Homework #2 Solutions

Math 311

p. 51, #3: Find the area of the triangle with vertices (1, 1, 2), (2, 3, 5), (1, 5, 5).

Solution: Set

$$\mathbf{A} = (2-1)\mathbf{i} + (3-1)\mathbf{j} + (5-2)\mathbf{k}, \quad \mathbf{B} = (1-1)\mathbf{i} + (5-1)\mathbf{j} + (5-2)\mathbf{k}.$$

Check that $\mathbf{A} \times \mathbf{B} = -6\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$. Since the area, A, of the triangle is $A = (1/2)|\mathbf{A} \times \mathbf{B}|$, one gets that $A = \sqrt{61}/2$.

p. 51, #11: By taking the vector cross product of $\mathbf{A} = \cos \theta \, \mathbf{i} + \sin \theta \, \mathbf{j}$ with $\mathbf{B} = \cos \psi \, \mathbf{i} + \sin \psi \, \mathbf{j}$ and interpreting geometrically, derive a well-known geometric identity.

Solution: It is straightforward to compute that

$$\mathbf{A} \times \mathbf{B} = (\cos \theta \sin \psi - \cos \psi \sin \theta) \mathbf{k}.$$

Furthermore, one can check that $|\mathbf{A}| = |\mathbf{B}| = 1$. Assuming that $\psi > \theta$, the positive angle between **A** and **B** is $\phi = \psi - \theta$. By definition,

$$\mathbf{A} \times \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \sin \phi \, \mathbf{n}$$
$$= \sin \phi \, \mathbf{n},$$

where **n** is the unit vector perpendicular to both **A** and **B** which follows the right-hand rule. Since $\phi > 0$, one has that $\mathbf{n} = \mathbf{k}$; hence, by equating the coefficients of the two expressions for $\mathbf{A} \times \mathbf{B}$ one gets that

$$\sin(\psi - \theta) = \sin \phi = \cos \theta \sin \psi - \cos \psi \sin \theta$$
.

p. 51, #21: Express $\mathbf{B} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ as the sum of a vector parallel, plus a vector perpendicular, to $\mathbf{A} = 2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$.

Solution: The vector parallel to \mathbf{A} , \mathbf{B}_{\parallel} , is given by

$$\mathbf{B}_{\parallel} = rac{\mathbf{A} \cdot \mathbf{B}}{\mathbf{A} \cdot \mathbf{A}} \, \mathbf{A} = -rac{1}{4} \, \mathbf{A} = -rac{1}{2} \, \mathbf{i} - \, \mathbf{j} + rac{1}{2} \, \mathbf{k}.$$

The vector perpendicular to $\mathbf{A}, \mathbf{B}_{\perp}$, is given by

$$\mathbf{B}_{\perp} = \mathbf{B} - \mathbf{B}_{\parallel} = \frac{5}{2}\mathbf{i} + \frac{5}{2}\mathbf{k}.$$

p. 57, #2: Find the volume of the parallelepiped whose coterminal edges are arrows representing the vectors $\mathbf{A} = 3\mathbf{i} + 4\mathbf{j}$, $\mathbf{B} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$, $\mathbf{C} = 5\mathbf{k}$.

Solution: The volume, V, is given by the triple scalar product, i.e.,

$$V = |[\mathbf{A}, \mathbf{B}, \mathbf{C}]| = |\mathbf{A} \times \mathbf{B} \cdot \mathbf{C}| = 5. \quad \blacksquare$$

p. 57, #6: Find the equation of the plane passing through the origin parallel to the vectors $\mathbf{A} = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and $\mathbf{B} = \mathbf{i} - \mathbf{j} + 5\mathbf{k}$.

Solution: A vector perpendicular to the plane, **n**, is given by

$$\mathbf{n} = \mathbf{A} \times \mathbf{B} = 3\mathbf{i} - 17\mathbf{j} - 4\mathbf{k}.$$

The equation of the plane is then

$$3(x-0) - 17(y-0) - 4(z-0) = 0,$$

i.e.,
$$3x - 17y - 4z = 0$$
.

p. 60, #11: Simplify $[\mathbf{A} \times (\mathbf{A} \times \mathbf{B})] \times \mathbf{A} \cdot \mathbf{C}$.

Solution: Upon using vector identity (1.30), it is seen that

$$\mathbf{A} \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{A} \cdot \mathbf{B}) \mathbf{A} - (\mathbf{A} \cdot \mathbf{A}) \mathbf{B}.$$

Since $\mathbf{A} \times \mathbf{A} = \mathbf{0}$, one then gets that

$$[\mathbf{A} \times (\mathbf{A} \times \mathbf{B})] \times \mathbf{A} = -(\mathbf{A} \cdot \mathbf{A}) \mathbf{B} \times \mathbf{A}$$

$$= (\mathbf{A} \cdot \mathbf{A}) \mathbf{A} \times \mathbf{B}.$$

Upon using the definition of the scalar triple product, one finally sees that

$$[\mathbf{A} \times (\mathbf{A} \times \mathbf{B})] \times \mathbf{A} \cdot \mathbf{C} = (\mathbf{A} \cdot \mathbf{A}) [\mathbf{A}, \mathbf{B}, \mathbf{C}].$$