

314 '03-QUIZ 5

Name: _____

October 9, 2003

1 < 12pts >

Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a spanning set for the vector space V , and let \mathbf{v} be any other vector in V . Show that $\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly dependent.

Solution

- Since the set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ spans V and $\mathbf{v} \in V$ while $\mathbf{v} \notin S$ we have, by the definition of a spanning set, that there exist numbers C_i , $i = 1, \dots, n$ such that

$$\mathbf{v} = C_1\mathbf{v}_1 + \dots + C_n\mathbf{v}_n .$$

- Now rewrite above relationship as:

$$(-1) * \mathbf{v} + C_1\mathbf{v}_1 + \dots + C_n\mathbf{v}_n = \mathbf{0} .$$

In this relationship we have a combination of the vectors $\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ that is equal to zero, while at least one coefficient (here the coefficient (-1) multiplying the vector \mathbf{v}) is not equal to zero. By the definition of a linearly dependent set, this set is dependent.

2 < 13pts >

Given the vectors

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} -1 \\ 2 \\ 12 \end{bmatrix}$$

Give the dimension of $\text{Span}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ and find a basis.

Solution

Form the matrix

$$\begin{matrix} 2 & \begin{pmatrix} 1 & -1 & -1 \\ -2 & 2 & 2 \\ 4 & 4 & 12 \end{pmatrix} \\ -4 & \end{matrix} \rightarrow \begin{matrix} 2 & \begin{pmatrix} 1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 8 & 16 \end{pmatrix} \\ -4 & \end{matrix}$$

There are pivots on columns 1 and 2, therefore the vectors \mathbf{x}_1 and \mathbf{x}_2 are linearly independent, providing a basis for $\text{Span}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$, which is thus 2-dimensional.