311-TEST I

Name:_____

September 20, 2006

(1 – 25pts) Consider the helix $x=5\sin 4t$, $y=5\cos 4t$, z=10t. In (a-d) find as functions of time:

- 1. The speed
- 2. The tangential and normal components of acceleration
- 3. The unit tangent vector \mathbf{T} .
- 4. The curvature of the curve and, in addition:
- 5. Find the arc length from t = 0 to $t = \pi/2$.

(2 - 13pts) Find an equation of the line passing through the points (1, 4, -1) and (2, 2, 7) in both parametric and non-parametric forms.

(3 - 15pts) Consider the scalar field $f(x, y, z) = x^2 + 2y^2 + 3z^2$.

- 1. Find the magnitude of the greatest rate of change at the point (1, 3, -2) and
- 2. the unit vector in the direction of the greatest rate of change at the same point, (1, 3, -2).
- 3. Find the directional derivative at (1, 3, -2) in the direction of the vector $-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$.

 $(\mathbf{4}-\mathbf{20}\ \mathbf{pts})$ Consider the triangle ABC in the figure (1), where the lines AL and BS bisect the sides BC and AC respectively. Show that $\vec{OS} = \frac{1}{2}\vec{BO}$ or, equivalently, that $\vec{OS} = \frac{1}{3}\vec{BS}$ and $\vec{BO} = \frac{2}{3}\vec{BS}$.

(HINT: write $\vec{BO} = t\vec{BS}$ and also $\vec{BO} = \vec{BL} + r\vec{LO}$. Then express \vec{BS} , \vec{BL} and \vec{LO} in terms of the two non-colinear vectors \vec{AC} and \vec{BC} and determine

t and r.)

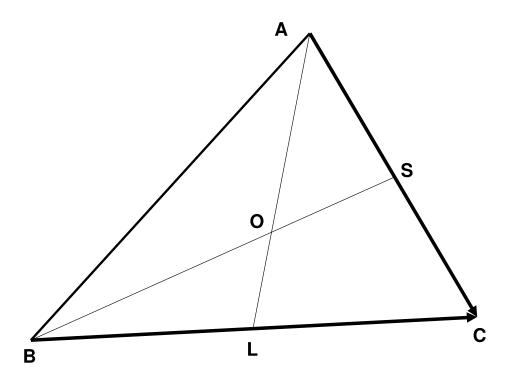


Figure 1: The triangle for problem 5

 $(5-15 \mathrm{pts})$ Find an equation of the plane tangent to the surface

$$z - x^2 - y^2 = 0$$
 at $(2, 3, 13)$.

(6 – 12 pts) Consider the vector field $\mathbf{F} = e^{xy}\mathbf{i} + \sin xy\mathbf{j} + \cos^2 xz\mathbf{k}$. Find

- 1. $\nabla \cdot \mathbf{F}$.
- 2. $\nabla \times \mathbf{F}$.