311-TEST II

Name:	

September 20, 2006

INSTRUCTIONS: ALL PROBLEMS ARE WEIGHTED EQUALLY! DO ALL FOUR PROBLEMS! One full page of notes is allowed.

Problem	grade
1	
2	
3	
4	
Total	

(1 – 25pts) Given that $\phi(x, y, z)$ is a differentiable scalar field, $\mathbf{R} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, $R = |\mathbf{R}|$ and \mathbf{A} is a constant vector field, compute (using appropriate vector identities, if you need to):

- 1. $\nabla \cdot (\mathbf{A} \times \mathbf{R})$
- 2. $\nabla (\mathbf{A} \cdot \mathbf{R})$
- 3. $\nabla \cdot \left(\frac{\mathbf{A} \times \mathbf{R}}{R} \right)$ and, in addition:
- 4. Prove (give all details!) the vector identity:

$$\nabla \times \nabla \phi = 0 \ .$$

(2-25) Consider the vector field $\mathbf{F} = 2xy\mathbf{i} + (x^2+z)\mathbf{j} + y\mathbf{k}$

- 1. Use an appropriate parametrization to compute the line integral $I = \int_C \mathbf{F} \cdot d\mathbf{R}$ where C is the straight line from the point (0,0,0) to the point (1,1,1).
- 2. Show that \mathbf{F} is irrotational and compute a scalar potential. Here you must carry out the computation explicitly, just guessing won't do!
- 3. Compute (by any method applicable) $I = \int_C \mathbf{F} \cdot d\mathbf{R}$ where now C is the curve $x = \sin \theta$, $y = \sin^2 \theta$, $z = 2\theta/\pi$ with $0 \le \theta \le \pi/2$.

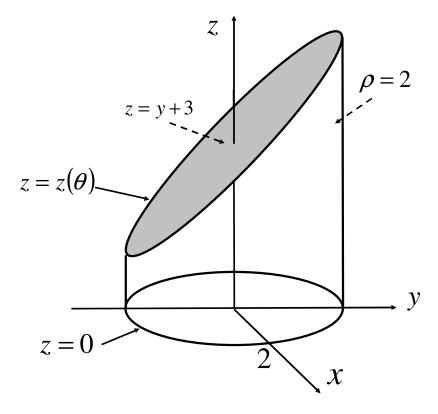


Figure 1: The cylinder for problem 3: the integration is to be carried out over the lateral surface

(3 – 25pts) Evaluate $\int \int_S z^2 dS$, where S is the part of the lateral surface of the right circular cylinder $x^2 + y^2 = 4$ between the planes z = 0 and z = y + 3.

(4-25 pts) Consider the triangle with vertices (-1,0,0), (0,2,0), (0,0,1). Compute the surface integral $\Phi = \int \int \mathbf{F} \cdot \mathbf{n} dS$ over the surface of the triangle, where \mathbf{n} is the unit normal to the surface chosen so that its projection on the z-axis points in the positive z-direction (i.e. $\mathbf{n} \cdot \mathbf{k} > 0$) and \mathbf{F} is the vector field $\mathbf{F} = xy\mathbf{i} - zx\mathbf{j} + y\mathbf{k}$.