

18.06 Problem Set 9

due: Wednesday, 2 May 2001

1. (10pts.) An important (infinite-dimensional) vector space, call it \mathcal{H} , is the space of all complex-valued functions $f(x)$, defined on the interval $[0, 1]$ such that $\int_0^1 |f|^2 dx < \infty$. An inner product in \mathcal{H} is defined by

$$(f, g) = \int_0^1 f^* g \, dx.$$

We are interested in second order linear differential operators acting on \mathcal{H} . A general such operator takes the form:

$$L[f] \equiv a_0(x)f'' + a_1(x)f' + a_2(x)f.$$

An operator A acting on \mathcal{H} is called hermitean, if

$$(f, A[g]) = (A[f], g) \quad \text{for all } f, g \in \mathcal{H}.$$

Show that operators of the form

$$A[f] \equiv \frac{d}{dx} \left(p(x) \frac{df}{dx} \right) + q(x)f$$

where $p(x)$ and $q(x)$ are real-valued functions, and with boundary conditions $p(0) = p(1) = 0$ are hermitean. (*Hint:* You will have to use integration by parts.)

Now consider the eigenvalue problem

$$A[f] = \lambda f \quad \text{for } 0 < x < 1.$$

Show that, if A is hermitean, eigenvalues are real and that eigenfunctions corresponding to different eigenvalues are orthogonal, i.e. for two such functions $f_1(x), f_2(x)$, we have $(f_1, f_2) = 0$.

2. (10pts.) Show that any two similar matrices have the same
- trace;
 - determinant;
 - eigenvalues.
3. (10pts.) Show that there are no two $(n \times n)$ matrices A, B such that $AB - BA = I_n$.