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Abstract

Simulations of 
uid-�lled membranes are considered where the membrane is discretized by
a set of material points that have no logical connections. Since the normal to the membrane
surface is necessary for the membrane constitutive model, an algorithm is given for construct-
ing surface normals when the surface is represented by an unconnected set of data points.
The main idea is to locally construct a function that has the given surface as an isosurface;
gradients of this function provide the normal to the surface. This capability combines ad-
vantageous features of surface tracking methods with features of surface capturing methods
so that information about the surface location is known from the points on the surface, but
topology changes are numerically tractable because the points are not connected.
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1 Introduction

Many important physical problems involve interfaces between materials; often these inter-
faces have nontrivial properties that contribute signi�cantly to the problem solution. Exam-
ples are surface tension on the interface between two immiscible 
uids, material boundaries
in multi-phase 
ow, and membranes �lled with 
uid. Other structures such as shocks, vor-
tex sheets, or shear bands, can also be treated as interfaces. Mathematically, interfaces
are usually considered to be an in�nitesimally thin boundary with no structure through the
thickness. Multi-phase or multiple-material problems then reduce to moving boundary prob-
lems, with continuum equations applying in each constituent, and with boundary conditions
applied at the interface. Such moving boundary problems are notoriously di�cult to handle
numerically.

Numerical methods for treating interfaces can be broadly separated into two classes, those
that `capture' the interface, and those that `track' the interface. In the �rst group, there
are methods such as continuum surface force (CSF) [1], level sets [2, 3, 4, 5], and phase-�eld
methods [6, 7, 9, 8, 10, 11]. In this group, the interface is not explicitly represented, but
its location is inferred from the computed solution. Typically, a characteristic function or
order parameter characterizes each material or phase, and the interface is an isosurface of
this function. The second group consists of methods such as front tracking [12, 13, 14],
immersed-boundary [15, 16] or immersed-interface methods [17]. In these methods, the
interface is explicitly represented, by a surface mesh, by points connected with links, or by a
spline; respectively. Interface tracking tends to give better information about the location of
the interface, but can be costly if the interface surface needs to be remeshed often because of
large deformations or changes in topology. Interface capturing has an advantage when the
topology changes, such as the merging of droplets, since this can be handled without logic
for breaking and reconnecting points on surfaces.

This paper concerns simulations of 
uid-�lled membranes, such as automobile airbags or
parachutes, and continues the work begun in [18]. A new method is introduced for tracking
the membrane surface with a set of material points that have no logical connections, yet al-
lowing computation of a normal to the surface for use in the membrane constitutive model.
This membrane representation provides explicit information about the surface location, as
in interface tracking methods, but also is amenable to large deformations and changes in
topology (such as rupture), as in interface capturing methods. Our simulations use this
membrane representation in conjunction with the material-point method for continuum me-
chanics problems.

The material-point method (MPM) [19, 20, 21] is an extension of the hydrodynamics,
particle-in-cell code, FLIP [22, 23] to problems in solid mechanics. In MPM, a 
uid or solid
body is discretized using an unconnected set of material points that are followed through-
out the deformation history. Information from these points is transferred to a background
computational grid, where the momentum equation is solved. The grid solution is then used
to move the material points and update their properties. In contrast to FLIP, the full stress
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tensor is carried by the material points so that history-dependent constitutive models are
easily implemented in the MPM.

The method has several advantages, the Lagrangian description provided by the material
points naturally tracks the position of bodies and is capable of representing large deforma-
tions. Since no connectivity is required between the material points, mesh tangling is not a
problem. Referring material-point data to a grid allows an e�cient solution of the interac-
tions (linear in the number of material points). Objects of any shape are de�ned by �lling
a region with material points, and the computational mesh does not have to conform to the
object { greatly simplifying mesh construction. Since material points move in a single-valued
velocity �eld determined from the grid solution, interpenetration of bodies is not possible.
This feature makes MPM particularly suited to problems involving many bodies in contact,
since no-slip contact can be enforced without a special algorithm.

MPM has been applied to impact, rebound and penetration or perforation problems,
and to manufacturing problems such as metal rolling, cutting, extrusion and upsetting. It
has also been modi�ed to allow simulations of thin membranes [24, 25], and the contact
algorithm has been extended to allow frictional contact. Simulations of granular material
[26, 27] have particularly bene�ted from the addition of frictional contact. In simulations of
membranes, material points are placed on the membrane surface. A local coordinate system,
in the normal and tangential directions, is used at the surface to project the strain increment
onto the plane of the membrane. In-plane stress is then determined from the in-plane strain.
This paper describes a new method to compute the normal and tangential directions from the
material-point distribution on the surface without needing connectivity among the points.
An algorithm of this nature saves setup costs as well as the need to regenerate a mesh during
simulations involving large membrane deformations.

Section 2 describes how solids, 
uids and membranes are discretized using material points;
then the next section presents the new algorithm for computing the normal to a surface
from points on the surface, without resorting to meshing the surface with elements or a grid.
Section 4 illustrates the construction of normals through a set of examples and also examines
accuracy of the algorithm. Higher-order methods are explained in Section 5, with examples
given in Section 6. Section 7 reviews a computational cycle of the MPM, in preparation for
Section 8 where numerical examples in two dimensions compare simulations of membranes
using the new algorithm for constructing surface normals with an algorithm using a surface
mesh. Concluding remarks are made in the last section.

2 Initialization

Problem Speci�cation

The MPM is designed to solve problems in continuum mechanics where the governing equa-
tions are conservation of mass, momentum and energy. Let a 
uid or solid occupy a volume

(t) at time t. The mass density �(x; t), velocity v(x; t), Cauchy stress �(x; t), the speci�c
body force b(x; t), and the speci�c internal energy e(x; t) are all functions of the current
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position x and time, t. Conservation of mass can be written

d�

dt
+ �r � v = 0; (1)

linear momentum balance is

�
dv

dt
= r � � + �b; (2)

and energy conservation, ignoring conduction and heat sources, is

�
de

dt
= � :

d�

dt
: (3)

The strain rate is related to the velocity gradient, d�=dt = 1
2
[(rv) + (rv)T ]. The equations

above are to hold for all x 2 
(t). Fluids and solids are distinguished by the constitu-
tive equation relating stress to strain or strain rate. A complete problem speci�cation also
requires initial conditions and boundary values.

A discretized version of these equations is required for a numerical solution. In the MPM,
a solid body or volume of 
uid is described by marking a set of material points in the initial
con�guration 
(0) which are then followed throughout the remainder of the computation. (It
is possible to replace one distribution of material points with another during a computation
[28]; but, for simplicity, this feature will not be addressed in this paper.) Since the material
points are unconnected, they provide a Lagrangian description that is able to represent
large deformations without mesh tangling. The material points are also able to represent
complicated shapes at low cost because it is easier to �ll a region of space with points than
it is to construct a mesh that conforms to complicated geometry. Interactions among the
material points are computed on a background computational mesh.

Computational Mesh Construction

To begin the discretization, a computational domain of elements is constructed to contain
the domain 
(0). This mesh of elements can take any convenient form, such as a logically,
hexahedral mesh in three dimensions. Let xi;j;k denote the nodal position for node I, I =
(k � 1)NyNx + (j � 1)Nx + i, where i; j; and k vary between 1 � i � Nx, 1 � j � Ny, and
1 � k � Nz; respectively. We also use the more compact notation xI to denote the position
of node I. The index I takes on values from one to the number of nodes, Nn = NxNyNz.
Note that given I, Nx and Ny, the triple i; j, k can be recovered. De�ne logical coordinates
(�; �; �) for a point x in the computational domain by mapping the unit cube onto the
hexahedron containing x through the tensor product of linear shape functions,

x(�; �; �) = � 0f�0[(1� �0)xi+1;j;k+1 + �0xi+1;j+1;k+1]

+ (1� �0)[(1� �0)xi;j;k+1 + �0xi;j+1;k+1]g

+ (1� � 0)f�0[(1� �0)xi+1;j;k + �0xi+1;j+1;k]

+ (1� �0)[(1� �0)xi;j;k + �0xi;j+1;k]g: (4)
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In this expression, �0 = � � i, �0 = � � j, and � 0 = � � k. Equation 4 can be written as a
tensor product of b-splines, �s,

x(�; �; �) =
X
I

xI�s(� � i)�s(� � j)�s(� � k); (5)

where

�s(�0) =
�
1� j�0j; if j�0j � 1
0; otherwise

: (6)

The sum in Equation 5 is over all nodes, but only nodes in the support of �s contribute.
The product of shape functions in Equation 5 can be written more compactly by intro-

ducing the notation
s(� � I) = �s(� � i)�s(� � j)�s(� � k); (7)

where the vector � has coordinates (�; �; �) and I = (i; j; k). Then, Equation 5 becomes

x(�) =
X
I

xIs(� � I): (8)

For future reference, a corresponding shape function in physical space is de�ned by

S(x(�)� xI) = s(� � I): (9)

Material Point Initialization

Suppose each region occupied by a 
uid or solid is described by a set of inequalities: gr�(x) �
0, where 1 � � � Ner and Ner is the number of inequalities that describes region r. To
initialize the material points, sweep through logical space; place Npe trial points in each
element; determine the physical coordinates of the trial point via Equation 4; test each trial
point to see if it is in a region (i.e. satis�es the inequalities for the region). If the point is
in a region, keep it; otherwise, discard it. Points that are inside each region are initialized
with material properties for that region, given a mass, initial velocity and possibly an initial
stress or strain, depending on the initial conditions for the boundary value problem. The
trial points are taken to be equally spaced in logical space; so, in logical space, each material
point has a volume 1=Nep. The mapping, Equation 4, determines the initial volume 
p for
the material point in physical space. This step gives the material points �nite size. The
mass, mp, of a material point is determined using the initial density for the material making
up region r, �r0, times the material point volume, 
p, so that mp = �r0
p. The number of
material points per element, Nep is an input parameter.

Unlike solid bodies or regions of 
uid, membranes are thin structures that are modeled
with one material point through the thickness [24, 25]. The initial position of a membrane
can be described by the equation of a surface, x = x(u; v), parameterized by u and v.
The position x de�nes the midplane of the membrane which is assumed to have constant
thickness. One way to discretize the surface is to place material points equally spaced along
the coordinate directions with spacing �u and �v. The mass of a material point representing
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the surface is the area of an element on the surface times the input density of the membrane
(mass per unit volume), times the thickness. Material properties and initial conditions are
attributed to each material point. The set of material points constructed on the membrane
surface is kept in a list, but no connectivity information is saved or required for subsequent
calculations.

3 Computation of Normals Using Linear Shape Func-

tions

Evaluation of the membrane constitutive model requires determining a local coordinate sys-
tem on the membrane surface, with coordinates given in the normal and tangential directions.
The method for constructing the coordinate system described in this section is novel in that it
does not rely on the construction of a surface mesh. The computational savings, particularly
with two-dimensional surfaces in three-dimensional simulations, can be large { especially if
the membrane surface is undergoing large deformations requiring frequent remeshing. The
main idea is to regard the membrane surface as the isosurface of a scalar function, �(x),
de�ned in the whole domain. Given the value of � at the material points representing the
membrane, determine consistent nodal values. Consistency means that interpolation of nodal
values to the membrane position gives the correct value of �. The nodal values are used to
de�ne � everywhere, and the gradient of � evaluated at a surface material point gives the
normal direction at that point.

More speci�cally, let �p denote the value of �(x) at the point xp on the membrane surface.
Since we want the membrane to correspond to an isosurface of �, take �p = 1 for all points
p on the surface. To have consistent nodal values �I , we require

�p =
X
I

�IS(xp � xI) or [S]f�g = f�0g: (10)

The rectangular matrix [S] maps from nodes to membrane points, and has components
SpI = S(xp � xI). The vector f�g has the nodal values as components, �I , and the vector
f�0g has the material point values, �p, as components. If this equation can be solved for �I ,
then the normal to the surface at xp is simply given by

np =
X
I

�IrS(x� xI)jxp: (11)

Typically, there will be many membrane points in an element so that the number of
points p is greater than the number of nodes I. Thus, solve Eq. 10 in the least squares sense.
To obtain the normal equations, multiply by S(xp � xJ) and sum over p,X

I

�I

X
p

S(xp � xI)S(xp � xJ) =
X
p

�pS(xp � xJ): (12)

Eq. 12 can be written in matrix form

[T ]f�g = [S]Tf�0g; (13)
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xI xI+1

xp

Figure 1: Geometry in one dimension. The element has nodes xI and xI+1 with one material
point, xp, representing the \membrane."

where [T ] is the square matrix with components Tij =
P

p S(xp � xI)S(xp � xJ),
i.e. [T ] = [S]T [S].

Equation 12 can be solved globally, where p ranges over all material points making up the
membrane and I and J range over all the nodes in the support of the shape functions centered
at the material points. Interestingly, Equation 12 can also be solved element-by-element since
only a local description of the surface is necessary to calculate the normal. In that case, for
each element, p ranges over the number of material points in the element and I and J range
over the nodes in the support of the shape function centered at the material points. So, for a
hexahedral mesh in three dimensions, using linear shape functions, the system size is 8� 8.
The size is 4 � 4 in two-dimensions, on a quadrilateral mesh with linear shape functions.
Actually, any convenient subset of material points and corresponding elements can be used
to determine the normal to the surface; this observation will be exploited later.

4 Examples Using Linear Shape Functions

In this section, some examples are used to demonstrate the feasibility of using Equation 10
or Equation 13, to determine nodal values of � that correspond to � = 1 on a given surface
marked by material points, and then using Equation 11 to determine the normal to the
surface. To begin, consider a simple example in one dimension. Although simple, this
example is nevertheless, illustrative.

One Dimension

Figure 1 shows a \membrane" which in one dimension is represented by a single point labeled
xp in an element with endpoints xI and xI+1. In one dimension, Equation 10 reduces to

�(�) =
X
I

�IS(x� xI) = (1� �)�I + ��I+1;

where �(x) = (x � xi)=(xI+1 � xI). The nodal values �I and �I+1 are determined so that
�(�p) = 1 where �p = �(xp). This gives only one equation to solve for two unknowns. The
equation is h

1� �p �p
i ( �I

�I+1

)
=
n
1
o
: (14)
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An obvious solution to this problem is �I = �I+1 = 1. In fact, the value one for all nodes is
a solution to the general problem, Equation 10 or Equation 13. Obviously, constant � does
not have a gradient so it is useless for computing a normal direction.

To set up a gradient, choose a random point in the element, xq 6= xp, and assign the
value �q = 0 to it. There are now two equations to solve for the two unknowns,"

1� �p �p
1� �q �q

#(
�I

�I+1

)
=

(
1
0

)
;

which has the solution

�I =
��q

�p � �q
�I+1 =

1� �q
�p � �q

;

as long as �p 6= �q. The corresponding solution for � everywhere is

�(�) = (1� �)
��q

�p � �q
+ �

1� �q
�p � �q

;

which satis�es �(�p) = 1 exactly. A normal can be computed from the gradient of �,

d�

dx
=

d�=dx

�p � �q
;

d�

dx
=

1

xI � xI+1
:

A unit normal is determined by normalizing the gradient. The unit normal can have either
sign, meaning that either an inward or an outward normal is computed at the surface.

Note that the least squares problem associated with Equation 14 is"
(1� �p)

2 (1� �p)�p
�p(1� �p) �2p

#(
�I

�I+1

)
=

(
1� �p
�p

)
:

This system is singular, but consistent. There is a one parameter family of solutions, pa-
rameterized by the value of �I+1, and with

�I =
��p
1� �p

�I+1 +
1

1� �p
:

The corresponding solution for � everywhere is

�(�) =
��p(1� �)

1� �p
�I+1 +

1� �

1� �p
+ ��I+1;

which satis�es �(�p) = 1. Note also that �I = 1 when �I+1 = 1. The gradient of � is
nonzero, except when �I+1 = 1, and can be used to compute a normal:

d�

dx
=

d�

dx

�I+1 � 1

1� �p
;

d�

dx
=

1

xI � xI+1

:

So, the least squares solution can be used in the underdetermined case, except for the
constant solution, and care must be taken when solving the singular system of equations.
Adding a random point appears to be the better approach.
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I
I+1

I−1

I−N −1x

I−N x I−N  +1x

I+N −1x

I+N x I+N  +1x

x

y

Figure 2: Geometry in two dimensions. The mesh is composed of quadrilateral elements and
the \membrane" is represented by a set of material points along a curve.

Two Dimensions

In two dimensions, we consider a mesh of quadrilaterals and a \membrane" represented by
points along a curve. Figure 2 illustrates the geometry. If the normals to the membrane are
to be computed element-by-element, then there are four unknowns for element I, the four
nodal values �I , �I+1, �I+Nx

, and �I+Nx+1. The system of equations will be underdetermined
unless there are at least three membrane points in the element. The fourth equation will
come from adding a random point with � assigned the value zero there. If there are not
enough membrane points within an element, then a group of four elements can be joined
together and considered as one larger element, presumably with enough membrane points
to determine �. If not, the process can be repeated until enough membrane points are
present. Using linear shape functions, straight lines in logical space should be represented
exactly. A series of tests are conducted to examine the sensitivity to the placement of the
random point. Table I summarizes the results. Three membrane points are placed along a
line in an element. Lines have varying slope. For each line, 100 realizations of the random
point are generated. In every case, correct normals to the membrane point are computed to
within roundo�. However, the condition number of the system (i.e. the condition number
of the normal equations matrix T in Equation 13) varies with the position of the random
point. Figure 3(a-b) shows two realizations for the case of a line with slope one. The open
circles denote the membrane points, the asterisk indicates the random point and the contour
lines denote values of � throughout the element. Note that the membrane points lie on
a contour line with � = 1 and the random point is on a line with � = 0, as expected.
The condition number of the system is larger if the random point is close to being on the
membrane. It is possible to have a large condition number, but it is generally within reason,
as evidenced by the low median condition number over all the trials. It is possible to monitor
the condition number and regenerate the random point if the condition number is deemed
too large; however, we have not found this to be necessary in our simulations to date.

For each slope, we have also tested overdetermined cases where each line is represented by
4 or 8 points within the element. Again, the normals to the line at each point are determined
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slope condition number
minimum maximum median

0.1 3.7e+03 1.3e+08 5.0e+03
0.5 7.8e+01 4.6e+07 1.7e+02
1.0 3.5e+01 4.8e+05 5.9e+01
2.0 2.3e+02 7.3e+16 3.6e+02
10.0 3.7e+03 1.1e+06 5.4e+03
-10.0 3.6e+03 5.1e+06 5.3e+03
-2.0 2.3e+02 1.4e+07 3.3e+02
-1.0 3.5e+01 3.6e+07 6.1e+01
-0.5 3.5e+01 3.6e+07 1.2e+02
-0.1 3.7e+03 2.5e+06 6.0e+03

Table I: Condition number for the normal equations over 100 realizations of the random
point for membranes represented by 3 points along lines with a variety of slopes. Normals
to these lines can be computed exactly in every case using linear shape functions.

exactly, but the condition number of the system varies with the placement of the random
point. A sample of the results is given in Table II, and Figure 3(c-d) shows examples with
4 and 8 points for a line of slope one.

Figure 4(a) shows the results for a nonlinear con�guration of membrane points. The
membrane location is de�ned by placing points along the curve xy + 0:1x + 0:3 = 0. The
bilinear term xy can also be represented exactly for a unit square element by the tensor
product of linear shape functions; so, as expected the normals are computed accurately in
this case, even with only three membrane points representing the curve. In Figure 4(b),
three membrane points are placed along a circle of radius 0.8 centered at the origin. Now,
the contour line � = 1 di�ers slightly from the exact circular arc, and the normals have an
error of 7o maximum. Moving the random point has little e�ect on the maximum error; the
condition number over 100 trials varies between 1.8e+01 and 4.1e+06, with a median value
of 1.1e+02. If the position of the random point is held �xed, as in Figure 4(b), but the
number of membrane points is increased, the maximum error also appears to be una�ected;
although, the average error decreases. The results of varying the number of membrane points
are summarized in Table III. In all cases, the maximum error in the computed normal occurs
at the ends of the membrane segment.

Three Dimensions

In three dimensions, the normal equations provide an 8 by 8 system of equations that must
be solved for the eight nodal values of � for one element on a hexahedral mesh. The system
is underdetermined unless there are at least 7 membrane points and one random point in the
element. Examples using membrane points within a unit cube illustrate the construction.

12



slope 1.0 condition number
# points minimum maximum median

4 3.2e+01 3.2e+05 7.9e+01
8 3.6e+01 1.7e+09 6.5e+01

slope 2.0 condition number
# points minimum maximum median

4 1.3e+02 2.9e+06 1.9e+02
8 1.7e+02 9.9e+05 3.4e+02

slope 10.0 condition number
# points minimum maximum median

4 4.1e+03 5.4e+04 5.8e+03
8 5.7e+03 2.2e+05 7.7e+03

Table II: Condition number over 100 realizations of the random point for membranes repre-
sented by 4 or 8 points along lines with a variety of slopes. Normals to these lines can be
computed exactly in every case using linear shape functions.

# of points max error rms error
3 0.1211 0.0571
4 0.1091 0.0434
8 0.1177 0.0231
16 0.1261 0.0141
32 0.1308 0.0092

Table III: Errors using a varying number of membrane points along a circular arc, keeping
the random point �xed as in Figure 4(b). Errors are in radians and measure the deviation
of the computed normal from the exact normal to the circle.
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(c) condition number 3.4e+01 (d) condition number 5.6e+02

Figure 3: Examples of membrane points located along a line of slope one. In (a) and (b)
three membrane points are used with two di�erent placements of the random point. In (c)
four membrane points are used and in (d) eight are used. Plots show contour lines of � and
the computed normals which have no error using linear shape functions. The exact normals
are also plotted but they are indistinguishable from the computed normals.
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Figure 4: Three membrane points located on the curve (a) xy + 0:1x + 0:3 = 0 and (b)
x2+ y2 = 0:82. In (a) the normals are computed exactly and in (b) the maximum error is 7o

between the exact (dashed) and computed (solid) normals.

Figure 5(a) shows computed normals where nine membrane points are placed on the plane
0:5x + 0:25y � z = 0. The linear shape functions produce normals to the surface without
error since the plane can be represented exactly. When membrane points are placed along
the surface of a sphere x2 + y2 + z2 = 0:82, Figure 5(b), there is an error in the computed
normals. Using 8 membrane points to represent the sphere gives a maximum error of 13o in
the direction of the computed normal, with an rms error of 3o.

Limitations of Linear Shape Functions

The examples considered so far show that the method can give satisfactory normals. How-
ever, there are limitations to using linear shape functions. For example, there are con�gura-
tions of points that cause the matrix in Equation 13 to be singular or nearly singular. For
example, consider a square element of side length one with membrane points on a vertical
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Figure 5: Construction of normals to surfaces in three dimensions using linear shape func-
tions. Membrane points placed on (a) the plane, 0:5x + 0:25y � z = 0, and (b) the sphere,
x2 + y2 + z2 = 0:82. Exact normals (dashed arrows) and computed normals (solid arrows)
are shown.
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Figure 6: Three membrane points located a curve where xp1 and xp2 have the same logical
coordinate, �. Exact normals are shown. Clearly, the normals at xp1 and xp2 do not have
the same x-component, so normals computed using linear shape functions will be inaccurate
for this con�guration.

or horizontal line segment. The system to be solved, Equation 10, has the form2
666666666664

�1(1� �1) �1�1 (1� �1)�1 (1� �1)(1� �1)
�2(1� �2) �2�2 (1� �2)�2 (1� �2)(1� �2)

...
...

...
...

�n(1� �n) �n�n (1� �n)�n (1� �n)(1� �n)

�n+1(1� �n+1) �n+1�n+1 (1� �n+1)�n+1 (1� �n+1)(1� �n+1)

3
777777777775

8>>><
>>>:

�i+1;j

�i+1;j+1

�i;j+1

�i;j

9>>>=
>>>;
=

8>>>>>>>>>>><
>>>>>>>>>>>:

1
1
...

1

0

9>>>>>>>>>>>=
>>>>>>>>>>>;

(15)
where (�k; �k), k = 1; : : : ; n are the coordinates of the membrane points, and (�n+1; �n+1) are
the coordinates of the random point. For a horizontal line, �1 = �2 = : : : = �n. Without
the last row of the matrix, the �rst and fourth columns are multiples of one another, as are
the second and third. Hence, this matrix is nearly rank de�cient and therefore di�cult to
handle numerically. Similarly for membrane points along a vertical line segment. It is worth
noting that perturbing the points generally enables a solution and represents the more likely
scenario in a numerical simulation of membranes.

A more serious limitation of linear shape functions exists, even with systems that can
be solved for nodal values of �. Again, consider a unit element. Equation 11, written in
components, is

((np)x; (np)y)) = (a+ b�; c+ b�);

where a, b and c are constants that depend on the nodal values of �,

a = �i+1;j � �i;j b = �i+1;j+1 � �i+1;j + �i;j � �i;j+1 c = �i;j+1 � �i+1;j+1:

Notice that the x-component, (np)x, only depends on �, and the y-component, (np)y, only
depends on �. Consider membrane points as in Figure 6. Since xp1 and xp2 have the same
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Figure 7: Membrane points are located along a circular arc, (x � 0:5)2 + (y � 0:5)2 = 0:32.
In (a) the x and y components of the membrane points are unique whereas in (b) pairs of
points have the same y component. The maximum error is 6o in (a) and 34o in (b). The
plot shows contours of � and the computed (solid) and exact normals (dashed).

value of �, no matter how the nodal values of � are determined, (np1)x will equal (np2)x.
Clearly having the same x-component for the normal at xp1 and xp2 is inaccurate in this case.
Similar inaccuracies occur if two membrane points have the same y-component. Figure 7
shows two cases where membrane points are located along a circular arc where the center
of the circle is at (0:5; 0:5) and the radius is 0:3. In Figure 7(a) the x and y components of
the membrane points are unique whereas in (b) pairs of points have the same y component.
The inaccuracy in the second case is apparent.

5 Computation of Normals Using High-Order Shape

Functions

Linear b-splines that have been used as shape functions in the construction of normals in
the last section are one member in a family of b-splines generated by a recursion formula
[29]. Starting with splines of order zero,

�s(0)(�) =

(
1 0 � j�j � 1

2

0 j�j > 1
2

the recursion formula for b-splines of order n + 1 is

�s(n+1)(�) =
Z
�s(n)(�0)�s(0)(� � �0)d�0:
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Using zeroth order splines is also known as nearest-grid-point interpolation. The �rst-order
spline, �s(1), is the same function used previously in Equation 6. Quadratic b-splines are given
by,

�s(2)(�) =

8><
>:

3
4
� �2 0 � j�j � 1

2
1
2
(3
2
� j�j)2 1

2
� j�j � 3

2

0 j�j > 3
2

:

The support of a b-spline of order n is [�n+1
2
; n+1

2
]. The support of �s(n) when n is even makes

it more convenient to interpolate to element centers rather than to nodes since interpolating
to nodes requires additional logic to determine in which octant (in three dimensions) a
point lies. When n is odd, interpolation to nodes is more convenient, as with n = 1.
For the hexahedral element de�ned by Equation 4, the element center is the point xC =
x(�+1=2; �+1=2; �+1=2). A basis function using quadratic shape functions can be written

s(2)(� �C) = �s(2)(� � i�
1

2
)�s(2)(� � j �

1

2
)�s(2)(� � k �

1

2
);

where the vector C = (i+ 1=2; j + 1=2; k+ 1=2) gives the logical coordinates of the element
center. The corresponding shape function in physical space is

S(2)(x(�)� xC) = s(2)(� �C):

Higher order b-splines are used similarly to linear shape functions for determining � and
r� as in Equations 10 and 11. Using quadratic shape functions, we want to determine values
of �C at element centers so that

�p =
X
C

�CS
(2)(xp � xC);

where the sum is over all elements. If we assign �p the value one, then again the membrane
surface should roughly correspond to an isosurface. The normal to this surface at xp comes
from taking the gradient,

np =
X
C

�CrS(2)(x� xC)jxp: (16)

6 Examples Using Quadratic Shape Functions

Using quadratic shape functions in one dimension, a single membrane point in element I
contributes to three element centers that have logical coordinates, I�1=2, I+1=2 and I+3=2,
Figure 8. Since there is only one equation for three values of �, there is a two parameter
family of solutions. The normal equations will be a 3 by 3 singular, but consistent system.
Adding a random point still leaves the system underdetermined with a one parameter family
of solutions.

In two dimensions the least squares problem is 9 by 9 and will be underdetermined unless
there are at least 8 membrane points along with one random point. As before, if there are
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Figure 8: Geometry in one dimension. Element I has nodes xI and xI+1 with one material
point, xp, representing the \membrane." A quadratic shape function overlaps element centers
at xI�1=2, xI+1=2 and xI+3=2

.

not enough membrane points, elements can be combined to form a larger element containing
more points. Figure 9 shows examples where membrane points are placed along the arc of a
circle as in Figure 6. Figure 9(a-b) is the same geometry as Figure 7 except that quadratic
shape functions are used to determine �. Even though the system is underdetermined, we are
still able to obtain a solution. In (a) the maximum error is about 3o and in (b) the maximum
error in the direction of the normal is about 19o. With eight membrane points along the same
circular arc, (c) and (d), the system is nonsingular and the error is zero. The calculations for
Figure 9 are done by solving the normal equations. Using a QR-decomposition to solve the
least squares problem [30] leads to a better conditioned system; and the result for Figure 9(b)
is a maximum error of less than one degree.

Exact solutions are not expected using quadratic shape functions with membrane points
placed along the cubic curve y = cx2(x�1)+x+0:5, where c is a constant. Figure 10 shows
two examples with c = 2 and c = 4. In the �rst case, the maximum error is about 1o and
in the second it is 32o, with an rms error of about 5o. The larger error in the second case
is attributed to smaller radius of curvature. With c = 2, the minimum radius of curvature
is about 0:5, and with c = 4, it is about 0:2. To have a well resolved membrane, the radius
of curvature should roughly be at least on the order of the computational mesh size. The
second case is not resolved by the mesh.

In three dimensions, the normal equations will be a system of size 27 by 27 using quadratic
shape functions. Figure 11 shows examples where the element is a unit cube, and membrane
points are located on a plane and on the surface of a sphere. In Figure 11(a), 30 membrane
points are used on the plane 0:5x + 0:25y � z = 0. Figure 11(b) uses 29 membrane points
placed on the surface of the sphere x2 + y2 + z2 = 0:82 The normals are computed exactly
in both cases.

7 Summary of the MPM Computational Cycle

The preceeding algorithm for constructing normals to a surface is combined with the MPM
to simulate 
uid-�lled membranes. In this Section, the MPM algorithm is summarized;
details can be found in the references. Initialization of the material points is described in
Section 2. Let xnp , p = 1; : : : ; Np denote the current position of material point p at time
tn. Each point at time tn has an associated mass, mp, density, �

n
p , velocity, v

n
p , Cauchy

stress tensor, �n
p , strain, e

n
p , and any other internal variables necessary for the constitutive
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Figure 9: Examples of membrane points located along an arc of the circle (x� 0:5)2 + (y �
0:5)2 = 0:32. Plots show contour lines of �, computed normals (solid) using quadratic shape
functions, and exact normals (dashed). The maximum error is (a) 3o and (b) 19o for the
underdetermined systems and zero in (c) and (d) for the nonsingular systems.
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Figure 10: Examples using quadratic shape functions with membrane points located along
a cubic curve, y = cx2(x � 1) + x + 0:5. In (a) c = 2 and the maximum error is 1o, and in
(b) c = 4 and the maximum error is 32o. Plots show contour lines of �, computed normals
(solid) and exact normals (dashed).
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Figure 11: Examples using quadratic shape functions with (a) 30 membrane points located on
the plane 0:5x+0:25y�z = 0, and (b) 29 points on the surface of the sphere x2+y2+z2 = 0:82.
The computed normals are exact.
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model. If temperature changes are important, internal energy or temperature may also
be ascribed to the material points. The material point mass is constant in time, insuring
that the continuity equation is satis�ed. Other variables must be updated with reference to
conservation of momentum, conservation of energy, or from the constitutive model.

To make the computations tractable, at each time step of a dynamic algorithm, infor-
mation from the material points is interpolated to a background computational mesh. This
mesh covers the computational domain and is chosen for computational convenience. The
mesh, described previously in Section 2, is composed of hexahedral elements in three dimen-
sions, and quadrilateral elements in two dimensions. After information is interpolated to
the grid, equations of motion are solved on this mesh which is considered to be an updated
Lagrangian frame.

To solve the momentum equation on the grid using an explicit FE algorithm, one must
know the value of the momentum at the beginning of the time step at the nodal positions.
The nodal momentum, mn

Iv
n
I , is the product of the nodal mass and nodal velocity, and each

is determined by interpolation,

mn
I =

NpX
p=1

mpS(x
n
p � xI)

mn
Iv

n
I =

NpX
p=1

mpv
n
pS(x

n
p � xI):

In the above, S(x � xI) is the nodal basis function associated with node I introduced
previously (Equation 9).

The internal forces are determined from the particle stresses according to

f
int
I = �

NpX
p=1

G
n
Ip�

n
pmp=�p:

The quantity Gn
Ip is the gradient of the nodal basis function evaluated at the material point

position,Gn
Ip = rS(x�xI)jxnp . The momentum equation is solved with the nodes considered

to be moving with the deformation to give nodal velocities, vL
I , at the end of this Lagrangian

time step of size �t,

mn
I

v
L
I � v

n
I

�t
= f

int
I +mn

Ib
n
I :

The external forces at the nodes, bn
I = b(xI), are computed easily.

At the end of this Lagrangian step, the new nodal values of velocity are used to update
the material points. The material points move along with the nodes according to the solution
given throughout the elements by the nodal basis functions

x
n+1
p = x

n
p +�t

NnX
I=1

v
L
I S(x

n
p � xI):
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Similarly, the material point velocity is updated via

v
n+1
p = v

n
p +

NnX
I=1

fvL
I � v

n
pgS(x

n
p � xI):

The sums in these last two equations extend from 1 to Nn where Nn is the number of nodes
in the computational mesh.

A strain increment for each material point is determined using the gradient of the nodal
basis function,

�ep =
�t

2
(Gn

Ipv
L
I + (Gn

Ipv
L
I )

T ):

This strain increment is then used in an appropriate constitutive equation for the material
being modeled to update the stress at the material point. The constitutive equation for a
membrane point is similar to that for a solid, except the strain increment is projected onto
the local, normal-tangential coordinate system for the membrane and only the tangential
components of the strain contribute to the stress [24, 25]. Any internal variables necessary
in the constitutive model can also be assigned to the material points and transported along
with them. Once the material points have been completely updated, the computational mesh
may be discarded and a new mesh de�ned, if desired, and then the next time step is begun.

The material point method has several advantages. The Lagrangian description provided
by the material points can undergo large deformations without mesh tangling because the
points are not connected. Since the computational mesh is under user control, it can be
chosen so that reasonable time steps may be taken in this Lagrangian frame. Usually, the
time step is restricted by the CFL condition for an explicit algorithm, where the critical time
step is the ratio of the mesh size to the wave speed. Note that this condition depends on the
more favorable mesh spacing, not the material point spacing. Since equations are solved in
an updated Lagrangian frame on the FE mesh, the nonlinear convective terms troublesome
in Eulerian formulations, are not an issue. Finally, the material points transport material
properties and internal variables without error.

8 Numerical Examples

The two-dimensional MPM code is capable of treating solids with a variety of constitutive
models, membranes and polytropic gasses. In this section, simulations using this code on

uid-�lled membranes demonstrate the calculation of normals in a dynamic setting. We have
implemented the construction of normals in an element-by-element manner, for elements
containing membrane points, as detailed in the preceeding sections of this paper. More
speci�cally, a hybrid algorithm is employed. Quadratic b-splines are generally used in the
construction of the normals, provided the element has at least seven membrane points. If
there are fewer than seven membrane points in the element, but more than three membrane
points, linear b-splines are used. If an element contains fewer than three membrane points,
four neighboring elements are joined together to form a larger element and linear b-splines
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are used in conjunction with all the membrane points in this larger element. This strategy
avoids underdetermined systems of equations.

The algorithm for computing normals without connectivity is compared with a more
standard approach using connectivity of the membrane points. In two dimensions, the
membrane is represented by a line of material points, as sketched in Figure 2. The material
points can be generated in a list where the neighboring material points are the neighbors in
the list (i.e. the material point with position xp has neighbors, xp�1 and xp+1). If there are
no ruptures, this list is maintained and connectivity is easy to track. The unit tangent vector
to the membrane surface is also easily computed; it is the vector in the direction xp+1�xp�1,
normalized by its length.

The �rst test problem involves an initially slack circular membrane �lled with a pressur-
ized gas. Due to symmetry, only one quarter of the circle is used in the simulation. Fig. 12
shows the initial con�guration of 91 material points making up one quarter of the mem-
brane, and the internal gas. The gas is represented by 16 material points initially in each
computational element. The �gure also shows normals to the membrane computed with and
without connectivity. The membrane radius is initially 0.5, with a Young's modulus of 106

and Poisson's ratio of 0.3, density of 0.5, and thickness 0.1. The internal, gamma-law gas
has 
 = 1:4, an initial pressure of 1000, and density of 1.0. Viscosity (� = 0:2) is added to
the gas in order to damp the motion and reach a steady-state during the simulation. The
computational grid is a 10� 10 mesh of square elements of length 0.1 on each side. A time
step of 0.7�10�4 is used to satisfy the CFL condition based on the mesh size and elastic
wave speed for this time-explicit, dynamic calculation. The units are dimensionless for the
examples in this section.

On the left of Fig. 12, are the results of the simulation using using the local isosurface
construction of this paper, and on the right, normals are computed using connectivity. From
the initial state, the gas expands and pressurizes the membrane. After oscillating, the internal
pressure is eventually balanced by the hoop stress in the membrane. The �nal con�guration
is in the lower half of the �gure for both methods at a time of 0.05. Normal vectors 
ipped
in direction from the majority is a reminder that the local isosurface construction does not
distinguish between inward and outward pointing normals. Since the radius of curvature of
the membrane is larger than the mesh size, normals are computed quite accurately. Fig. 13
compares the pressure as a function of time for the two methods. The pressure history is
quite similar, especially for early times. There is a drift after a large number of timesteps.

A more stringent test is given in the next example. Again, an initially slack membrane
is �lled with a pressurized gas. However, the initial membrane shape as shown in Fig. 14
is more complicated than the last, circular example. The �gure shows the initial dogbone
shape, where quarter-symmetry is imposed in the computation. Each frame of the �gure
has the results using the local isosurface construction on the left and normals computed
using connectivity on the right. In this case, 100 material points are used to discretize one
quarter of the membrane on a background 10� 10 mesh of size 0.2. The gas is represented
by 64 material points per computational element. The gamma-law gas with 
 = 1:4 has an
initial pressure of 100, density of 1.0, and viscosity of 0.2. The membrane has a Young's
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(a) (b)

(c) (d)

Figure 12: Gas-�lled membrane expansion initially (top) and at equilibrium (bottom). On
the left normals to the membrane are computed using the isosurface construction method
and on the right normals are computed using connectivity.
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Figure 13: Comparison of the pressure as a function of time in the example of Fig. 12.
The dotted line is the history using connectivity and the solid line is for the isosurface
reconstruction method.

Figure 14: Gas-�lled membrane expansion initially and at equilibrium. The left half of each
frame has normals computed using the local isosurface construction and the right half uses
connectivity.
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Figure 15: Comparison of the pressure as a function of time in the example of Fig. 14.
The dotted line is the history using connectivity and the solid line uses the local isosurface
construction.

modulus of 106, Poisson's ratio 0.3, density 0.5 and thickness 0.1. The time step is 0.7�10�4.
As before, the gas expands to �ll the membrane, the gas-membrane system oscillates until
viscous damping brings it to rest in an equilibrium con�guration where the internal pressure
is balanced by the hoop stress in the membrane. The �nal con�guration is also shown in
Fig. 14. Fig. 15 shows the pressure as a function of time for this problem, comparing the
two methods for computing the normals. The equilibrium pressure is the same with both
methods, but there is some variation in the time history.

This problem is challenging because there is a high curvature region that is not well
resolved by the mesh at early stages of the deformation. Fig. 16 shows two early time
steps in the calculation. Neither method does an entirely satisfactory job in computing the
normals to this irregular surface, although connectivity gives better results. As we have seen
in some of the test cases in the previous sections of this paper, endpoints of a membrane
segment might not have a completely accurate normal and this is occasionally the case in
these dynamic simulations for some time steps. Although not a problem in the test cases, we
also �nd that the surface construction allows a function � with the value 1 as the maximum.
In this case, the gradient of � is zero along the membrane and the normal is not de�ned.
This observation accounts for other time steps where the normals in some element are not
accurate. We have experimented with adding an extra random point assigned the value
� = 2 so that a gradient is present, and 1 is not the maximum; however the overall quality
of the simulation is not a�ected.

Initially, membrane points are placed along a smooth surface and Fig. 14 shows the
calculation of the normals to that smooth surface is accurate. As the simulation proceeds,
the membrane points can have small-scale, high-frequency 
uctuations in position. If the
surface reconstruction tries to follow this high-frequency noise, the normals will not be
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Figure 16: Gas-�lled membrane expansion after 4 and 7 timesteps. The left half of each
frame has normals computed using the local isosurface construction and the right half uses
connectivity.

accurate. Although we have not tried it, some smoothing of the membrane-point positions
prior to determining the function � could be bene�cial.

9 Conclusions

This paper introduces an algorithm for constructing surface normals for a surface represented
by an unconnected set of points. The main idea is to construct, at least locally, a function that
has the given surface as an isosurface. This construction is accomplished by solving a system
of equations for nodal values o� the surface so that interpolation from the nodes back to the
surface gives the correct value. Gradients of this function provide the normal to the surface.
Sections 3 and 5 utilize linear and higher-order b-splines for this purpose. Interpolation
nodes are chosen on a logically rectangular mesh in two dimensions and on a hexadehral
mesh in three dimensions. The examples in Sections 4 and 6 show that satisfactory results
can be achieved if the surface curvature is not too large compared with the mesh spacing.
It is also seen that the construction can be carried out locally so that only small systems of
linear equations need to be solved for each element of the mesh containing membrane points.

The technique for computing surface normals has been combined with the material-point
method, a continuum mechanics code. Numerical examples using the new methodology to
simulate 
uid-membrane interactions are presented in Section 8. A dynamic problem, where
a pressurized membrane with complicated geometry is allowed to expand to its equilibrium
shape, indicates the feasibility of the method for use in complex modeling and simulation.
The treatment of the membrane interface and its interaction with 
uid is simple in the MPM
and avoids CPU-intensive work necessary in other methods. One major advantage is the
ease of meshing bodies and interfaces, since points only have to be identi�ed inside a body
or on the membrane surface, and no connectivity is required among the points.
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The reconstruction of surface geometry from disconnected points on the surface is poten-
tially useful in many physical problems. This capability essentially combines advantageous
features of surface tracking methods with those that capture the surface. Information about
the surface location is known from points on the surface, but topology changes are numeri-
cally tractable since the points are not connected. Normals to the surface can be computed
satisfactorily using quadratic shape functions. For other applications, like surface tension,
that also require information about the curvature of the surface, higher-order shape functions
are required which allow an additional smooth derivative of the normal. The simplicity of the
method makes it feasible to study the complicated physics often associated with interfaces
in continua.
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