Sample calculation (Text exercise 1.3.7): defining a differential equation constant solutions particular solution to the IVP plot direction field and solution curves > restart; > with(DEtools): > de1 := diff(y(t),t) = y(t)*(y(t)-a)*(b-y(t)); d de1 := -- y(t) = y(t) (y(t) - a) (b - y(t)) dt > a := 1; b := 2; a := 1 b := 2 > const := [solve(y(t)*(y(t)-a)*(b-y(t))=0, y(t))]; const := [0, 1, 2] > y2 := const(2); y2 := [0, 1, 2] > simplify(subs(y(t)=y2,de1)); d -- [0, 1, 2] = [0, 1, 2] ([0, 1, 2] - 1) (2 + [0, -1, -2]) dt > ic := y(0) = (a+b)/2; ic := y(0) = 3/2 > partsol := simplify(dsolve({de1,ic},y(t))); I exp(t) sqrt(3) + sqrt(-9 - 3 exp(2 t)) partsol := y(t) = ---------------------------------------- 1/2 (-9 - 3 exp(2 t)) > subs(partsol,ic); y(0) = 3/2 > simplify(subs(partsol,de1)); 1/2 1/2 -I exp(t) 3 (-9 - 3 exp(2 t)) -3 I exp(t) ----------------------------------- = --------------------- 2 3 1/2 (3 + exp(2 t)) (-(3 + exp(2 t)) ) > DEplot(de1,y(t),t=0..4,{[0,3],[0,1.5],[0,.5],[0,.9],[0,-.1]},title='de1', axesfont=[TIMES,BOLD,10],titlefont=[TIMES,BOLD,14], labelfont=[HELVETICA,BOLD,12], arrows=THIN,linecolor=blue,y=-1..4); > >