

ODE Exam
January 2000

Instructions: Answer one of problems 1 and 2, and one of problems 3 and 4. Circle the two problems you want graded.

1. Consider the nonlinear oscillator (NO) $\ddot{x} + g(x) = 0$ or in system form $\dot{x} = y, \dot{y} = -g(x)$.

- (a) Define a critical point (CP) (x_c, y_c) in terms of g .
- (b) Let (x_c, y_c) be a CP. Linearize the NO equation about the CP and discuss linearized stability in terms of g . What can you conclude at this stage about (nonlinear) stability?
- (c) Show that $E(x, y) = \frac{1}{2}y^2 + G(x)$ where $G'(x) = g(x)$ is constant along any solution of the NO equation.
- (d) Construct the phase plane portrait for the NO with $g(x) = x - \frac{1}{a-x}$ for $x < a$. Discuss the qualitative behavior of solutions for all IC's (x_0, y_0) and $x_0 < a$. Include the CPs and their (nonlinear) stability in your discussion.

2. Consider $\dot{x} = Ax$ (*), where A is a constant $n \times n$ matrix.

- (a) Define e^{At} and show that the solution of the IVP $x(0) = x_0$ is $x(t) = e^{At}x_0$.
- (b) Show that $e^{A(t+\tau)} = e^{At}e^{A\tau}$ by using a uniqueness theorem for solutions of *.
- (c) Find e^{At} for $A = \begin{pmatrix} 0 & 1 \\ 6 & 1 \end{pmatrix}$. Verify that $(e^{A(t+\tau)})_{11} = (e^{At}e^{A\tau})_{11}$ from your explicit formula.
- (d) Find the solution of $\dot{x} = Ax + f(t)$ in terms of e^{At} and $f(t)$.

3. Consider the IVP $\dot{x} = f(x, t)$, $x(0) = z$, and let $\varphi(t, z)$ be the solution with $\varphi(0, z) = z$.

- Define continuity of φ in z for fixed t .
- Specify general conditions on f so that solutions of the IVP exist uniquely on some open interval containing $t = 0$ and are continuous in z for fixed t .
- Prove the continuity in z for fixed t for your conditions in (b). Use a form of the Gronwall inequality in your proof.
- Prove the version of the Gronwall inequality you used in (c).

4. Suppose $x_p(t)$ is a T -periodic solution of $\dot{x} = f(x)$, $x \in \mathbb{R}^n$.

- Define u by $x = x_p + u$ and find the linearized equation for u , i.e., find $A(t)$ in terms of f such that the linearized equation is $\dot{u} = A(t)u$ (*) where $A(t+T) = A(t)$.
- Let $\Phi(t)$ be the PSM for (*), i.e., $\dot{\Phi} = A(t)\Phi$, $\Phi(0) = I$. Prove that $\Phi(t+T) = \Phi(t)\Phi(T)$.
- Let B be a matrix such that $\Phi(T) = e^{BT}$. Show that $P(t)$ defined by $\Phi(t) = P(t)e^{Bt}$ is T -periodic, i.e., $P(t+T) = P(t)$.
- Discuss the linearized stability of $x_p(t)$ in terms of the result in (c).