

311 Fall 2006 – TEST II

Name: _____

November 1, 2006

INSTRUCTIONS:

ALL PROBLEMS ARE WEIGHTED EQUALLY!

DO ALL FOUR PROBLEMS!

One full page of notes is allowed.

Problem	grade
1	
2	
3	
4	
5	
Total	

(1 – 25 pts) Compute scalar and vector potentials for the 2-dimensional field

$$\mathbf{F} = e^x \sin y \mathbf{i} + e^x \cos y \mathbf{j}$$

(2 – 25 pts) Evaluate the integral

$$\int \int_S ((y+1)\mathbf{i} + (2x+1)\mathbf{j} + zk) \cdot d\mathbf{S}$$

where S is the surface of the triangle with vertices at $(2, 0, 0)$, $(0, 0, 2)$, $(0, 1, 0)$ and normal pointing away from the origin.

(3 – 25 pts) Compute the flux of the vector field

$$\mathbf{F} = ze^y \mathbf{i} - xz \cos z \mathbf{j} + (z+1) \mathbf{k}$$

over the open hemisphere $x^2 + y^2 + z^2 = 1, z \geq 0$.

(hint: use the divergence theorem to relate the desired integral to the sum of an easier surface integral and a volume integral).

(4 – 25 pts) Find $I := \oint_C \mathbf{F} \cdot d\mathbf{R}$ where C is the ellipse of intersection of the cylinder $x^2 + y^2 = 1$ with the plane $z = y$ and $\mathbf{F} = xi + (x+y)\mathbf{j} + (x+y+z)\mathbf{k}$:

(a – 12 pts) By direct evaluation of the line integral.

(b – 13 pts) By applying Stoke's theorem to convert to a surface integral over an appropriate surface.