

ODE & PDE exam–January 2006

January 9, 2006

ODE PART: WORK BOTH PROBLEMS

1. (25 pts)

Consider the system

$$\begin{aligned}\frac{dx}{dt} &= ay + (x^2 - y^2) \\ \frac{dy}{dt} &= -ax - 2xy.\end{aligned}\tag{1}$$

- (a) (3pts) Show that the function

$$H(x, y) = \frac{a}{2} (x^2 + y^2) + \left(x^2 y - \frac{1}{3} y^3 \right)$$

is a constant of the motion.

- (b) (4 pts) Find all equilibria.

- (c) For $a \neq 0$:

- i. (5pts) Derive the linearized system valid in the neighborhood of (x_0, y_0) , where (x_0, y_0) is an arbitrary equilibrium point of eq.(1).

- ii. (4pts) Give the type and linear stability of each critical point of eq.(1).

- iii. (5pts) Discuss the nonlinear stability of each critical point in part c(ii) and sketch the phase plane portrait.

- (d) (4pts) If $a = 0$ discuss the equilibrium point $(0, 0)$ and its stability and sketch the phase plane portrait.

(Hint: you may consider solutions of the form $y = kx$).

2. (25 pts)

Consider the system

$$\begin{aligned}\frac{dx}{dt} &= x - y - 2x^3 - xy^2 \\ \frac{dy}{dt} &= x + y - 2y^3 - x^2y.\end{aligned}\tag{2}$$

- (a) (5pts) Show that the critical point at the origin is unstable (you can assume, without proof, that there are no other critical points).
- (b) (10 pts) Show that there is at least one limit cycle.
- (c) (10 pts) Show that there exists a unique, globally attracting limit cycle.

PDE PART: WORK BOTH PROBLEMS

1. (25 pts) Consider the IVP for the 3D wave equation with spherical symmetry:

$$u_{xx} + u_{yy} + u_{zz} = \frac{1}{c^2}u_{tt}, \quad u(x, y, z, 0) = 0, \quad u_t(x, y, z, 0) = h(r), \tag{3}$$

where $r := (x^2 + y^2 + z^2)^{1/2}$ and $h(r)$ is square integrable in \mathbf{R}^3 .

- (a) (5pts) Find the IVP satisfied by $u(r, t)$.
- (b) (5pts) Show that $\Psi(r, t) := ru(r, t)$ satisfies the 1D wave equation

$$\Psi_{rr} = \frac{1}{c^2}\Psi_{tt}, \quad r \geq 0. \tag{4}$$

with appropriate conditions at $r = 0$.

- (c) (15pts) Find the solution to the IVP in part (a) for u by solving the associated IBVP eq.(4) for $\Psi(r, t)$.

2. (25 pts)

Consider the following BVP for $u(x, y, t)$:

$$\begin{aligned} u_{xx} + u_{yy} - \frac{1}{c^2}u_{tt} &= e^{-i\omega t}\delta(x)\delta(y - y_0) , \\ u(x, 0, t) = 0 &= u(x, \pi, t) . \end{aligned} \quad (5)$$

Here, $x \in \mathbf{R}$, $y, y_0 \in (0, \pi)$ and $\omega > 0$.

(a) (5pts) Solve the eigenproblem

$$-\psi_{yy} = \lambda\psi , \quad \psi(0) = 0 = \psi(\pi) . \quad (6)$$

State the relevant completeness theorem and find the eigen-representation for $\delta(y - y_0)$.

(b) (10pts) Look for a solution of eq.(5) of the form

$$u(x, y, t) = \sum_{n=1}^{\infty} G_n(x) e^{-i\omega t} \sin ny . \quad (7)$$

Show that G_n must satisfy an equation of the form

$$\frac{d^2G_n}{dx^2} + k_n^2 G_n = c_n \delta(x) \quad (8)$$

and find k_n^2 and c_n . Determine n such that $k_n^2 \geq 0$ or $k_n^2 < 0$.

(c) (10 pts) Solve eq.(8) for the Green's function $G_n(x)$ under the condition that G_n be bounded. Consider two cases. For $k_n^2 > 0$ find the unique Green's function giving traveling waves that are outgoing at infinity (i.e. traveling to the right as $x \rightarrow \infty$ and to the left as $x \rightarrow -\infty$). For $k_n^2 < 0$, discuss the qualitative behavior of the Green's function.