18. In the vector space P; of all p(x)
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- Verify that S is a subspace and find a basis,
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47. The 4 by 4 Hadamard matrix is entirely +1 and —1:

11 11
1 -1 1 —1
H=1, 1 1 4
| -1 -1 1

Find #~! and write v = (7, 5, 3, 1) as a combination of the columns of H.
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