

(a) straight line segments from $(1,0)$ to $(1,1)$, then to $(-1,1)$, then to $(-1,0)$.

(b) straight line segments from $(1,0)$ to $(1,-1)$, then to $(-1,-1)$, then to $(-1,0)$.

Show that although $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, the line integral is dependent on the path joining $(1,0)$ to $(-1,0)$ and explain.

Ans. (a) π (b) $-\pi$

51. By changing variables from (x,y) to (u,v) according to the transformation $x = x(u,v)$, $y = y(u,v)$, show that the area A of a region R bounded by a simple closed curve C is given by

$$A = \iint_R \left| J\left(\frac{x,y}{u,v}\right) \right| du dv \quad \text{where} \quad J\left(\frac{x,y}{u,v}\right) \equiv \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{vmatrix}$$

is the Jacobian of x and y with respect to u and v . What restrictions should you make? Illustrate the result where u and v are polar coordinates.

Hint: Use the result $A = \frac{1}{2} \int x dy - y dx$, transform to u,v coordinates and then use Green's theorem.

52. Evaluate $\iint_S \mathbf{F} \cdot \mathbf{n} dS$, where $\mathbf{F} = 2xy \mathbf{i} + yz^2 \mathbf{j} + xz \mathbf{k}$ and S is:

(a) the surface of the parallelepiped bounded by $x=0, y=0, z=0, x=2, y=1$ and $z=3$,

(b) the surface of the region bounded by $x=0, y=0, y=3, z=0$ and $x+2z=6$.

Ans. (a) 30 (b) 351/2

53. Verify the divergence theorem for $\mathbf{A} = 2x^2y \mathbf{i} - y^2 \mathbf{j} + 4xz^2 \mathbf{k}$ taken over the region in the first octant bounded by $y^2 + z^2 = 9$ and $x=2$. Ans. 180

54. Evaluate $\iint_S \mathbf{r} \cdot \mathbf{n} dS$ where (a) S is the sphere of radius 2 with center at $(0,0,0)$, (b) S is the surface of

the cube bounded by $x=-1, y=-1, z=-1, x=1, y=1, z=1$, (c) S is the surface bounded by the paraboloid $z = 4 - (x^2 + y^2)$ and the xy plane. Ans. (a) 32π (b) 24 (c) 24π

55. If S is any closed surface enclosing a volume V and $\mathbf{A} = ax \mathbf{i} + by \mathbf{j} + cz \mathbf{k}$, prove that $\iint_S \mathbf{A} \cdot \mathbf{n} dS = (a+b+c)V$.

56. If $\mathbf{H} = \text{curl } \mathbf{A}$, prove that $\iint_S \mathbf{H} \cdot \mathbf{n} dS = 0$ for any closed surface S .

57. If \mathbf{n} is the unit outward drawn normal to any closed surface of area S , show that $\iiint_V \text{div } \mathbf{n} dV = S$.

58. Prove $\iiint_V \frac{dV}{r^2} = \iint_S \frac{\mathbf{r} \cdot \mathbf{n}}{r^2} dS$.

59. Prove $\iint_S r^5 \mathbf{n} dS = \iiint_V 5r^3 \mathbf{r} dV$.

60. Prove $\iint_S \mathbf{n} dS = \mathbf{0}$ for any closed surface S .

61. Show that Green's second identity can be written $\iiint_V (\phi \nabla^2 \psi - \psi \nabla^2 \phi) dV = \iint_S (\phi \frac{d\psi}{dn} - \psi \frac{d\phi}{dn}) dS$

62. Prove $\iint_S \mathbf{r} \times d\mathbf{S} = \mathbf{0}$ for any closed surface S .