Solutions, 311-XXVII

April 28, 2003

Sec. 5.2 (1*,2*,8a*), S6.74*, p.134

1 Problem 5.2.1, p.284

Evaluate

$$\int \int_{S} \left[\frac{1}{R} \nabla \phi - \phi \nabla \left(\frac{1}{R} \right) \right] \cdot d\mathbf{S}$$

over the surface of the sphere $(x-3)^2+y^2+z^2=25$, where $\phi=xyz+5$. Solution:

2 Problem 5.2.2, p.284

Evaluate

$$\int \int_{S} \left[\phi \nabla \left(\frac{1}{R} \right) - \frac{1}{R} \nabla \phi \right] \cdot d\mathbf{S}$$

- 1. over the surface of the ellipsoid $x^2/9+y^2/16+z^2/25=1$, where $\phi=x^2+y^2-2z^2+4$.
- 2. over the surface of the cylindrical pillbox bounded by $x^2+y^2=25$ and $z=\pm 10$, where $\phi=x^2-z^2+5$.

Solution:

3 Problem 5.2.8a, p.285

Let the domain D be bounded by the surface S as in the divergence theorem, and assume that all fields satisfy the appropriate differentiability conditions. Prove the identity:

$$\int \int \int_D \nabla \phi \cdot \nabla \times \mathbf{F} dV = \int \int_S \mathbf{F} \times \nabla \phi \cdot d\mathbf{S} \ .$$

Solution:

4 Problem S6.74, p.134

If a region V bounded by a surface S has a continuous charge (or mass) distribution of density ρ , the potential $\phi(P)$ at a point P is defined by

$$\phi = \int \int \int_{V} \frac{\rho dV}{r} \ .$$

Deduce the following under suitable assumptions:

- 1. $\iint_S \mathbf{E} \cdot d\mathbf{S} = 4\pi \iint_V \rho dV$, where $\mathbf{E} = -\nabla \phi$.
- 2. $\nabla^2 \phi = -4\pi \rho$ (Poisson's equation) at all points P where charges exist, and $\nabla^2 \phi = 0$ (Laplace's equation) where no charges exist.

Solution: