

Solutions, 311-XXVIII

December 2, 2011

Sec. 5.(5) p.299(1*,2*,3*), Schaum's p.134(63*,64,65*,66)

1 Problem 5.5.3

Prove

$$\int \int_S \nabla \phi \times \nabla \psi \cdot d\mathbf{S} = \oint_C \phi \nabla \psi \cdot d\mathbf{R} .$$

Solution:

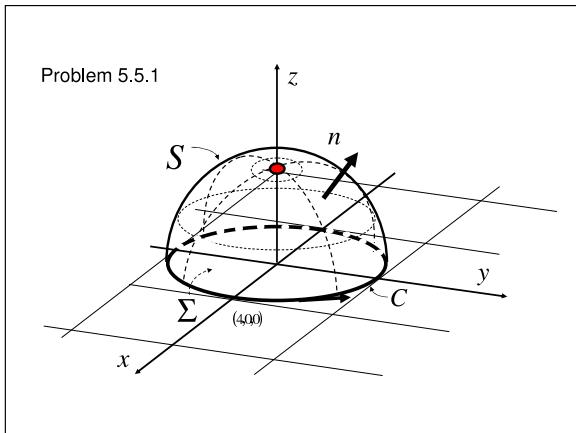
2 Problem 5.5.1

Given the vector field $\mathbf{F} = 3y\mathbf{i} + (5 - 2x)\mathbf{j} + (z^2 - 2)\mathbf{k}$, find

1. $\nabla \cdot \mathbf{F}$.
2. $\nabla \times \mathbf{F}$.
3. The surface integral of the normal component of $\nabla \times \mathbf{F}$ over the open hemispherical surface $x^2 + y^2 + z^2 = 4$ above the xy plane.

[Hint: By a double application of Stokes' theorem, part (3) can be reduced to a triviality.]

Solution:



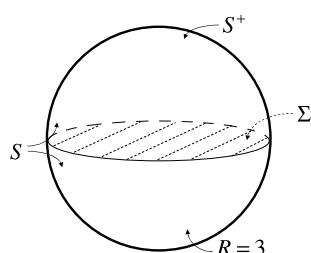
3 Problem 5.5.2

Given that $\nabla \times \mathbf{F} = 2y\mathbf{i} - 2x\mathbf{j} + 3\mathbf{k}$, find the surface integral of the normal component of $\nabla \times \mathbf{F}$ (not \mathbf{F} !) over

1. The open hemispherical surface $x^2 + y^2 + z^2 = 9$, $z > 0$.
2. The sphere $x^2 + y^2 + z^2 = 9$.

Solution:

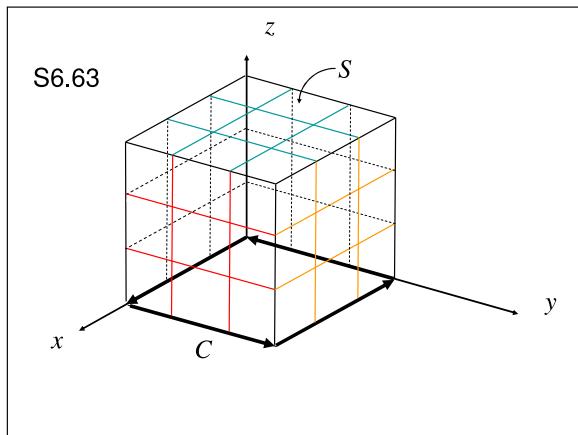
Problem 5.5.2



4 Problem S6.63, p.134

Verify Stokes' theorem for $\mathbf{A} = (y - z + 2)\mathbf{i} + (yz + 4)\mathbf{j} - xz\mathbf{k}$ where S is the surface of the cube $x = 2, y = 2, z = 2, x = 0, y = 0, z = 0$, over the xy plane (i.e. the face $z = 0$ is open).

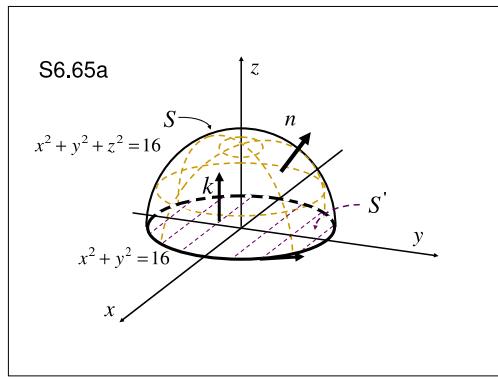
Solution:



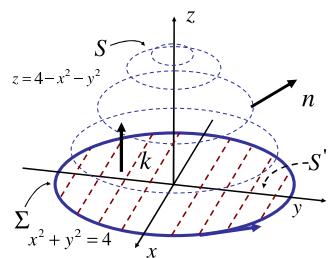
5 Problem S6.65, p.134

Evaluate $\iint_S (\nabla \times \mathbf{A}) \cdot \mathbf{n} dS$ where $\mathbf{A} = (y - z + 2)\mathbf{i} + (yz + 4)\mathbf{j} - xz\mathbf{k}$ and S is the surface of (a) the hemisphere $x^2 + y^2 + z^2 = 16$ above the xy plane and (b) the paraboloid $z = 4 - (x^2 + y^2)$ above the xy plane.

Solution:



S6.65b



1

6