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Before we think about stochastic models that are analogous to the continuous-
time SIR model with demography, we will develop some intuition about the key
differences between stochastic and deterministic models by starting out with the
same framework we used on day 1.

Stochastic Reed-Frost model

Let’s think about a simple epidemic that evolves in discrete time-steps (or gen-
erations). We need to describe the number of new infections that occur in each
generation, and this should be dependent on the number of susceptible and infected
individuals in the previous generation. Instead of this being exactly determined (as
we saw previously), we’re going to consider that this process involves some element of
chance. Specifically, we’re going to consider each susceptible in turn, flip a weighted
coin, if the coin comes up heads then the susceptible individual becomes infected,
otherwise they remain susceptible.

Mathematically, in each generation, new infections are binomially distributed
with the number of trials equal to the number of susceptibles, St, and the probability
of success (infection) equal to Pt. In probability notation:

It+1 ∼ binom(St, Pt)

A binomial random variable can be thought of as the number of independent “suc-
cesses” (here infections) in a sequence of weighted coin tosses (here the weight is Pt,
and we flip a coin for every susceptible individual). But what should Pt, the prob-
ability of infection, depend on? Let’s consider a single susceptible individual and
their risk of infection in a particular generation. Let’s denote q as the probability
that a susceptible does not get the disease from a given infectious individual. If there
are It infectious individuals, and they all behave independently, then the probability
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the susceptible does not get the disease is qIt . Therefore, the probability that the
susceptible gets infected is Pt = 1− qIt . So the full model is

It+1 ∼ binom(St, 1− qIt)
St+1 = St − It+1

Rt+1 = Rt + It

where the number of susceptible individuals is depleted by new infections and the
number of recovered individuals increases by the number who were infectious dur-
ing the previous generation (individuals are infected for a single generation). This
model is the stochastic Reed-Frost model, more generally a chain binomial model,
and is part of a large class of stochastic models known as Markov chain models. A
Markov chain is defined as a stochastic process with the property that the future
state of the system is dependent only on the present state of the system and condi-
tionally independent of all past states. This is known as the “memoryless” or Markov
property.

The parameter q can be rewritten as e−A, where the parameter A represents a
rate of contracting the disease per infective (whereas q is a probability), and can be
interpreted in the same way as the A in the models that you’ve already seen. In
addition, e−AIt can be thought of as the zero term of a Poisson distribution with
mean AIt.

*Try This*

1. Fix the values of S0 = 2000, q = 0.999 and I0 = 2, and simulate the model 10
times for 20 generations. What do you notice?

2. Systematically, vary S0, q and I0. One way of summarizing the model output
is, for each parameter set, to construct a histogram of the final size of the
epidemic. What patterns do you uncover?

3. R0 is defined as the average number of secondary infections generated by one
infection in a completely susceptible population, what is R0 for this model?
Does an epidemic always take off if R0 > 1? Note that for a binomial random
variable X ∼ binom(n, p), E(X) = np.

Summary of the key differences between this stochastic model and previous de-
terministic models:

• Chance events can lead to extinction before an epidemic occurs, even if R0 > 1.

2



0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

N
um

be
r 

of
 In

fe
ct

iv
es

Generation

Figure 1: 10 simulations of the Reed-Frost model for parameter values given in (1.)
above.

3



• The states (S, I, R) are integer-valued rather than real-valued variables, i.e.
the state-space is discrete rather than continuous.

This is a stochastic version of the discrete-time deterministic model we saw on
Tuesday. In fact, if we calculate the average value of It+1

E(It+1) = St(1− exp(−AIt))

this is just the deterministic equation for It+1.
So, how do we construct a stochastic model that is related to the continuous-time

SIR model? There’s actually more than one answer to this question - it depends on
certain assumptions that we make. What we’ll discuss here is how to think about
the processes that contribute to the SIR model in an alternative way - as events
that lead to discrete changes in the state of the system.

Event-driven methods and Gillespie’s algorithm

The state of the system is defined by the integer number of individuals in each
subpopulation and changes discretely whenever an event (such as a birth, death or
transition from one class to another) occurs. For the SIR model (with demography),
we need to consider the six events that can occur and how the numbers in each class
change as a result of each event:

1. Births occur at the rate µN , and the result is S → S + 1.

2. Transmission occurs at the rate β I
N
S, and the result is S → S − 1, I → I + 1.

3. Recovery occurs at the rate γI, and the result is I → I − 1, R→ R + 1.

4. Deaths of S occur at the rate µS, and the result is S → S − 1.

5. Deaths of I occur at the rate µI, and the result is I → I − 1.

6. Deaths of R occur at the rate µR, and the result is R→ R− 1.

There are different ways of implementing this framework, but we’ll consider Gille-
spie’s Direct Method (Gillespie 1977).
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Gillespie’s Direct Method

For the system in a given state, Gillespie’s direct method asks two questions:

1. When does the next event occur? The time to the next event (τ) is expo-
nentially distributed, with rate equal to the sum of the rates over all possible
events. The probability density function is given by

f(τ) = (
∑
i

ai) exp(−τ
∑
i

ai) . (1)

2. Which event occurs next? We convert event rates into probabilities, and ran-
domly select one of these events according to

P (Event = v) = av/
∑
i

ai (2)

where the ai are the event rates listed above. (The numbers in each class are
then updated according to which event is selected.)

With these distributions, the algorithm is implemented as follows:

1. Set initial population numbers. Set t 7→ 0.

2. Calculate the ai for all i.

3. Choose τ from an exponential distribution with parameter
∑

i ai as in (1).

4. Choose the event v according to the distribution in (2).

5. Change the number of individuals to reflect the event, v. Set t 7→ t+ τ .

6. Go to step 2.

*Try This*

1. Using the code stochasticSIR.m, reproduce a figure similar to Figure 2. Why
can’t you reproduce the exact same figure? Experiment with the initial number
of infectives, I(0). What happens as you increase the initial size of the total
population? Both dynamically and computationally.

2. Now initialize the stochastic model with the endemic equilibrium values from
the deterministic model. How does this affect the solutions?
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Figure 2: 10 simulations of the Stochastic SIR model with R0 = 10, γ = 365/10 year
−1, µ = 1/70 year−1 and β = R0(γ+µ) and S(0) = 1500, I(0) = 1, and R(0) = 8499.
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This algorithm simulates stochastic realizations of the exact process described by
what’s known as the master equation. The master equation describes the evolution
of all possible states of the system (probability of being in state (S, I, R) at time t)
but usually leads to a computationally intractable system of differential equations:

Master Equation

Let pSIR(t) be the probability of being in state (S, I, R) at time t, and N = S+I+R.
Then the following equation describes how this probability distribution evolves over
time:

dpSIR(t)

dt
=pS−1,I,R[µ(N − 1)] + pS+1,I,R[µ(S + 1)] + pS+1,I−1,R[β

(I − 1)

N
(S + 1)]

+ pS,I+1,R−1[γ(I + 1)] + pS,I+1,R[µ(I + 1)] + pS,I,R+1[µ(R + 1)]

− pS,I,R[µN + µS + β
I

N
S + γI + µI + µR] .
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