonde de-
terminant times the Schur polynomial corresponding to λ(n′). This observation completes the
proof.

We can now prove Proposition 2.6.

Proof of Proposition 2.6. Proof. Let A = uvT and note first that det(A◦R◦B) =
∏N
j=1 u

R
j v

R
j ·detB

for any N ×N matrix B, so it suffices to prove the result when R = 0, which we assume from now
on.

Recall the Laplace formula: if B and C are N ×N matrices, then

det(B + C) =
∑

n⊂{1,...,N}

detMn(B;C), (2.8)

where Mn(B;C) is the matrix formed by replacing the rows of B labelled by elements of n with
the corresponding rows of C. In particular, if B =

∑N−1
j=0 cjA

◦j then

det pt[A] = det(tB −A◦M ) = tN detB − tN−1
N∑
j=1

detM{j}(B;A◦M ), (2.9)

since the determinants in the remaining terms contain two rows of the rank-one matrix A◦M . By
Proposition 2.6 applied with nj = j − 1, we obtain

detB = V (u)V (v)c0 · · · cN−1.

To compute the coefficient of tN−1, note that taking t = 1 in Equation (2.9) gives that

N∑
j=1

detM{j}(B;A◦M ) = detB − det p1[A].

Moreover, det p1[A] can be computed using Proposition 2.6 with m = N + 1 and cnN+1 = −1:

det p1[A] = detB − V (u)V (v)c0 · · · cN−1

N−1∑
j=0

sµ(M,N,j)(u)sµ(M,N,j)(v)

cj
,

since µ(M,N, j) = λ
(
(M,N−1, N−2, . . . , j+1, ĵ, j−1, . . . , 0)

)
for 0 ≤ j ≤ N−1. The identity (2.3)

now follows.
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3. Sparsity constraints

The problem of characterizing positive entrywise maps can naturally be put in a much more general
context, where matrices have additional structures of zeros.

3.1. The cones PG

Given I ⊂ R and a graph G = (V,E) on the finite vertex set V = {1, . . . , N}, we define the cone
of positive-semidefinite matrices with zeros according to G:

PG(I) := {A = (ajk) ∈ PN (I) : ajk = 0 if (j, k) 6∈ E and i 6= j}. (3.1)

Note that if (j, k) ∈ E, then the entry ajk is unconstrained; in particular, it is allowed to be 0.
Consequently, the cone PG := PG(R) is a closed subset of PN . Of course, when G = KN , the
complete graph on N vertices, the cone PG reduces to PN .

Very little is known about functions preserving positivity on PG for a given graph G.

Definition 3.1. Given a function f : R → R and A ∈ S|G|(R), denote by fG[A] the matrix such
that

fG[A]jk :=

{
f(ajk) if (j, k) ∈ E or j = k,

0 otherwise.

The next proposition shows that, in fact, the notation fG is not really necessary since if fG[−]
preserves positivity on a non-complete connected graph with a least 3 vertices, then f(0) = 0.

Proposition 3.2 (see Guillot–Khare–Rajaratnam [5, Proposition 3.5]). Let 0 ∈ I ⊆ R be any
interval. Let G be any non-complete connected graph on at least 3 vertices and let f : I → R.
Suppose fG[A] ∈ P|G| for any A ∈ PG(I). Then f(0) = 0.

Proof. Without loss of generality, assume the vertices ofG = (V,E) are labeled by V = {1, 2, . . . , n},
that (1, 2), (2, 3) ∈ E, and that (1, 3) 6∈ E. Let A = 0|G|×|G| ∈ PG(I). Then fG[A] contains the
following matrix as a principal submatrix

B = f(0)

1 1 0
1 1 1
0 1 1

 .

Since B is a principal matrix of fG[A], it has to be in PA3 . A simple calculation shows that this is
the case if and only if f(0) = 0.

The first main result in [5] is an explicit characterization of the entrywise positive preservers of PG
for any collection of trees (other than copies of K2). Following Vasudeva’s classification for PK2 in
Theorem 1.2, trees are the only other graphs for which such a classification is currently known.

Theorem 3.3 (Guillot–Khare–Rajaratnam [5, Theorem A]). Suppose I = [0, R) for some 0 < R ≤
∞, and f : I → R+. Let G be a tree with at least 3 vertices, and let A3 denote the path graph on 3
vertices. The following are equivalent.

1. fG[A] ∈ PG for every A ∈ PG(I);

2. fT [A] ∈ PT for all trees T and all matrices A ∈ PT (I);

12



3. fA3 [A] ∈ PA3 for every A ∈ PA3(I);

4. The function f satisfies

f
(√
xy
)2 ≤ f(x)f(y) for all x, y ∈ I (3.2)

and is super-additive on I, that is,

f(x+ y) ≥ f(x) + f(y) whenever x, y, x+ y ∈ I. (3.3)

In order to prove Theorem 3.3, we first examine the case of star graphs. A key tool the will be
needed to analyze the positivity of matrices later is the notion of the Schur complement of a matrix.

Definition 3.4. Let M be a matrix written in block form

M =

(
A B
C D

)
, (3.4)

where A = Am×m, B = Bm×n, C = Cn×m, and D = Dn×n. Assuming D is invertible, we define
the Schur complement of D in M to be

M/D := A−BD−1C.

The Schur complement of a matrix has important properties.

Proposition 3.5. Let M be a block matrix as in Equation (3.4), with D invertible. Then

1. detM = detD · det(M/D).

2. M ∈ Pn+m if and only if D ∈ Pn and M/D ∈ Pm.

Proof. Both results follow immediately from the factorization:

M =

(
Im BD−1

0 In

)(
A−BD−1C 0

0 D

)(
Im 0

D−1C In

)
.

3.2. Preserving positivity on star graphs

Recall that a star graph has d+ 1 vertices for some d ≥ 0, d edges, and a unique vertex of degree
d. The following result characterizes positive semidefinite matrices with zeros according to a star.
Note that every nonempty graph contains a star subgraph, so the result yields useful information
about PG for all nonempty G, and will be crucial in proving Theorem 3.3.

Proposition 3.6. Suppose d ≥ 0 and

A =


p1 α2 · · · αd+1

α2 p2 0

...
. . .

αd+1 0 pd+1

 (3.5)

is a real-valued symmetric matrix with zeros according to a star graph. Then A is positive semidef-
inite if and only if the following three conditions hold:
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1. pi ≥ 0 for all 1 ≤ i ≤ d+ 1;

2. for all 2 ≤ i ≤ d+ 1, pi = 0 =⇒ αi = 0;

3. p1 ≥
∑

{i>1 : pi 6=0}

α2
i /pi.

Proof. The result follows easily by examining the Schur complement of the lower right block in A,
and applying Proposition 3.5(2).

Proof of Theorem 3.3. Clearly (2)⇒ (1)⇒ (3). We now prove that (3)⇒ (4) and (4)⇒ (2).

(3)⇒ (4). If f ≡ 0 on I then the result is obvious. Now assume fA3 [A] ∈ PA3 for every A ∈ PA3(I).
In particular, f [A] ∈ PK2 for every A ∈ PK2(I). Therefore, by Theorem 1.2, f satisfies (3.2) on I.
Now consider the matrix A in Equation (3.5) for d = 2. By Proposition 3.6, for 0 < pi, αi ∈ I, we
have A ∈ PA3(I) if and only if p1 ≥ α2

2/p2 + α2
3/p3. Now suppose 0 < α2, α3, α2 + α3 ∈ I; then

f(α2), f(α3) > 0 by Theorem 1.2. Now, by Proposition 3.6, we have

B =

α2 + α3 α2 α3

α2 α2 0
α3 0 α3

 ∈ PA3 .

Hence, fA3 [B] ∈ PA3 and it follows by Proposition 3.6 that

f(p1) = f(α2 + α3) ≥ f(α2)2

f(p2)
+
f(α3)2

f(p3)
= f(α2) + f(α3).

This proves f is superadditive on (0, R). The case when α2 or α3 is zero follows from Proposition
3.2.

(4) ⇒ (2).

Once again, if f ≡ 0 on I then the result is immediate. Now suppose f is superadditive, not
identically zero on I, and satisfies (3.2) on I. Let 0 ≤ y < x ∈ I. Then x − y ∈ (0, x] ⊂ I, so by
the superadditivity of f ,

f(x) = f(y + x− y) ≥ f(y) + f(x− y) ≥ f(y).

Moreover, if 0 ∈ I, then 0 ≤ f(0) ≥ f(0) + f(0) by super-additivity, so f(0) = 0. This shows
that f is nonnegative and nondecreasing on I. Hence by Theorem 1.2, f [A] ∈ PK2 for every
A ∈ PK2((0,∞)).

Now since f 6≡ 0 on I, hence f(p) > 0 for all 0 < p ∈ I by Theorem 1.2. Moreover, Equation (3.2)
trivially holds if x or y is zero (and 0 ∈ I). Now assume that x, y > 0; then (3.2) can be restated
as:

p,
α2

p
∈ I, p > 0 =⇒ f

(
α2

p

)
≥ f(α)2

f(p)
. (3.6)

We now prove that (2) holds for any tree T by induction on |T | ≥ 3. Suppose first that T is a tree
with 3 vertices, i.e., T = A3. Then, by Proposition 3.6, fA3 [A] ∈ PA3 for every A ∈ PA3 if and only
if

f

(
α2

2

p2
+
α2

3

p3

)
≥ f(α2)2

f(p2)
+
f(α3)2

f(p3)
, (3.7)
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(or if one of p2, p3 is zero, in which case the assertion is easy to verify). Now suppose 0 < p2, p3 ∈ I.

If A ∈ PA3(I), then p1 ∈ I, so
α2
2
p2

+
α2
3
p3
∈ [0, p1] is also in I. Hence (3.7) follows immediately by the

superadditivity of f and by (3.6).

Therefore (4) ⇒ (2) holds for a tree with n = 3 vertices. Now assume that A ∈ PT ′(I) implies
fT ′ [A] ∈ PT ′ for any tree T ′ with n vertices, and consider a tree T with n + 1 vertices. Let T̃
be a sub-tree obtained by removing a vertex connected to only one other node. Without loss of
generality, assume the vertex that is removed is labeled n + 1 and its neighbor is labeled n. Let
A ∈ PT (I); then A has the form

A =

 Ãn×n 0(n−1)×1

a
01×(n−1) a α

 .

If α = 0 then a = 0 since A is positive semidefinite, and thus fT [A] ∈ PG since f(0) = 0. When
α 6= 0, the Schur complement SA of α in A is SA = Ã − (a2/α)En,n. Here, Ei,j denotes the
n × n elementary matrix with the (i, j) entry equal to 1, and every other entry equal to 0. Since
A ∈ PT (I), hence Ã ∈ P

T̃
(I), and SA ∈ PT̃ (I) from the above analysis (since (SA)nn = ãnn−a2/α ∈

[0, ãnn) ⊂ I). Therefore, by the induction hypothesis, f
T̃

[Ã], f
T̃

[SA] ∈ P
T̃

. Consider now the matrix

fT [A]. Using Schur complements, fT [A] ∈ PT if and only if f
T̃

[Ã] ∈ P
T̃

and the Schur complement
SfT [A] of f(α) > 0 in fT [A], given by

SfT [A] = f
T̃

[Ã]− f(a)2

f(α)
En,n,

belongs to P
T̃

. Now, notice that f
T̃

[SA] = f
T̃

[Ã] + [f(b)− f(ãnn)]En,n, where b := (SA)nn =

ãnn − a2

α ∈ I from the above analysis. Since f
T̃

[SA] ∈ P
T̃

from above, to conclude the proof, it
suffices to show that

−f(a)2

f(α)
≥ f(b)− f(ãnn). (3.8)

Indeed, by using the superadditivity of f and (3.6), we compute:

f(ãn,n) = f

(
a2

α
+ b

)
≥ f

(
a2

α

)
+ f(b) ≥ f(a)2

f(α)
+ f(b),

which proves (3.8). Therefore (4) ⇒ (2) holds for a tree with n + 1 vertices. This completes the
induction and the proof of the theorem.
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4. Power functions and critical exponents

A natural approach to tackle the problem of characterizing entrywise positive maps in fixed di-
mension is to examine if some natural simple functions preserve positivity. One such family is the
collection of power functions, f(x) = xα for α > 0. Characterizing which fractional powers preserve
positivity entrywise has recently received much attention in the literature.

4.1. FitzGerald and Horn’s result

One of the first results in this area reads as follows.

Theorem 4.1 (FitzGerald and Horn [3, Theorem 2.2]). Let N ≥ 2 and let A = (ajk) ∈ PN
(
R+

)
.

For any real number α ≥ N − 2, the matrix A◦α := (aαjk) is positive semidefinite. If 0 < α < N − 2

and α is not an integer, then there exists a matrix A ∈ PN
(
(0,∞)

)
such that A◦α is not positive

semidefinite.

Theorem 4.1 shows that every real power α ≥ N − 2 entrywise preserves positivity, while no non-
integers in (0, N − 2) do so. This surprising “phase transition” phenomenon at the integer N − 2
is referred to as the “critical exponent” for preserving positivity. Studying which powers entrywise
preserve positivity is a very natural and interesting problem. It also often provides insights to
determine which general functions preserve positivity. For example, Theorem 4.1 suggests that
functions that entrywise preserve positivity on PN should have a certain number of non-negative
derivatives, which is indeed the case by Theorem 1.6.

Proof of Theorem 4.1. The first part of Theorem 4.1 relies on an ingenious idea integral trick. We
proceed by induction over the dimension N of the matrix. The result is obvious for N = 2. Let us
assume it holds for some N − 1 ≥ 2, let A ∈ PN (R+), and let α ≥ N − 2. Write A in block form,

A =

[
B ξ
ξT aNN

]
,

where B has dimension (N − 1) × (N − 1) and ξ ∈ RN−1. Assume without loss of generality
that aNN 6= 0 (as the case where aNN = 0 follows from the induction hypothesis) and let ζ :=
(ξT , aNN )T /

√
aNN . Then A − ζζT = (B − ξξT )/aNN ⊕ 0, where (B − ξξT )/aNN is the Schur

complement of aNN in A. Hence A− ζζT is positive semidefinite. By the fundamental theorem of
calculus, for any x, y ∈ R,

xα = yα + α

∫ 1

0
(x− y)(λx+ (1− λ)y)α−1 dλ.

Using the above expression entrywise, we obtain

A◦α = ζ◦α(ζ◦α)T +

∫ 1

0
(A− ζζT ) ◦ (λA+ (1− λ)ζζT )◦(α−1) dλ.

Observe that the entries of the last row and column of the matrix A − ζζT are all zero. Using
the induction hypothesis and the Schur product theorem, it follows that the integrand is positive
semidefinite, and therefore so is A◦α.

Finally, that non-integer powers do not preserve positivity in general follows from Theorem 1.6.

Note that Theorem 1.6 guarantees that for every non-integer α ∈ (0, N − 2), there exists a matrix
Aα ∈ P(R+) for which A◦α 6∈ P. Tanvi Jain was recently able to greatly generalize this result.
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Theorem 4.2 (Jain [8]). Let

A := (1 + ujuk)
N
j,k=1 = 1N×N + uuT ,

where N ≥ 2 and u := (u1, . . . , uN )T ∈ (0,∞)N has distinct entries. Then A◦α is positive semidef-
inite for α ∈ R if and only if α ∈ Z+ ∪ [N − 2,∞).

4.2. Critical exponents of graphs

A natural refinement of Theorem 4.1 involves studying powers that entrywise preserve positivity
on PG. In that case, the flavor of the problem changes significantly, with the discrete structure of
the graph playing a prominent role.

Definition 4.3 (Guillot–Khare–Rajaratnam [4]). Given a simple graph G = (V,E), let

HG := {α ∈ R : A◦α ∈ PG for all A ∈ PG(R+)}. (4.1)

Define the Hadamard critical exponent of G to be

CE(G) := min{α ∈ R : [α,∞) ⊂ HG}. (4.2)

Using this notions, Theorem 4.1 is equivalent to HKN
= N − 2, where KN denotes the complete

graph on N vertices. Notice that Theorem 4.1 also guarantees that the critical exponent CE(G)
exists for every graph G = (V,E), and lies in [ω(G) − 2, |V | − 2], where ω(G) is the size of the
largest complete subgraph of G, that is, the clique number. To compute such critical exponents is
natural and highly non-trivial.

Theorem 1.2 and Theorem 3.3 immediately provides the powers that preserve positivity on trees.

Theorem 4.4. Let G be any tree. Then HG = [1,∞).

A natural family of graphs that encompasses both complete graphs and trees is that of chordal
graphs. Observe that trees are graphs with no cycles of length n ≥ 3.

Definition 4.5. A graph is chordal if it does not contain an induced cycle of length n ≥ 4.

Figure 1: Examines of chordal (left) and non-chordal (right) graphs.

In [4], the authors were able to compute the full set of powers preserving positivity for chordal
graphs. Remarkably, the critical exponent can be fully described combinatorially.

Theorem 4.6 (Guillot–Khare–Rajaratnam, J. Combin. Theory Ser. A [4]). Let K
(1)
r denote the

complete graph with one edge removed, and let G be a finite simple connected chordal graph. Then
the critical exponent for preserving positivity of G is r − 2, where r is the largest integer such

that Kr or K
(1)
r is a subgraph of G. More strongly, the set of entrywise powers preserving PG is

HG = N ∪ [r − 2,∞), with r as above.
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The critical exponents of cycles and bipartite graphs are also known.

Theorem 4.7 (Guillot–Khare–Rajaratnam, J. Combin. Theory Ser. A [4]). The critical exponent
of cycles and bipartite graphs is 1.

Surprisingly, the critical exponent does not depend on the size of the graph for cycles and bipartite
graphs. In particular, it is striking that any power greater than 1 can preserve positivity for families
of dense graphs such as bipartite graphs.

We will prove the result for complete bipartite graphs.

Proof (complete bipartite graphs). We will prove that the complete bipartite graph Kn,n satisfies:
HKn,n = [1,∞) for all n ≥ 2. Indeed, P3 ⊂ Kn,n since n ≥ 2, so we conclude via Theorem 4.4 that
HKn,n ⊂ HP3 = [1,∞). To show the reverse inclusion, let α > 0, m,n ∈ N, and let

A =

(
Dm×m Xm×n
XT D′n×n

)
∈ PKm,n([0,∞)),

with max(m,n) > 1, and where D,D′ are diagonal matrices. Given ε > 0, define the matrix

XD,D′(ε, α) := (D + ε Idm)◦(−α/2) ·X◦α · (D′ + ε Idn)◦(−α/2).

Also observe that for all block diagonal matrices A of the above form and all ε, α > 0,

(A+ ε Idm+n)◦α = Dε

(
Idm XD,D′(ε, α)

XD,D′(ε, α)T Idn

)
Dε,

where

Dε :=

(
(D + ε Idm)◦α/2 0

0 (D′ + ε Idn)◦α/2

)
.

We now compute for α, ε > 0:

(A+ ε Idm+n)◦α ∈ PKm,n([0,∞))

⇐⇒
(

Idm XD,D′(ε, α)
XD,D′(ε, α)T Idn

)
∈ PKm,n([0,∞))

⇐⇒ Idm−XD,D′(ε, α)XD,D′(ε, α)T ∈ Pm(R)

⇐⇒ ‖u‖ ≥ ‖XD,D′(ε, α)Tu‖, ∀u ∈ Rn

⇐⇒ σmax(XD,D′(ε, α)) ≤ 1,

where σmax denotes the largest singular value. Now note that if m = n, then the above calculation
shows that (A + ε Id2n)◦α ∈ PKn,n([0,∞)) if and only if ρ(XD,D′(ε, α)) ≤ 1, where ρ denotes the
spectral radius.

To finish this first step of the proof, now suppose α ≥ 1 and A ∈ PKn,n([0,∞)). Then A + ε Id ∈
PKn,n([0,∞)) for all 0 < ε � 1, so by the above analysis with α = 1, ρ(XD,D′(ε, 1)) ≤ 1 for all
0 < ε� 1. By the Perron–Frobenius theorem, if a matrix has positive entries, then the eigenvector
corresponding to the largest eigenvalue of the matrix has positive entries. From this, it follows that

ρ(XD,D′(ε, α)) ≤ ρ(XD,D′(ε, 1))α ≤ 1.

(See [7, Lemma 5.7.8] for more details.) It follows from the above analysis and the continuity of
entrywise powers that A◦α ∈ PKn,n([0,∞)). Thus [1,∞) ⊂ HKn,n .
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5. Moment transforms

We conclude by examining a different, but closely connected, setting. First, recall the notion of the
moments of a measure.

Definition 5.1. Let µ be a measure defined on a sigma algebra of subsets of a set Ω. The k-th
moment of µ is defined by

sk(µ) :=

∫
Ω
xk dµ(x) (k ≥ 0)

if the above integral exists.

Moments play an important role in probability theorem. For example, if X is a random variable
with a density f with respect to the Lebesgue measure dx on R, then the moments of X are defined
to be the moments of the associated measure dµ = f dx:

E(Xk) =

∫
R
xkf(x) dx.

In particular, the first moment of X is its expected value E(X). Its second moment E(X2) is closely
related to the variance of X: Var(X) = E(X2)− E(X)2.

An important problem in analysis and probability theory is to determine if a given sequence (sk)k≥0

of real numbers is the moment sequence of a measure with a given support. Another important
problem is to determine if such a measure is unique when it exists.

5.1. The hamburger moment problem

The moment problem on R is known as the Hamburger moment problem (in honor of Hans Ludwig
Hamburger, 1889–1956).

Hamburger moment problem. Given a sequence (mk)k≥0, does there exist a positive Borel
measure such that

mk =

∫ ∞
−∞

xk dµ(x) ∀k = 0, 1, . . . ,

i.e., a measure such that mk = sk(µ) for all k ≥ 0.

This problem has a very interesting connection to matrix positivity.

Definition 5.2. A n× n matrix A = (aij)
n
i,j=1 is said to be a Hankel matrix if aij = xi+j for some

sequence x2, x3, . . . , x2n.

In other words, a Hankel matrix is a matrix whose entries are constant on its anti-diagonals.

Figure 2: Illustration of a Hankel matrix. Entries are constant on anti-diagonals.

Theorem 5.3 (Hamburger). A sequence (mk)k≥0 satisfies xk = sk(µ) for some positive Borel
measure µ if and only if the associated Hankel matrices

A = (aij)
n
i,j=1 = (mi+j)

n
i,j=0
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are positive semidefinite for all n ≥ 1.

Conditions are also known to guarantee the uniqueness of the measure µ.

Theorem 5.4 (Carleman’s condition). Let µ be a positive Borel measure on R with finite moments.
Suppose

∞∑
j=1

s2j(µ)
− 1

2j =∞.

Then µ is the only measure on R with moment sequence mk = sk(µ).

5.2. Transforming moments

In probability theory, it is common to transform the moments of a given measure. It is then
natural to ask if the resulting sequence is the moment sequence of a new measure. Here, we focus
on transformations of the form F (sk(µ)) where F : R → R. Hence, we would like to characterize
the functions F : R→ R with the property that for every positive Borel measure µ,

F (sk(µ)) = sk(ν) k = 0, 1, . . .

for some positive Borel measure ν (that depends on µ). Several characterization were recently
obtained in [2], on various domains. The following illustrates the type of results one can prove.

Theorem 5.5 (Belton–Guillot–Khare–Putinar [2]). Let F : R→ R. The following are equivalent:

1. For every positive borel measure with suppµ ⊂ [−1, 1], there exists a measure positive Borel
measure ν with supp ν ⊂ [−1, 1] and such that

F (sk(µ)) = sk(ν) ∀k ≥ 0.

2. F [A] ∈ Pn for all A ∈ Pn ∩Hankel and all n ≥ 1.

3. F [A] ∈ Pn for all A ∈ Pn and all n ≥ 1.

4. F (z) =
∑∞

j=0 cjz
z with cj ≥ 0.

To illustrate some of the ideas used in the proof, we will only prove the following.

Lemma 5.6. Let F : R→ R. Suppose that for every positive borel measure with suppµ ⊂ [−1, 1],
there exists a measure positive Borel measure ν such that

F (sk(µ)) = sk(ν) ∀k ≥ 0.

Then F is continuous on R.

Proof. We prove the result in different steps.
Step 1. F is continuous on (0,∞).

(a) F is monotone on (0,∞). Let x ≤ y. Then the matrix

A =

(
y x
x y

)
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is a positive semidefinite Hankel matrix. Hence f [A] ∈ P2 and it follows that F (x) ≤ F (y).

(b) Since F is monotone on (0,∞), it is measurable on (0,∞).

(c) F is multiplicatively mid-convex on (0,∞), i.e., F (
√
xy) ≤ F (x)F (y) for all x, y > 0. This

follows from considering the positive semidefinite Hankel matrix(
x

√
xy√

xy y

)
.

(d) Now, g(x) := logF (ex) is midpoint convex and measurable. One can show that this implies g
is convex, which in turn, implies g is continuous. We conclude that F is continuous on (0,∞).

Step 2. F is continuous on (−∞, 0]. We will use the following key idea: if p(t) = a0 + a1t+ · · ·+
adt

d ≥ 0 on [−1, 1], then:

0 ≤
∫ 1

−1
p(t) dν =

d∑
j=0

ajsj(ν) =
d∑
j=0

ajF (sj(µ)). (5.1)

We will apply Equation (5.1) to well-chosen µ and p. Let

p±(t) = (1± t)(1− t2).

Note that p± ≥ 0 on [−1, 1]. Fix v0 ∈ (0, 1), let β ≥ 0 and define:

a := β + bv0, µ := aδ−1 + bδv0 ,

where δx denotes the Delta measure supported at x. The following table provides the first moments
of µ:

k sk(µ)
0 a+ b
1 −a+ bv0

2 a+ bv2
0

3 −a+ bv3
0

Using Equation (5.1), we obtain

F (a+ b)− F (a+ bv2
0) ≥ ±

(
F (−a+ bv0)− F (−a+ bv3

0)
)
.

Equivalently, we have

F (β + b+ bv0)− F (β + bv0 + bv2
0) ≥

∣∣F (−β)− F (−β + b(v3
0 − v0))

∣∣
Letting b → 0+ and using the fact that F is continuous on (0,∞), we conclude that F is left-
continuous at −β for any β ≥ 0. A similar argument can be used to obtain the right-continuity.

A. Basic properties of symmetric and positive semidefinite matri-
ces

We record in this section some basic results from linear algebra.

Recall that a n× n matrix is symmetric if A = AT .
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Proposition A.1. Let A ∈ Rn×n be a symmetric matrix. Then

1. All the eigenvalues of A are real.

2. Eigenvectors of A associated to distinct eigenvalues are orthogonal.

3. The matrix A is diagonalizable. More precisely, if λ1, . . . , λn are the eigenvalues of A and
u1, . . . , un are associated eigenvectors, then

A = UDUT =
n∑
i=1

λiuiu
T
i

where U = (u1, . . . , un) ∈ Rn×n is the matrix containing the eigenvectors of A as columns, and
D = diag(λ1, . . . , λn) is the diagonal matrix containing the eigenvalues of A on its diagonal.

Definition A.2. A symmetric matrix A = (aij) ∈ Rn×n is said to be positive semidefinite if
xTAx =

∑n
i,j=1 aijxixj ≥ 0 for all x ∈ Rn. It is said to be positive definite if xTAx > 0 for all

x ∈ Rn.

We denote the set of n× n symmetric positive semidefinite matrices with real entries by Pn.

The following result shows that Pn is closed under addition, multiplication by a nonnegative scalar,
and congruences.

Theorem A.3. Let A,B ∈ Pn and let C ∈ Rn×m. Then

1. λA ∈ Pn for all λ ≥ 0.

2. A+B ∈ Pn.

3. CTAC ∈ Pm.

The following theorem summarizes several important characterizations of positive semidefinite ma-
trices. Let α, β ⊆ {1, . . . , n} and let A ∈ Rn×n. We denote by A[α, β] the submatrix of A with rows
indices in α and column indices in β, i.e.,

A[α, β] := (aij)i∈α,j∈β.

To simplify the notation, when α = β, we let A[α] := A[α, α]. A principal minor of A is a
determinant detA[α] for some α ⊆ {1, . . . , n}.

Theorem A.4. Let A be a n× n symmetric matrix. Then the following are equivalent:

1. The matrix A is positive semidefinite.

2. All eigenvalues of A are nonnegative.

3. All the principal minors of A are nonnegative.

4. All the leading principal minors of A are nonnegative.

5. There exists a matrix B ∈ Rm×n such that A = BTB. Equivalently, A is a Gram matrix,
i.e., there exist vectors v1, . . . , vn ∈ Rm such that aij = vTi vj.
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