

18.06 Hints and Answers to Problem Set 4

1. (a)
 - i. They are linearly independent, but do not span \mathbb{R}^3 . (there's only two of them.)
 - ii. They are linearly independent and span \mathbb{R}^3 .
 - iii. They are not linearly independent (there's four of them and they are vectors in \mathbb{R}^3 : cf. the Too Many Vectors Theorem), but they do span \mathbb{R}^3 .
- (b) $4a - 3b - 5c = 0$.
- (c) They do not span \mathbb{C}^3 . ($\text{Sp}(v_1, v_2, v_3) = \{(4z, 8w, (1+4i)z + (3+i)w)\}$. They are not linearly independent, either: $(2-2i)v_1 - 2v_2 + (1+i)v_3 = 0$.
2. A basis of U is $\{(1, 0, 0, 0), (0, -1, -1, 1)\}$; a basis of W is $\{(1, -1, 0, 0), (0, 0, 2, 1)\}$. So both have dimension 2.
A vector in $U \cap W$ must satisfy $b + c + d = 0$, $b - c = 0$, $c - 2d = 0$. The only solution is $\mathbf{0}$, so the dimension is 0. This is equivalent to saying that the nullspace of the matrix, whose columns are the basis vectors,
$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & -1 & 0 & 2 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$
consists only of $\mathbf{0}$. By the fundamental theorem of linear algebra, part 1, $U + W = \text{Span}\{U, W\} = \mathbb{R}^4$ of dimension 4.
3. All four ranks are 2.
4. (a) $3ab + 5a - 2b + 26 = 0$.
(b) $3b + 13c - 6d = 0$.