Mimetic Discretizations of Continuum Mechanics

This page provides information about mimetic discretizations of continuum mechanics problems, including problems in fluid mechanics, solid mechanics and electrodynamics.   Please send proposed additions to this web site to Stanly Steinberg (stanly@wendouree.org).

ACE 06 Workshop

There was a second workshop on mimetic discretizations at the IMA in Minneapolis, Minnesota, May 11-15, 2004.

Email: You can subscribe to the mimetic email list.


  1. PIERS 2002 Meeting, Progress In Electromagnetics Research (PIER)
  2. Foundations of Computational Mathematics
  3. EMSolve
  4. Algebras of Electromagnetics
  5. Interactive Physics Editor (IAPE) Project

References to the Recent Literature.


  1. Mimetic Discretizations of Continuum Mechanics
  2. Conservation Laws ,  postscript, pdf

Interested people:

  1. Douglas N. Arnold , IMA, University of Minnesota
  2. Pascal Azerad ,  Universitat de Perpinya
  3. Nicolas Bessonov ,  Academy of Sciences, Saint Petersburg
  4. Martin Bohner ,  Florida Institute of Technology
  5. Alain Bossavit ,  Eletricite de France
  6. Pavel Bochev ,  Sandia National Laboratories
  7. Michael W. Buksas ,  Los Alamos National Laboratory
  8. José Castillo ,   San Diego State University
  9. Jeffrey A. Chard ,   University of Wisconsin - Madison
  10. Markus Clemens, Darmstadt University of Technology
  11. Leszek Demkowicz ,  The University of Texas at Austin
  12. Mathieu Desbrun ,  University of Southern California
  13. Eric Forgy,  MIT Lincoln Laboratory
  14. Ralf Hiptmair ,  Universitat Tuebingen
  15. Anil N. Hirani, California Institute of Technology
  16. James (Mac) Hyman ,   Los Alamos National Laboratory
  17. Arieh Iserles ,   University of Cambridge
  18. Bulent Karasozen,  Middle East Technical University, Ankara, Turkey
  19. Lauri Kettunen ,  Tampere University of Technology, Finland
  20. Robert Kotiuga,   Boston University
  21. Jin-Fa Lee ,  The Ohio State University
  22. Richard Lehoucq ,  Sandia National Laboratories
  23. Melvin Leok ,  California Institute of Technology
  24. Yuan Liu, University of Illinois
  25. Massimiliano Marrone,    DEEI Universita di Trieste
  26. Claudio Mattiussi ,  Swiss Federal Institute of Technology
  27. Mark Meyer ,  CalTech
  28. Ilya Mishev,   Exxon Mobil Upstream Research Company
  29. Blair Perot ,  University of Massachusetts
  30. Perttu Puska ,  Helsinki University of Technology
  31. Sebastian Reich ,  Imperial College
  32. Ursula van Rienen ,  Universitat Rostock
  33. Nicolas Robidoux ,  Simon Fraser University
  34. Sergio Rojas ,  Universidad Simón Bolívar, Venezuela.
  35. Peter Schroder ,  California Institute of Technology
  36. Vadim Shapiro ,  University of Wisconsin - Madison
  37. Rolf Schuhmann, Darmstadt University of Technology
  38. Mikhail (Misha) Shashkov ,  Los Alamos National Laboratory
  39. Werner M. Seiler ,  Universit"at Mannheim
  40. Holger Spachmann ,  Technische Universitaet Darmstadt
  41. Stanly (Stan) Steinberg ,  University of New Mexico
  42. Timo Tarhasaari ,  Tampere University of Technology, Finland
  43. Gabriel Taubin, IBM Research
  44. Fernando Lisboa Teixeira ,  The Ohio State University
  45. Enzo Tonti ,  Universita degli Studi di Trieste
  46. Vyacheslav (Slava) Tsybulin ,  Rostov State University, Russia
  47. Karl F. Warnick ,  Brigham Young University
  48. Thomas Weiland, Darmstadt Univ. of Technology
  49. Daniel (Dan) A. White ,  Lawrence Livermore National Laboratory
  50. Arash Yavari ,  Georgia Tech

Past Workshop on Mimetic Discretization Methods

Computational Science Research Center

San Diego State University

July 9-11, 2003

The first workshop on mimetic discretization methods will be held at the Computational Science Research Center in June or July of 2003. This meeting is being supported by the CSRC and NSF. You can register on at the meeting webpage.

Key Words: mimetic discretizations, numerical methods, numerical solution of partial differential equations, discrete Hodge operator, constitutive relations, discrete Hodge star operator, mixed methods, factorization of numerical discretizations, adjointness, mimetic discretizations, Whitney forms, Whitney elements, discrete conservation laws, numerical solution of the diffusion equation, numerical solution of Maxwell's equations, numerical solution of the Poisson equation, Yee scheme, Support Operator Method, Finite Integration Theory, mixed Finite Element Methods, Exact Finite Volume Difference Method, exterior differential operators, gradient, divergence, curl, adjoint operators, Stokes' Theorem, Potential Theorem, Divergence Theorem, Green's Theorem, discrete Hodge-Helmholtz decomposition, summation by parts formula, exact sequences, deRham cohomology, chains, CW complexes, co-chains, Tonti diagrams, dual grids, natural projections