V. Coutsias

- 1. (15pts.)
 - (a) (5pts) For which complex numbers does

$$\left| e^{-iz} \right| < 1$$

hold?

(b) (10pts) Find all values of

$$\sqrt{3+4i} + \sqrt{3-4i} \quad .$$

- 2. (10pts.) Show that the function $f(z) = \bar{z}$ is nowhere differentiable.
- 3. (20pts.) Find all values of z such that
 - (a) $e^z = 1 + i\sqrt{3}$.
 - (b) $\tan z = 2i$.
 - (c) $z^i = 1$.
 - (d) $\log (i + \sqrt{z^2 + 3}) = -\frac{\pi}{2}i$.
- 4. (15pts.) Show that $u(x, y) = \ln \sqrt{x^2 + y^2}$ is harmonic in some domain (which?) and find a harmonic conjugate v(x, y).
- 5. (10pts.) Find a linear fractional transformation that maps the points $\{0, 1, i\}$ to the points $\{1, 0, \infty\}$.
- 6. (10pts.) Show that

$$\lim_{z \to \infty} \frac{z^2 + 1}{z - 1} = \infty$$

by using the equivalence

$$\lim_{z \to \infty} f(z) = \infty \iff \lim_{z \to 0} \frac{1}{f\left(\frac{1}{z}\right)} = 0.$$

- 7. (10pts.) Find the angle of rotation and stretching factor produced by the mapping $w=1/z^2$ at z=1.
- 8. (10pts.) Sketch the region onto which the sector $r \leq 1$, $0 \leq \theta \leq \pi/4$ is mapped by the transformation $w = z^3$.