Solutions, 311-XXV

April 18, 2003

Sec. 5.(5) p.299(1*,2*,3*), Schaum's p.134(63*,64,65*,66)

1 Problem 5.5.3

Prove

$$\int \int_{S} \nabla \phi \times \nabla \psi \cdot d\mathbf{S} = \oint_{C} \phi \nabla \psi \cdot d\mathbf{R} \ .$$

Solution:

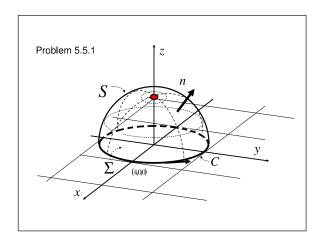
2 Problem 5.5.1

Given the vector field $\mathbf{F} = 3y\mathbf{i} + (5-2x)\mathbf{j} + (z^2-2)\mathbf{k}$, find

- 1. $\nabla \cdot \mathbf{F}$.
- 2. $\nabla \times \mathbf{F}$.
- 3. The surface integral of the normal component of $\nabla \times \mathbf{F}$ over the open hemispherical surface $x^2 + y^2 + z^2 = 4$ above the xy plane.

 $[Hint: \ \, \mbox{By a double application of Stokes' theorem, part (3) can be reduced to a triviality.]}$

Solution:



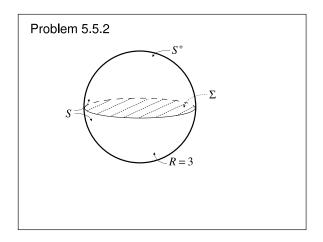
-

3 Problem 5.5.2

Given that $\nabla \times \mathbf{F} = 2y\mathbf{i} - 2x\mathbf{j} + 3\mathbf{k}$, find the surface iintegral of the normal component of $\nabla \times \mathbf{F}$ (not \mathbf{F} !) over

- 1. The open hemispherical surface $x^2 + y^2 + z^2 = 9$, z > 0.
- 2. The sphere $x^2 + y^2 + z^2 = 9$.

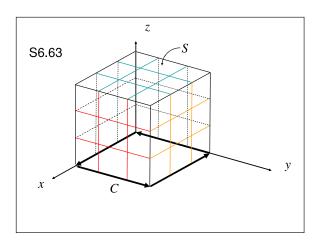
Solution:



4 Problem S6.63, p.134

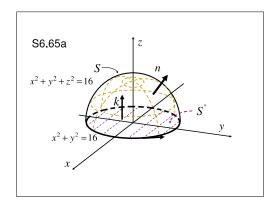
Verify Stokes' theorem for $\mathbf{A} = (y-z+2)\mathbf{i} + (yz+4)\mathbf{j} - xz\mathbf{k}$ where S is the surface of the cube $x=2,\ y=2,\ z=2,\ x=0,\ =0,\ z=0,$ over the xy plane (i.e. the face z=0 is open).

Solution:



5 Problem S6.65, p.134

Evaluate $\int \int_S (\nabla \times \mathbf{A}) \cdot \mathbf{n} dS$ where $\mathbf{A} = (y - z + 2)\mathbf{i} + (yz + 4)\mathbf{j} - xz\mathbf{k}$ and S is the surface of (a) the hemisphere $x^2 + y^2 + z^2 = 16$ above the xy plane and (b) the paraboloid $z = 4 - (x^2 + y^2)$ above the xy plane. **Solution:**



5

