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PREFACE

This set of problem solutions for the 3rd edition of the author’s book Differential Equations
and Dynamical Systems is intended as an aid for students working on the problem sets that appear
at the end of each section in the book. Most of the details necessary to obtain the solutions. along
with the solutions themselves, are given for most of the problems in the book. Any additions.
corrections or innovative methods of solution should be sent directly to the author, Lawrence
Perko. Department of Mathematics, Northern Arizona University, Flagstaff, Arizona 86011 or to
Lawrence.Perko@NAU.EDU. The author would like to take this opportunity to thank Louella

Holter for her patience and precision in typing the camera-ready copy for this solutions manual.
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1. LINEAR SYSTEMS

PROBLEM SET 1.1

1.

[\8]

(@)

(b)

()

(d)

(e)

. (a)

(b)

©

Let x = (x. X;. %3)T = (x. y, 2)T and x(0) = (X¢. yy. 2)T-

X(1) = Xy e, y(t) = y,e', and solution curves lie on the straight lines y = (yo/X,)X or on the
y-axis. The phase portrait is given in Problem 3 below with a = 1.

X(t) = xget. y(t) = y,e2, and solution curves. other than those on the x and y axes, lie on

the parabolas y = (y¢/x2)x2. Cf. Problem 3 below with a = 2.
x(1) = x,et. y(1) = y,e*, and solution curves lie on the curves y = (Yo/xDx3.

X = —y. y=x can be written as ¥ = X= -y or ¥ + y = 0 which has the general solution
y(t) = ¢,cost + c,sint; thus, x(t) = y(1) = —C,;sint + c,cost; or in terms of the initial
conditions x(t) = X,cost — y,sint and y(1) = x,sint + y,cost. It follows that forall t € R,

X2() + y2(t) = xg + yg and solution curves lie on these circles. Cf. Figure 4 in Section 1.5,

y(1) = c;e™ and then solving the first-order linear differential equation X+ x = c, et leads

to x(t) = ¢;e™ + ¢ tet with ¢; = Xy and ¢, = y,,. Cf. Figure 2 with A < 0 in Section 1.5.
X(1) = xget y() = yget. z(t) = z,et. and E* = R3,

x(1) = xge™, ¥(1) = yge, z(t) = zge'. ES = Span {(1, 0. 0)T, (0, 1. 0)T}. and

EY = Span {(0. 0. 1)}. Cf. Figure 3 with the arrows reversed.

x(t) = Xy cost — y, sint. y(1) = Xy sint + y, cost, z(t) = z,e; solution curves lic on the
cylinders x2 + y2 = ¢ and approach circular periodic orbits in the x,y plane as t — oo;

E€ = Span {(1. 0. 0)T. (0. 1. 0)T}. E* = Span {(0. 0, 1)T}.



3. x(t) = xg€', y(1) = y e

be
F

a=-| a=0 a=1/2 a=1 a=2
4. X)(0) = XM, x,(1) = xy0eM2t, - x (1) = Xpo€M!. Thus, x(t) — 0 as t — oo for al]

Xo€ RMif A, <0, -, A, <0 (and also if R(A) <Oforj=1.2, . n).

5. If k > 0, the vectors Ax and kAx point in the same direction and they are related by the
scale factor k. If k < O, the vectors Ax and kAx point in opposite directions and are

related by the scale factor Ikl.

6. (a) w(t) = au(t) + b¥(t) = aAu(t) + bAv(t) = Alau(t) + bv(t)] = Aw(t) for all te R.

(b) u() = (. 0)T, v(t) = (0. )T and the general solution of x= AX is given by x(t) =

Xou(t) + yov(t).

PROBLEM SET 1.2
1 I -
1. @ A=2A=4v,=(,-T.v,=(l, I)T’P:{—l ;],P‘l:lﬂ[l :]and

2 0
N
B—P‘AP—[O 4j|

t 2
et — g2t ettt

2t 21 t
et 0 e 0 e +e e’ —e
y(t) = l: 0 e4(j| Yo x(t) = Pl: 0 e4t] Plx, = 1/2[ 4 :lxo-




(b)

(©)

(@)

4. (a)

Ay=4.hy=-2.v, = (1. DT v, = (1. -1)T,

4t 4t -2t 4t -2t
e 0 e +e e —e
¥(t) = { o e_zlj' Yo- x(=172 Lm TR +e-th Xo-

A =-2.2,=0,v,=(L. -)T. v, = (1.D)T.
e 2 e 24l 1-e2
y() = Yo x(1) = 172 7 X,
0 1 l—e?t 42
¥ )
—1 <
N Z y Sk X
z NS x !
\ 7
Vd AN

A=l A, =2 A =1, v, = (2 -2, )T, v, = (0. 1. O)T, v, = (0, 0, 1)T

e! 2e! 0 0
y() = e2! Yo. x()=1/2|2(e* -e') 2e¥ 0 Xo»
e”! el —e! 0 2et

E® = Span {v,}, E" = Span {v,. v,}.

o O

0 1 l: 0 ]}
A= () A = (c) A =
{2 -1] -1 0

x(t) = 1/2(3e% — e, 3edt + e2) (b) x(t) = 1/2(2e!, 6e2t — 2¢, ! + Se).

|
]

gj_{gx(t)=0 iff Aj<0forj= 1,2, 3, -, n.

—_— O -

N - O



A

6. d(t.x,) =P P-'xgand lim &(1, yo) = d(t, x,) since lim y, = Xo
At Ya™Xg Yo—Xg
e o

according to the definition of the limit.

(a) (b)

\ R
D NG N
K SN

(e) ()

PROBLEM SET 1.3
1. (a) ilAll= p}gvl(IAxl = max V4x2 + 9y2 < 3ixI; but for x = (0.1)T, IAx| = I-3| = 3: thus, 1Al = 3.

(b) Following the hint for (c). we can maximize |AXI2 = X2 + 4xy + 5y2 subject to the
constraint x2 +y2 = | to find x2 = (2 £ V2)/4 and y2 = 1 - x2 which leads to
IAIl=2.4142136--; or since AAT = B ?] with eigenvalues 3 + 242, we have
IAN=V3+2V2 = | + 2.




(c)  We can cither maximize |Ax|? = 26x2 + 10xy + y? subject to the constraint X2 + y2 = : or
26 5
find the cigenvalues of AAT = [ 5 1] which are (27 + V725 )/2; in either case,

Al = 5.1925824--.

2. By definition, ||T|| = mg}}(lT(x)l. Thus, ||T|| 2 Iﬁ}g)}(lT(x)l. But max IT(x)| = sup II%X_)J

since if |x| = a and we set y = x/a for x # 0, then |y| = |x}/a = 1 and since T is linear.

I_l = sup L—J = sup IT(—)I max [T(y)|. Thus. ||T|| < Su‘p I_[ <su ]_X)_l -

x=0 xtO

max |T(x)|. It follows that ||T]| = max IT(x)| = sup |[Tx)|/|x].
= X = xz0

3. If T is invertible, then there exists an inverse, T-', such that TT-! = I and therefore
ITT™Y|| = 1. By the lemma in Section 3. 1 = |[TT-|| < ||T|| ||T-Y|. This implies that ||T]| > 0.
IT-!}|>0. and [|T-']| 2 | T -

4. Given Te L(R") with [[I - T|| < . Leta = || - T|| < 1 and the geometric series Za*

converges. Thus. by the Weierstrass M-Test. Y (I - )X converges absolutely to
k=0

S e L(R"). By induction it follows that T[I +(I-T)+ -~ +({- T)"] =[-(I-T)+,

Thus, TS = T i(l—T)k = iT(I—T)k - lim STA-T) = lim [1—(1 T)““]

n—ee4 -0 n—oe
since lim ||l - T||"+l 0 \\luch implies that lim (I - T)™*! = 0 since 0 < ||(I-T)w!|| <
n—oo n—ea

[I(T = T)||n+1. Therefore S = T-1.

2
5.(2) eA= [e ?3} .
0 e
(b) The eigenvalues and eigenvectors of A are A, =1L A, ==1, v, =(,0)T v, =(-1. )T;

e O -
thus. eA =P _]} pr=|° € _; | whereP= }
0 e 0 e

1 0
(c) er= 6[5 lj' by Corollary 4.



(d) The eigenvalues and eigenvectors of A are AM=22=-1v,=Q2. DT, v,=(1, DT

2 2 -l -1 _ 5.2 2
thus. eA = P[eO 0 }P“ = [Ze ¢z 267 JWhere P= [1 J )

—_ 2 - -
e! e?—e ! 2e7l g2 1

© eA:ez[cos(l) —sin(1)

by Corollary 3.
sin(1) cos(l)] y L-oroflary

(f)  The eigenvalues and eigenvectors of A are A=1A,=-1 vi=(. DV v,=(-1, DT
e O cosh(l) sinh(l) ] I -1
thuseA =P S| Pt= . with P = }
0 e sinh(1) cosh(1) 1 1

Note that A2 =T and from Definition 2 it therefore follows that eA = I(1 + 1/2! + 1/4! + ) +

A(l + 1/3!+ 1/51 + ) =T cosh(1) +A sinh(1). This remark also applies to part (b).

6. (a) The eigenvalues are e2, e3:e. el; e, e: 2. el o2t = ez[cos(l) +isin(1)]: e, el

(b) If Ax =Ax. then eAx = Jim [1+ A+ AZ/2! + - + AK/k!|x =lim [x + Ax + A2x /2! + - +

Akx [ k!] = erx.

(¢) If A=Pdiag[A] P, then by Corollary 1. det e = det {P diag [¢"] P!} = det {diag
[eki]} =M . ¢Mh = emaceA For a2 x 2 matrix A with repeated eigenvalues A, we have det
et
eA = det 0 A= e?* = etraceA: and for a 2 x 2 matrix A with complex eigenvalues, A =
e
[ea cosb —e*sinb

a * ib, we have det eA = det

a. a = e2a = etraceA (since the trace A =
e"sinb  e“cosb

A, + A, =(a+1ib) + (a—ib) = 2a in this case).

7. (a) eA=diagle, €2, €3].

1 00 000 1 00
(b) 0 2 1[=]0 0 1[+]0 2 O|=N+SandNS = SN so that by Proposition 2,
0 0 2 [0 0 0] [0 0 2
1 00 e 0 O
er=diagle.e2e?] |0 | 1]|=|0 c® e? since N2 = 0 implies that cN =T+ N,
00 1] |0 0 ¢



(©)

2.0 0110 0 0] 200
1 2 0|=]1 0 O[+{0 2 0|=N+S and NS = SN so that by Proposition 2
01 2 0 1 0f |0 0 2
1 00
er=eSeN=e2| 1 | O]since N3=0 implies thateN =1+ N + N2/2.
172 1 1
1 0 0 0 e
For A = and B = we have AB=0=#BA =B, eAB = #eheB =
0 0 1 0 e-1 1

e O
1]
If T(x)€ E for all x€ E, then by induction T2(x)€ E, -, Tx(x) € E and therefore eT(x) =

K
lim [I+T+ +Tkk!]x = lim [x + T(x) + - + Tk(x) ] € E since any subspace E of R is

complete and since x, = x + T(x) + - + T¥(x)/k! is a Cauchy sequence in E.

PROBLEM SET 1.4

1. (a)

(b)

(©)

x(t) = it Xp =
0 e yoe“‘

e}“[ t ckt xoe)" + yoteh
x(t) = 0 5 | X%0= N
* t
c Yo€

[cosbt  —sinbt Xgcosbt — y,sinbt
X(t) = eat . X, = eat 0 ) Yo

| sinbt  cosbt Xgsinbt +yqcosbt

[cost  —sint
x(t)y=ce?| .

® | sint costil 0




2t
3. @ A =24 =4 v, =(.-DT.v,=(l. DT. x(t):P[g O4I:IP‘lX0:
e

2t 4t 41 2t ;
+ - ht ht 1
19 Iie e’ e -e } X =¥ [cos sinh } x, where P = [ : ]

edl_ o2t gt 2t sinht  cosht 1

et 0
() k=4 Ay =-2.v, = (L. )T, v, = (1. =1)T, x(t) = P L | Pi=
) 0 et

H_ o2t A 2t sinh3t cosh3t -1

4t -2t 4t -2t :

—e* cosh3t sinh3t 1 1

172 ¢ te ¢ € Xp= ¢ [ 5 n ] X, where P = .
e’ —e +e 1

4. From Problem 2 in Problem Set 2. x(t) = eAt x,, = P diag [e*!] P! =
2e! 0 0 2 00 1 0
12]2¢* -2¢' 2¢* 0 |x,whereP=|-2 1 O|andP'=12]| 2 0.
el —e™ 0 2e" 1 0 1 -1 2

wm

2 0 0 -1
. (A A= + =S + N where S and N commute. Thus.
0 2 0 0

I =t
x(1) = eAx,=en l:O l:l Xo-

t —sint
(b) x(t) = eAlx, = e [COS sin ] N

sint cost

€

el +e! el-e™ cosht sinht T -
) _ ‘ _ iy |
v LI -e' e'+e™t *o sinht cosht X, where P | ] P 1/2 1

e 0
© A=1LA=-1Lv, =, D0Nv,=(-1, DT, x(t) = cAt x, = P! {O _[] Px, =

d A=-21+ =S + N where S and N commute. Thus, x(t) = eAtx, =

C - O
—_— O QO
o O O

1 0 0
e [T+ Nt+N222]x,=e2| t 1 0]x,.
/2 ¢ 1



Since T(x) € E for all xe E and since T(x) = Ax. it follows that if x,€ E then Axye E and

tAx,€ E since E is a linear subspace of R™. It then follows by induction that (t%/k!)Akx, e E
N
for all ke N. Therefore 3 Aktkxy/k! € E since E is a linear subspace of R». Then since a
k=0
closed subset of a complete metric space is complete, it follows that E is a complete normed

linear space: i.c., every Cauchy sequence in E converges to a vector in E. (Cf. Theorem
N
3.11.p. 53 in [R].) Thus. forall te R lim 3 Aktkx/k! =eAtx,e E. And therefore by

N—eoy-g
the Fundamental Theorem for linear systems x(t) = eA'x,€ E for all te R.

Suppose that there is a A < 0 such that Av = Av for some v # 0. Then x(t) =eAtv is a
o kak = (kK

solution of (1) with x(0) = v. ButeAty = ), v=Yy —v=e
k=0 K k=0 K!

induction, A¥v = Akv. Thus, lim x(t}= lim ey = limeMy =0 since A < 0.
1> t—roe [—o0

Al

'v since. by

By the Fundamental Theorem for linear systems, the solution of X = Ax, x(0) = x, is

given by (1, x,) = e? x,. Thus, forall te R, lim ¢(t.y)= lim eMy=¢e* lim y =
y—X, YoX, y—X,

eMx, = P(.xg).

PROBLEM SET 1.5

1. (a)

(b)

©

(d)

(e)

()

d = -2 < 0 implies that (1) has a saddle at the origin.

=8 1=6,12-48=4 >0 implies that (1) has an unstable node at the origin.
& =2, T=0 implies that (1) has a center at the origin.

8 =5,1=4,12-48 = —4 implies that (1) has an unstable focus at the origin.

8=A2+2>0, 1T =2\, 12 -40 =-8 <0 implies that for A # 0 (1) has a focus at the origin;

it is stable if A < O and unstable if A > 0; and (1) has a center at the origin if A = 0.

d=A?-2,1=2A, 12 - 45 = 8 > 0 implies that (1) has a saddle at the origin if IAl < V2: (1)
has a node at the origin if IAl > v2; it is stable if A < -2 and unstable if A > V¥2; and (1)

has a degenerate critical point at the origin if IM = V2.



2.(a)  x(0) =x,(0)e, x4(1) = X,(0)e. Cf. Problem 3 with a =1 in Problem Set 1.1.
(b)  x,(1) = x,(0)e, x,(1) = x,(0)et. Cf. Problem 3 with a = 1/2 in Problem Set 1.1.
() x,(1) =x,(0)e’. x,(t) = x,(0)e. Cf. Problem 3 with a = 2 in Problem Set [.1.
(d)  x, (1) = [x,(0) + x,(0)t]e'. x,5(t) = x,(0)e!, which follows from eAt Xo = €' [(l) ;] Xg-

Cf. Figure 2.

3. 6=2a+b2>0iffa>-b2/2 and T=a+ 2 <0iff a <-2. Thus, the system X = Ax has a

sink at the origin iff -b%/2 <a < -2.
4. (a) x(t) = xpeM, y(1) =y, For A > 0 cf. Problem 3 with a = 0 in Problem Set 1.1.

(b)  x(1) = Xy + yot, y(t) = y,. >

N

(c)  x(t) = xq. y(1) = yy: every point x,€ R? s a critical point.

5. The second-order differential equation can be written in the form of a linear system (1)
withA = [g _;:l If b <O, the origin is a saddle; if b > 0 and a2 - 4b > 0. the origin is a
node which is stable if a <0 and unstable if a > 0; if b > 0, a2 -~ 4b < 0 and a # 0. the origin
is a focus which is stable if a < 0 and unstable if a > 0; if b> 0 and a = 0, the origin is a

center; and if b = 0, the origin is a degenerate critical point.

6. X, (1) = x,(0)e!, x,5(1) = x,(0)e! + [%,(0) - x,(®)]e?: A, = 1. A, =2, v, =(], )T and v, =

(0, T: the origin is an unstable node.

7. A=(5+V33)/2. 0, =(5-vV33)/2.v,=(4,3+ V33)T, v, = (4, 3-33)T: the

separatrices are the four trajectories in E* L EY and the origin.

8. Since x,(t) = x,(0) cost — x,(0) sint and x,(t) = x,(0) sint + X,(0) cost. 1(t) =

V() + x3() = Vx2(0) + x2(0), a constant and 8(t) = tan-}[x,(t)/x,(t)] =

tan='[x,(0)/x,(0)] + t; the origin is a center for this system.



9. Differentiating 2 = x] + x; with respect to t leads to 2rf = 2x,%, + 2X,%, or =

(X%, + X,%)/r for r # 0. Differentiating 0 = tan-!(x,/x,) with respect to t leads to § =

I

(X% = X% )% [1 + (xo/%;)2] = (%%, — X,%,)/12 for r # 0. For the system in Problem 8

we easily obtain t = ar and 6= b from these equations. These latter equations with the

initial conditions r(0) = r, and 6(0) = 8, have the solution r(t) = g€ 0(t) = 8, + bt. Thus

fora<0,r(t)——)0asl%°°andf0rb>0(orb<0),9(t)—)°°ast—>°°(orast—>-°°)

as in Figure 3. And fora=0. r(t) = ro while O(t) > ecast — oo (orast — —o0) forb> 0

(or b < 0) as in Figure 4.

PROBLEM SET 1.6

1. k=2ii.F0r}»:2+i,w:u+iv:(l,l)T+i(l.O)T,
1 1 1 -1 2 -1
P=[vu]= Ppl= ,P7AP=
0 1 0 1 1 2
di It ) = Pe2 R P-lx. = e2 cost + sint -2sint )
and the solution x(t) = Pe2 R, P'x,=¢ sint cost —sint | X0
cost  —sint
where R, = [ . }
sint  cost
-1 1 0
2. A=1 Ti, A =-2.w=(1-i-1.0)T, vy=(0,0, D, P=| 0 -1 0O},
0O 0 1
-1 -1 0 e'cost —e'sint 0
P'=} 0 -1 0/|and the solution x(t)=P| e'sint  e'cost 0 [P'x,=
0 0 1 0 0 e
¢'(cost —sint) —2e'sint 0
e'sint e'(sint +cost) 0 |x,.

0 0 e 2t
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-10 0 0

3. 7\.121,)\.=2i3i. v, =(-10.3. 1).w=(0,1. DT.P= 31 0.
1 0 1

~1/10 0 0 0 0

P'=] 3/10 1 O|andthesolutionx()=P |0 e*cos3t —e®'sin3t|P'x, =
1710 0 1 0 e?'sin3t eXcos3t
e! 0 0
(—3e' +3e® cos3t—e2'sin3t) /10 e’'cos3t —e?'sin3t Xg.

(—e' +3esin3t+e%'cos3t)/10  eXsin3t  e?'cos3t

4. A=-l+iAg=1+iw, = 0 0.0 wy = (0,0, 1 —i, <),
01 0 0 0 -1 0 0
P= e 00 P = PO and the solution x(t) =
00 -1 1 0 0 -1 -I
00 0 -1 0 0 0 -1
. e 'cost —e'sint 0 0
P e R 0 Py = e 'sint e 'cost 0 0 o
0 e'R, ’ 0 0 e'(cost —sint) —2e'sint 0
0 0 e'sint e'(sint +cost)

PROBLEM SET 1.7
1. () AI:}\?:I;Az[l 0

0 1

-1 1
]"' l:_l l] =S + N where S and N commute and N? = 0:

1-t t
x(t) zeMx,=eSteNx =gt Xq.
© 0 0 [—t 1+t] 0

2 0 -1 -1
(b) )»1=)\2=2:A:|:0 2j|+|il 1jl=S+NwhereSzmdNcommuteanszzO:

I-t —t
x(f) =eMxy=eSteM x, = et Xg-
t 1+t
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1 0 0 1 1t
= . = = -y — pAt — St eN = el X,
© A=1L1A= {O l}{O O] S+ N:x(t) =eArtx, =eSteN x, e[o l] Xy

1 0 0 1
(d A=LA=-1.A= {0 1]+ [0 0] =S + N, but S and N do not commute; therefore.

~ 1 1 2 1
we must find v, = (1, )T, v, = (1, -2)T. P = [O _2}_ Pi=112 [O _1] and

e 0 ol ol _ ol
x(t) =P Plxg=12 ¢ ¢ 7% Ix,
0 -t 0 2e

e

1 0 0110 0O
2.(a) Aj=A=2=1A=|0 1 0f+|2 0 O0|=S+NwhereSandN
0 0 1 320
| 0 0
commute and N3 = 0: therefore x(1) = eA x, = et N x, = ¢! 2t 1 0]x,
3t+20% 20 |

(b) A, =A,=-1.A;=1 and we must compute the generalized eigenvectors; v, = (1, 0. )T,
1 2 3 P g g I

v, = (0. 1, 0)T satisfying (A — A 1)2 v, =0, and vy = (0, 2. )T; S = P diag [-1. -1, 1] P! =

-1 00 0 1 -2
0 -1 4.N=A-S=|0 0 0. SandN commute, N2=0and x(t) = eA'x, =
0 0 1 0 0 O

eS{I+Nt] xo=Pdiag [et et e] P'[I+Nix,=| 0 e 2(e'-e™) Xg-
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(€ A;=1.A,=A;=2and in this case there is a basis of eigenvectors: v, =(1, 1.-)T,

v, =(0, 1. 0)T. v; = (0. 0. I)T; A = P diag [1. 2, 2] P! and x(t) = eAt X =

e! 0 0
P diag [et. e%, e2]P' x, = [e' —e?' ¥ 0 Xg
eZt_ct 0 eZl
2 00 0 1 1
d A=2=2=2,A=]|0 2 0|+[0 0 2|=S+N whereS and N commute
0 0 2 00 0
It ot+t?
and N* = 0: therefore, x() = eAtxy =c2eMx =2 |0 | 2t |x,
00 1
3. (@ A =A,=A;=Xi,;=0: A =Nis nilpotent with A3 = 0 and
1 0 0 0
()= e x, = t ]—2t22 [242 t .
t —t°/2 1+t°/2
0 -t { 1
00 00 0 00O
I 000 0 00O
(b) A;=2,=A;=A,=2; A=21+N where N = 01 o O.NZ: 1 00 0
0 010 01 00
0 00O 1 0 0 0
N3 = 0000 N%=0and x(t) = eAtx, = e2t eNt x, = 2t [ L oo )
000 Of 0 0 /2 t 1 0
1 000 /6 22 t 1
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(€©) Ay =Ay=A;=0.A, =10 and there is a basis of eigenvectors. v, = (1, -1. 0, 0)T.

1 | 1 1
(1.0. -1, 0)T (1,0.0. -1)T (1.2,3. 4)T. P -0 0
L=(1,0.-1.0)T. v, =(1,0.0. -DT. v, =(1.2. 3. HT.P = .
& S Y 0 -1 0 3
0O 0 -1 4
2 -8 2
1 3 B At : 10t 1
P'=1/10 4 4 _6.x(t)=e X, =Pdiag [1. 1.1, el®] P! =
1 1 1 1
9+el0  _14el0 _p4el0t _pyel0
2+2e'% 8+42e!% 2426 24 2¢!™
1710 10 10 10 ton | Xor
“3+3e’™ 343e!? 74360 3430
—4+4e' —414e"0 41460 644"
@ A=LA,=-LA;=l+iA=1-iv,=(.10 0, v,=(l~1,0,0).
1 1 0 O 1/2 1/72 0 0
0.0.5. 1). P 1 -1 0 0 pi 1/72 =172 0 0 o N
W, = UL, . = R = . X —eAlx, =
’ h 0 0 10 O 0 10 0
0O 0 0 1 0 0 0 1
el 0 0 0 cosht sinht 0 0
0 et 0 0 sinht cosht 0 0
P Ix, = X,.
0 0 e'cost —e'sint P % 0 0 e'cost —e'sint |0
0 0 e'sint e'cost 0 0 e'sint  e'cost

(6) A;=A,=1+1iand the eigenvectors w, = (i. 1, 0, 0)T, w, = (0, 0. i. 1)T lead to

cost —sint 0 0

I - sint cost 0 0
=[LA=S=di d =gt Xq-
P=1I S =diag ,:1 1:lan x(t)=¢e 0 0 cost  —sint Xg

0 0 sint cost
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() Ay =2X,=1+1i: the eigenvector w, = (i. 1, 0, 0)T and the generalized eigenvector

1 010
o o 01 0 1
w, = (. 1, 1. DT, satisfying (A - A ) w,=w,, lead to P = 001 of
0 0 0 1
1 0 -1 O
01 0 -1 . 1 -1 . I -1
pl= oo 1 of S =P diag L I:I P! = diag L IJ' and
00 0 1

1 0
therefore N= A -S = [8 0O l] with SN = NS and N2 = 0: x(t) = eM x,, =

cost -—sint tcost -—tsint

P d; cost —sint P 1+ Nt] 1 sint cost tsint tcost
e ia . Xo=¢ ) X,.
€ sint  cost 0 0 0 cost —sint |7©

0 0 sint cost

1

4. (@ )\1:K3=2.P,:A—21=li_% "

}. (6 = e, r,(t) = te?, x(1) = et Xp =

[T+t 1
[r;(0] + ry(YP, Jx, = e [ “t 1- J Xg.

d) M=LA=A=2)=c.nt)=eX-e. () =te? —e2+e, P, =A-1=

000 00 0
[—1 1 0:|,P2:(A—I)(A—21)=|:O 0 OJ.x(t):eAlxoz
111 -1 00
e' 0 0

[r,(01 + 1,(OP, + 13()P,] x, = el —e?! e’ 0
2e' +(2-t)e? e 2

© A=Lh=k=2rn)=¢e,r()=er-e,P,=A-1.P,=0.

e! , 0 0
X() = efxy = [r (Ol + ,(OP ] %o = [e' —e® e® 0 |x,.
e2l _ el 0 ezt
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() A=A, =A=24,=2.1,(t) = . (1) = te¥, ry(t) = 12 e2/2, 1 (t) = 13 e2/6.

P, =N, P, = N2 P, = N3, as in Problem 3(b); thus. x(1) = eAt Xy =
0 0

[r,(O + 15(ON + ry()N2 + 1, (N3] = e

PROBLEM SET 1.8

1.

w

3. ()

I 0
t 1
2/2 ot
/6 /2

0
1
t

0
0
1

(a). (b). (d). (f) and (h) are already in Jordan canonical form.

X,

@)@)M:IJQ=4aMu=[g fﬂmgxq=2AQ=0mdL:B 8}

m)q:lzzLSI:L62=lv,:0v2=IMMJ=[O

1

(a). (b), (c). (d) are already in Jordan canonical form.

1
1

|

(©@and (A, =X, =1.A,=-1.8, =2 and J = diag [1. 1. -1].

OO O
co>rc
=hbode N
SO0 O

8,=8,=8;=8,=4

SO O
OS> —
oO>—=C
>—=OO

8,=1.8,=2.8,=308,=4

Vi=Vy=vy3=0v,=1

[N Rar i) d
cCo>—
OO
>P>OCO

oo
o> —
OO O

A 1 00
0 A 10
0 0 A 0
0 0 0 A

vi=1,v,=0.vy=1.v,=0
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1
(b) x(1)= M xg x()=MP |
0
1t 272
(ty=eM P 0 1 t
XO=e"PIo o0
00 0
a] —bl O O
; b, a 0 0
O 0 b2 32
. b 'ea,tRb][
( ) X(t)_ O cﬂle
L bz(
-emRbt 0
X([):P 0 Clll 0
i 0 elzt
A
A
5. (a) A
A
A
& =5
Al ]
Al
Al
A
A

=~ OO0

t 0 0 1 1 /12 0
1 0 0|, _upl0O 1t 0
01 0 P1x, x(t) =eMP 0 0 i 0 P! x,
0 0 1 0 0 0 1
tj/é 1t 00
tt/2 P! x,. x(t):e“Pg (1) (1) (t) P! x,.
1 0 0 0 1
a -b 1 0 a -b 0 0 a -b 0
b a 0 1 b a 0 0 b a 0
0 0 a -bl 0 0 A, O 0 0 A
0 0 b a 0 0 0 A 0 0 O
:l P! xp, x(t) = e P [R(}" [15:[‘:' P!x,
| e"R,, 0 | 1
P_ XO. X([) = P O C}J Ie)'[ P— XO.
0 e).t_
Al (A 1
A Al
A A
A A
A | A
Al
Al
Al ,
Al
A

Al
Al
A
Al
A

8]22,82:4.63=5~64=85:0.



(b)

6. (a)

(b)

(©)

(d)

(e)

()

(g)

(h)

[1 1 272 376 t*124]
01 t /2 /6
For example. in the fifth case we havex(t)=eMP |(Q 0 1 t t2/2
0 0 0 1 t
00 0o o0 .
T = diag[l. 2, 3].
A=1.2=2=28,=2 andJ = diag [1. 2. 2].
1 0 0
AM=1LX=X=28=1.8,=2andJ={0 2 1|
0 0 2
210
A=hy=23=2.8,=1.8,=2.8;=3andJ=|0 2 1|
0 0 2
] = diag (1. 2. 3. 4].
1 0 0 0
02 00
Ai=LAy=A=4,=2,8=28,=3(forA=2)and J = 00 2 1
0 0 0 2
210
Mi=do=Ry=2,=2.8,=2,8,=3.8,=4andas in Problem 3a).J = | ] 2 ]
0 0O

AM=h=A3=2,=2.8,=1.8,=28,=3. 8, = 4 and see Problem 3(a) solution.

19
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The solutions. which follow from x(1) = ed x, = P e P! x,;:

2 00 /72 0 0
(@ x(=eMxy=|-2 1 O|diagletete]| 1 1 0=
1

1 -2 3/2 2 1
_ e 0 0 ]
2l - ¢! e2! 0
%— 2e + 3¢ 263 —2e2t ¥

1 0 0 I 00 e
(b) x()=erxy=| 1 1 O]diagle,exex]|-1 1 0|x,=]e' et
-1 0 1 1 0 1 e?t —e!
1 2] et 0 o 1 -1 -1
© x(=eMx,=|0 1 1 0 e ¥ 0 1 -1|x,=
0 0 1 0 0 |l lo o 1
el eZl_Cl e2t_et+te2t
0 e 1e?t Xg
0 0 2!
1 0 0] [e® e t%/2 1 00
d x(=chx,=|0 1 =2 |0 e 0 1 2|x,=
00 1 0 0 et 0 0 1



(h)  x(1)=e Xp = et 'j

—_— —
O

~

3[._1

+ N
o~

~ o
~N

(s

(o]

~

~

—_ - — O
+

-t
P e )

0 0 0 O

2

Al + Q'NQ where Q"'NQ

1/¢

=diag [1,¢. €
1/¢

0 0

Q'AI+N)Q

IfQ

7.



b
™~

10.

[0 ¢ 0 O 0
0 0 ¢ 0 0
0 0 0 ¢ 0
=¢eN.
0O 0 0 0 3
(0 0 0 O 0 |

The eigenvalues of a nilpotent matrix are all equal to zero. (This follows from the fact that
any nilpotent matrix is linearly equivalent to a matrix with blocks of the form Nk along the
diagonal where each Nk has the form of one of the matrices shown on the page following

the statement of the theorem in this section.)

By the corollary in this section. each coordinate of the solution x(t) of the initial value
problem (4) is a linear combination of functions of the form t<e3cosbt or txe*sinbt where
k is a non-negative integer and the coefficients depend on the initial conditions x,. But if
all of the eigenvalues of A have a negative real part, then a = Re(A) < 0 in these functions
and since for all a < 0 and all integers k. tx ea — 0 as t = oo (and since Icosbtl < | and
Isinbtl < 1), it follows that for all x5 Rn each coordinate of x(t) approaches zero as

t—oojie., x(t) > 0ast > oo,

If the elementary blocks in the Jordan form of A have the form B =diag [A, ..., A]Jor B =
diag [D, .... D] where D is a 2 x 2 matrix of the form in the theorem stated in this section,
then each coordinate in the solution x(t) of the initial value problem (4) will be a linear
combination of functions of the form eM, e cosbt or e* sinbt. Furthermore, if all of the
eigenvalues of A have non-positive real part, i.e.. if A <0 and a <0 in the above forms,
then each of the coordinates of x(t) are bounded by constants (depending on x,€ R?) for
all t > 0 and therefore for each x,€ Rv, there exists a positive constant M such that [x(t)l <

M forallt 2 0.




11.

12.

(a)

(b)

(©)

(d)

©)]

ey
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Example 4 in Section 1.7 has [A| = I and yet the functions tcost and tsint are not bounded

as t = eo (or as t — —oo). In particular. the solution with x, = (1. 0. 0. 0)T has |x(t)| =

V1++sin2t+tsin2t > |t - 1] and therefore x(t)] — o0 as t — 0. Also. note that any
solution of Example 4 in Section 1.7 with x,€ Span {(0, 0. 1. 0)T, (0. 0. 0, 1)T} remains

bounded for all te R.

Since this problem is closely related to Problem 5 in Set 9, we shall use the notation and
theorems of the next section and do both of these problems at the same time: the corollary
in this section tells us that the components of x(t) are linear combinations of functions of

the form tke*cosbt or tke'sinbt withA =a+iband 0<k <n- 1.
This case occurs iff x,€ ES ~ {0].
This case occurs iff x,€ E" ~ {0}.

This case occurs if x,€ E ~ {0} and A is semisimple. (It may also occur if x,€ E¢ ~ {0}
even if A is not semisimple as in Example 4 in Section 1.7.) That [x(t)| = m follows from
the fact that x(t) is a periodic solution which does not intersect the critical point at the
origin.

This case occurs if ES# {0}, E" # {0} and x,€ E* @ E* @ E¢ ~ (E¥ U ES U E°). (It may

also occur for certain x,€ E° ~ {0} as in Example 4 in Section 1.7; cf. Problem 11 above.)
This case occurs if E" # {0}. E€ # {0} and x,€ E" @ E° ~ (E¥ U E°).

This case occurs if ES # {0}, E¢# {0} and x,€ E* @ E° ~ (ES U E®).
Furthermore, these are the only possible types of behavior that can occur as t — o0

according to the corollary in this section.
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PROBLEM SET 1.9

L. (a) E®=Span {(0, )T}. E* = Span {(1, 0)T}. E° = {0}.
(b) ES=E"={0), E°=R2

(c) ES=E‘={0}.E"=R2

(d) E®=Span {(1.0)T}. E* = Span {(1, -1)T}, E° = {0}.
(e. ) E* = Span {(1 -1)T}. E" = Span {(1. 0)T}. E = {0}.
) E*=Span {(0, DT}, E* = {0}, E° = Span {(1. 0)T}.
(h) E’=E"={0}. E=R2

(i) E*=RZ? ES=E°={0)}.

The flow eAl is hyperbolic exactly when E€ = {0}.

[\

- (@) E®=Span {(1,0.0)T. (0, 1. 0)T}. E® = Span {(0, 0. 1)T}. E° = {0).
(b) E*=Span {(0.0. DT}. E¥= {0}. ES = Span {(1, 0. 0)T. (0, 1, 0)T}.
(c) = Span {(1, 0. O)T. (0. 0, 1)}. E¥ = Span {1. 1. 0)T}. E¢ = {0).
(d) E*=Span {(1. -1. 0)T. (0. 0. DT}, E* = Span {(1, 0, 0)T}. E¢ = {0}.

The flow is hyperbolic in (a, c. d).
3. A=42i A3 =6.w, =u, +iv; = (10, 0,-3)T + i(0, 10, -1)T, v, = (0, 0, 1)T.
Es = {0}, E* = Span {(0. 0. 1)T}. E° = Span {(0. 10, -1)T, (10, 0. -3)T}.

| 0 10 0 cos2t -—sin2t 0 01 0
x()=15({10 0 O] [sin2t cos2t 0 1 0 0]xy=
31 1

-1 -3 1 0 0 &%
| 10cos2t 10sin2t 0
A —-10sin2t 10cos2t 0 [x,.
10 61

sin2t —3cos2t +3e®  —cos2t —3sin2t +e' ¢

For x, = (0, 0. ¢)Te E". x(1) = (0. 0. e%c)T e EY; for x,€ EF. i.e., for x, =
(10a, 10b. =3a — b)T. x(t) = (10(acos2t + bsin2t), 10(bcos2t — asin2t).

—3(acos2t + bsin2t) — (bcos2t — asin2t))T € ES; and for x, = 0€ ES, x(t) = 0 € ES.



4. (@ E*=Span {(1,0.0)T, (0, 1. 0)T}, E¥ = Span {(0, 2. )T}. E° = {0).

(b) ES=E°={0). E*=R3

See Problem 12 in Set 8.

IfL: ax; + bx, =0 is an invariant line for the system (1), then for x,€ L: eA' x,€ L for
all te R. But x, = (x,. x,)Te L and x,, # 0 implies that x, = k,(-b, a)T with k, # 0. And
then e xy€ L for all t€ R implies that for all te R eA'k,(=b, a)T = k,(=b, 2)T. and in
particular that e®v = kv with k = k,/k; and v = (b, a)T. As in Section 1.5. if (1) has an
invariant line then A = PBP~! and either B = [g 3] orB= [A 1

0 A
A # W it follows that either k = e* and P-lv = (1, 0)Tis an eigenvector of B, i.c.. vis an

]. In the first case, if

eigenvector of A, or k = e* and P~-'v = (0, )T is an eigenvector of B. i.e.. v is an
eigenvector of A. Also. in the first case if A = . then any vector v€ R? is an eigenvector
of A and, in particular, v = (-b. a)T is an eigenvector of A. In the second case k = e* and
P-lv = (1. 0)T is an eigenvector of B. i.e.. v is an eigenvector of A and we are done. (The
converse of Problem 6, that if v = (v. v,)T is an eigenvector of A, then v,x, — v,x, = 0 is

an invariant line of (1) follows immediately from Problem 6 in Set 3.)

PROBLEM SET 1.10

1.

Let ®(t) be a fundamental matrix solution of (2) and let x(t) = ®(t)e(t). Then ¢(0) =
@-1(0)x, and x(t) = At)e(t) + D(D)e(t) = AD(e(t) + D(H)t) while Ax(L) + b(t) =
A®(t)e(t) + b(1). It then follows from (1) that d(1)é(t) = b(t). i.e., that c(t) = ¢(0) +
f(;(b"(t)b(t)dt = O-1(0)x, + j(;cb"(r)b(r)dr. Thus x(t) = ®(t)e(t) = DEOD-0)X, +

(1) j(;tb'](t)b(t)dt which is equation (3).



A=1A==1,v,=(1.0)T, vy = (I, -2)T and a fundamental matrix ®(t) with ®(0) =1 is

1 1 e! 0 I 1/2 t t -t
given by d(t) = eAt = =€ (e -e )/ 2 .
0 2 |0 e'| |0 -1/2 0 e

Note that ®-!(t) = ®(-t) and then

G 1 N O Gt P IO Gl | 1
T e 3 e [ L 110

o 0 ° 0 1
0 e ] 0 e 0 e’
5 1 _
—t-2+=¢'+=¢”"
2 2
1-¢7!
: -2e %' cost —e 'sint —cost cost sint
&) = 21 . 2 . = AP, ) =eX| 5 . -2t )
—2e "' sint+e “ cost —sint —e “'sint e “ cost

t CcOST sintT 1
®-1(0) = 1. and x(t) = P()D-1(0)x, + (1) Joezt[—Ze"ZT sint  e~2° cos’c](e_%) dr =

621 . 3
5 (2005t+smt)—cost+g
q)(t) Xg + =

_e—21

(2cost —sint) + cost —%

D)Xy + =

1 2cos?t —4sint cost + 3sint +e‘2'(—5coszl +2sint cost —sin’t +3cost)
51 sin*t +2sintcost+5coszt—3cost+e’2‘(—2coszt —4sintcost+3sint) '
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2. NONLINEAR SYSTEMS: LOCAL THEORY

PROBLEM SET 2.1

e
.

n

1+x3 2X1X5 I 0 2 0
Df(x) = - | Df(0) = .DI0. 1) = .
2X1 -1+ 2X2 0 -1 01

2X)y, + 2X2}’1)

D2(0. 1)(x, y) = .
2x1y; + 2%,y

@E=R2~{0}). (D) E={xeR?|x;>-1.%,>-2,%, %1}~ {0}

2 2
t2/74.1>0 0.t20 t*/4.120
x(t) = 5 LX) = 5 LX) = Lx()=0
—-t°/4.tL0 —-1°/74,t<0 0,t<0

x()=2/+/1-8t for—eo<t< 1/8 and x(t) > ocast — 1/8".

x(1) =Vt is a solution on (0. =) but not on [0. o) since x’(t) = 172yt is undefined at t = 0.

[F(x) - F(y)| = Il?la)l(\/[ - yi)ay +( Y2)32]2 + [(Y2 —Xg)ay +(x, = )’1)32]2 .

Thus, if [x — y| < 8. then |x; - y,| < 8. |x, - y,| < & and therefore

[F(x)- F(y)] < max 5y(a +a,)2 +(a, +2,) <25 =¢€if =e/2.
al=

PROBLEM SET 2.2

1. @) vyO=1+Lu()=1+t+2+63 u(t)=1+t+ 12+ 3+ 2643 + 53 + 15/9 + 17/63.

Mathematical induction: uj(t) =1+t uy(t) = 1 + t + 2+ 0(t3) and forn > 1, assuming
() =1+t+ 2+ +0+0*) we find thatu,, ( ()=1+ [ [1 +s+s2+ - +s0+
Os™DPds =1+ [, [1+25+3s2+ - + (n+1)s"+ O™ )]ds = 1 + 1+ 24 -+ + (™1 4

0(t+2). QED.
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[\"]

(b) By separating variables and integrating we find that x(t) = 1/(c — t) and the initial condition

(©)

implies that ¢ = 1. For x(t) = (1 — t)~!, we have that x(t) = (I — t)-2 = x2(t) for t # 0; and
since x(0) = 1. te (—eo. 1). and this function is a solution of the IVP in part (a) according
to Definition 1. The Taylor series for x(t) = 1/(1 —t) =1 + t + - + t" + -, which agrees

with the first (n + 1)-terms in u,(t) found in part (a).

x(t) = (31)-¥3 = 1/x2(t) for all t # 0: hence the function x(t) = (3t)!3 is a solution of the
given differential equation on the interval (oo, 0) or on the interval (0, =0). Clearly this
function satisfies x(1/3) = 1. 1/3 € (0, o) and hence x(t) = (31)" is a solution of the given

IVP on the interval (0. e0) according to Definition 1.

ug(t) = xp. 1y (1) = X, + Axg. - u () = (I + A+ -+ + A¥k!)x, and iim () = ertx,

absolutely and uniformly on any interval [0, t,].

By the lemma in this section. f is locally Lipschitz in E. Therefore, given x, € E, there
exists a K, > 0 and an € > 0 such that Ny(xo) CE and for all x, y € N(x,). [f(x) - f(y)| <
K, ]x — y]- Next. Tou(t) is continuous at t = 0. Therefore for € > 0 there exists a § > 0
such that if |t| < 8 then [Tou(t) - Tou(0)| = [Tou(t) — x| < €. Choose a > 0 such that

a <min(8. 1/K,). Then for I = [-a. a]. te T and u, ve V = {ue C(I)| lu—x,| <e}.
Tou() - Tov(t)] = Ij(;[f(u(s)) — £(v(s))|ds | < Jolf(u(s)) - £(¥(s))|ds < cfu — v || where

¢ = Kya < 1. Thus, by the contraction mapping principle, there exists a unique

u(t)e Vc C() such that Tou(t) = u(t) for all te I.

If x(1) is a continuous function on I that satisfies the integral equation. then x(0) = x, and
X(t) = %L;f (x(s))ds = £(x(t)) for all te I by the fundamental theorem of calculus since
f(x(t)) € C(D); and therefore x(t) is differentiable and it satisfies the initial value problem
(2) for all te 1. Conversely. if x(t) is a solution of the initial value problem (2) for all te€ 1,

then x(t) is differentiable and hence continuous on I and x(t) € E for all te I: therefore,



10.(a)

(b)

11.
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x'(t) = f(x(1)) implies that x(t) = J.(; f(x(s))ds + ¢ for all te I and clearly ¢ = x(0) = Xo-

Thus. x(t) satisfies the integral equation for all te 1.

X(1) = % [f(x(t))] = DI x(1)]x(t) = Df[x(t)]f(x(1)) € C(I) by the chain rule since

x(t) € E, Df[x(t)] and f(x(1)) are continuous for all te 1.

Since a continuous function on a compact set is bounded. Df is bounded on E. It then

follows immediately from Theorem 9.19 in [R] that f satisfies a Lipschitz condition on E.

Suppose that there is a constant K, > 0 such that for all x. y€ E. lf(x) - f(y)l <K, |x - y|.
Then, given € > 0, choose 8 = €/K, > 0 to get that for x, y€ E with [x - y| <,

If(x) - f(y)l < Ky |x - ¥] < K8 = €. Therefore, f is uniformly continuous on E.

Follow the hint for & < 1: and for § 2 1. choose x = 1 and y = 1/3 to show that

fx) - fy)|=2>1=¢.

Use the result of part (a) and Problem 9 to show that f(x) = 1/x does not satisfy a Lipschitz

condition on (0, 1).

If f is differentiable at x,. then there exists a linear transformation Df(x,)) such that given
g = 1. there is a § > 0 such that for |x — x,| < 8, [f(x) — £(x,) — Df(xg)(x — X)| < |x — |-

Thus. for Ky = 1 + ||Df(x,)||. we obtain the desired result.

PROBLEM SET 2.3

1.

2.

The initial value problem has the solution u(t. y) = eAty. Thus. ®(t) =%(t. y) = eAt
y

which is the unique fundamental matrix satisfying & = A® and ®(0) = L.

@ut.y) =y et uy(t.y) = -yt e+ (y2 +y,)et and us(t, y) = (=y¥3)e2 + (y2/3 + y,)et.
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d(t) = g_u (t,y) = —2yle_2( +2y,e™t e 0 [ d0)=1and
Yy

2 2t 2 t
——y,e T +=ye 0 e
73 37! ]
_e_l O 0 _‘l O O
W) = |4y, =2y, —e™ 0 |=Df{ult. y)]d® = |2y, -1 0|d.
%y,e_z'+%y1et 0 ¢ 2yt 0 1

(1-y0?2 0
(b) d(1) = etc.
(1-eY)/yi e

By the corollary in this section, it follows from Liouville's Theorem that deta— (t. xy) =
)I’

cxp'[(: trace Df [u(s. xp)] ds = expj(:V- f(u(s, xg))ds since trace Df = V-f.

From vector calculus, i.e., from the hint. it follows that y = u(t. y,) is volume preserving

iff J(x) = det g_u (t, x) =1 for all te [0. a]. But, from Problem 3, this follows iff
X
'[(:V-f(u(s, ¥o))ds = O for all te [0. a] and y,€ E: and by continuity, this follows iff

VA(x) =0 forall xe E.

PROBLEM SET 2.4

1.

(@) x(1) = x¢/(1 = xg): (et B) = (=00, 1/x) for xo> 0 and x(t) = o as t = (1/x)™: (. B) =

(-0, ©0) for xy = 0; and (a. B) = (1/x,. =) for x, < 0 and x(t) = —o0 as t — (1/xy)*.

(b) (o, B)=(~1.1) and x(t) = sin-}(t) = *1/2€ East — ot oras t - p~ where E =

(—=n/2. n/2).

(¢) x(t) =-2tanh(2t) and (., B) = (—o0. ).



(d)

(e)

. (@)

(b)

()
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X(1) = [xol/(1 = 23 72, (@ B) = (-oo. 1/2x2) and x(1) = o0 as t — (1/2x3)".

X 0=y /(1 -y ). () = (y, = 1 + Uyet+ (1 + t= UVy,), (o, B) = (—oo. 1/y,) and

[x()] = o as t — (1/y,).
X (1) = (I =)7L x5(t) = t + et (0 ) = (0, 1) and [x(1)] = o0 as t — 1.

(0= V1+t, %) = (1 =)' (o B) = (=1, 1), x(t) = (0. .5)Te Eas t = (-1)*, where

E = {x,>0}. and |x(t)] —ooast— I~

X, (1) = VI+t, X,(0 = 273)(1 + 032 + 1/3, (0. B) = (=1. o) and x(t) = (0. 1/3)T€ E as

t — (-1)*, where E = {x, > 0}.

Asssume f§ < oo, If‘l_i)rlx_ x(t) does not exist, then there exists a sequence t, — B~ such that
{x(t,)} is not Cauchy: i.c., there exists an € > 0 such that for all integers N. there exist
integers n > m 2 N such that [x(t,) - x(t,)| > €. Thus. for N = 1, there exists integers

n; >m,; 2 1 such that lx(tnl) - x(lml)l > ¢; for N = n|, there exist integers n, > m, 2 n,
such that |x(tn2) - x(tmz)l 2 g: -+~ for N =, there exist integers n;,, > my,; 2 n, such that
Ix(tnj) - x(lmj)| > ¢. Hence. the arc length of ", > é}l IX(L,,,) — X(t,)] = Ej{ |x(tnj) - x(tmj)l >

€ = oo, Hence if B < o0 and the arc length of T, is finite. it follows that lirgl x(t) exists.
1=~

1

L]
_—

j
In cylindrical coordinates t = 0. = r2/x2 = 1/x}and %, = 1. Thus, r = 1, x;(t) = t + I/
and 0(t) = —(1 + I/m)™". (o B) = (-1/m. o), and lim x(1) as t = (=1/%)* does not exist (I"
spirals down toward the unit circle in the x,. X, plane as t = (=1/m)*): also. I', and I"_

both have infinite arc length (cf. Problem 3).

Suppose lim x(t) = x; € E. Then since E is open, there is an € > 0 such that N,,(x,)CE
[

and N(x,) C E. Assume that B < oo, Then there is a § > 0 such that for |t - B| < §,
|X(t) - x,| < €. Since x(t) is continuous and [0, § — 8] is a compact set. K = {ye Rn | y=

x(t). te [0, B=8]} U {ye R ||y — x,| < €} is a compact subset of E: furthermore,



I', cK. Thus, by Corollary 2, § is not finite: i.c., p = . Next, we show that f(x,) = 0.
Suppose that f(x,) # 0. say lf(xl)l =8 > 0. Then by the continuity of f. there exists an € > 0
such that Ix - x,| < € implies that x€ E and lf(x)] 2 /2. Since x(t) - x, and X(t) = v, =
f(x,) as t — oo_ it follows that for this € > 0. there exists a ty = 0 such that for all t 2 t,,

|x() - x| <& and [%(1) - v)| <&, i.e.. for all t 2 t,. [%(0)] = [f(x(t))] = /2 and |v,-x(1)] =
v\ [%(0)] - |cos6,(t)] = |v,| 8/4 where 8,(t) is the angle between x(t) and v, and [cosB,(1)] =
1/2 for all t 2 t,. Then by the mean value theorem. for all t > t,. there is a T € (t;, t) such that
VX)) = VX () = (U= t)v-x(T): thus, |vy| [x(0) = x(tp)] = v, [x(0) = x(t)]| =

|t = to| [vy-x(D) 2 |t —to| [v,| 8/4 and therefore [x(1) — x(ty)] = |t = t,| 8/4 > 2¢ for t > 1, +
8e/8. Since [x(ty)| < €. this implies that for t > t, + 8e/8. [x(t) - x,| = [x(t) - x(tp)| -

Ix(to) —x,| 2 2e — & = . a contradiction since Ix() - x,| < € for all t > t,. Thus, f(x,) = 0:
and x, is an equilibrium point of (1). i.e.. x(t) = x, is the solution of (1) satisfying the initial

condition x(0) = x,.
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0
PROBLEM SET 2.5 \
L x(t) = x/(1 - xg). e
—— t

3. o) = diag[e, e2]x. x

¥
5. $(y) = (yet. -y%e2/4 + (4y, + yhe/4)T If y, = -y3/4. then ¢ (y) = (y,e, -yle2/4)€ S.
6. dM=(et —yiet+yet+ylet yled/3 + By, + y)e3).T If y, = —y2/3. then

$u(y) = (y, e, -yZe2 +y,et + yle, ~y2e-2/3) € S,

7. 0i(Xo) = B+ x3)'. For x4 > 0. (0. B) = (—x3/3, o) and ¢,(x,) — O€ Eas t — (-x}/3)".

PROBLEM SET 2.6
1. (a) (0, 0)asource, (1, 1) and (-1. 1) saddles.

(b)
()
(d)
(e)

(4, 2) a source, (-2, -1) a sink.

(0, 0) a source, (0. -2), (+V3, 1) saddles.

(0, 0, 0) a saddle.

See the hint concerning the origin. For k > I, (i«ﬁ(Tl, +vk-1,k- 1) are sinks.

See Problem 1(e) regarding the nature of the equilibrium points of the Lorenz system; two
new equilibrium points bifurcate from the equilibrium point x = 0 at the bifurcation value

1 = 11in a “pitchfork bifurcation.”

H™'(x) = (x;. X, — x2, x; — x¥/3)T is continuous on R? and if y = H(x), then y =
(X, % + 2x,X;, X3 + 2X,%/3)T = (=x,, —x, - X2, X3 + x23)T = (~y,. =y, y3)T =

Df(0)y.
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PROBLEM SET 2.7
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1. A‘1=_3.A2:7’v]:(3'—2)]‘"’2:(]‘I)T’le: , l:lvp_lzg

y = diag [-3. 7]y + (=6y; +y,y, + ¥3. -9y - 6y,y, - y})T.

2. u(t a) = (etay, ), u®(t. a) = udXt. a) = (ea,, —e-2a2/3)T. and uli)(t. a) — u(t, a) =

(ea). —e2a%/3)T. Thus. S : x, =—=x3/3and U : x, = 0.

3. dle)=(cet. eI+ (A3 +cy)e). S, =~c/3, for xe S. §(X) =
(x,et. x2¢2/3)Te S,and U : x, = 0.

4. ul(t. a) = (ea;. e'a,. 0)T. u®(t. a) = (eta;, eY(a, , 2%) — e a2 —e-2a2/3)T, ud)(t. a) =
ut)(t. a) = (e'a;. e(a, + a) —e2a?, —eHal/5 + e-Ma(a, + a?)/2 - e2(a, + 22)2/3)T. S : x =
W4(X,, X,) where y,(a,, a,) = u5(0, a,, a,. 0) = —-a/3 — a2a,/6 —a*/30:7e.. S : x; =
3 1 2 \l3 Iy ©2 3 + dys 49 &2 1 2 1 . 1.C.. . 3
-X3/3 = x2x,/6 - x}/30. To find U, let t = —tto get X; = x|, X, = X, — X’ and X, =

—X3— xg. For this system u()(t, a) = u@Xt. a) = (e'a |, 0. 0)T. Thus. U : X, =0.x,=0.1e.,

U is the x;-axis.

5. x()=cpet, xy(t) = —cje 2 + (cy + Ce, Xy(t) = —¢ e /5 + c3(c, + D2 -
(c; + )2 2/3 + (30c, + ¢! + 5c2¢, + 10c§)e‘/30;ll_j£3 ¢ () = 0iff 30c; + ¢! +5c2c, +
10c; = 0; therefore, S : x5 = —x2/3 — x2x,/6 — x3/30; and lim ¢ () = 0iff ¢, =¢, = 0;

therefore U : x, =0 and x, = 0.

6. Since Fe C!(E), it follows that for all € > 0, there exists a & > 0 such that for all e
Ny(0), |IDF(£) - DF(0)]| = [DF(&)]| < &. Thus, for all x. y€ N5(0). |[F(x) - F(y)| < |[DF(®)|

x -yl <e|x -yl
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U, ={xeS!|y>0}. h(x.y)=—=x hl(x)= (—X,H)T: U,={xeS!'|y<0}.
hy(x.y) = x. h;'(x) = (x. —W)T; U;={xe S| x>0}.hy(x.y) =y, h;l(y) =
(W y)T: and Uy = {x€ S'|x <0}, hy(x, y) = -y, h'(y) = (—W y)T.
UinU, = 0. UynUy = hy(U,nU3) = {ye R [0 <y < 1}, hyoh!(y) = =1 - y2 and
Dhyeh!(y) = y//1-y? > 0 for ye hy(U,AUy): hy(U,AU,) = {ye R -1 < y <0},

hyoh=!(y) = y1—y? and Dh, oh;'(y) = —y/y/1=y? >0 for ye hy(U,AU,): and it is

similarly shown that Dhioh}‘(x) > 0 for x € hy( UiNU;) fori=2.j=3.4etc.

hyohi (2. x) = (x, VI-x2 =2% ). hyohi}(x, 2) = (x, ~V1-x* =22 ), h, o5y, 2) =
(yI-y2 =22 y). h, ohN(z. y) = (-\1-y? =22 y); Dh,oh;!(z, x) =

0 1 1 0
-z —X . Dhjohjl(x, z) = X y4
\/l—xz—z2 \/l—xz—z2 \/l—xz-—z2 \/l—xz—z2

T
Dh, ob;!(y. 2) = \/l _y?2 g2 \/I -2 |,
1 0

Dhyohgl(z.y) = | 1-y? =22 1-y2-22 |
0 ]

Z 2
det Dhloh;l(z, X) = ﬁ >0 for (z, x)€ hy(U,NU;) = {(z. x) e R? | x2+22<1,

1-x"-2z
: -1 = z___ = 2| 2
z>0}. det Dhyoh}!(x, 2) = N >0 for (x, z)€ hy(U;NU,) = {(x, z)e R? | x2 +

2 "l - —Z ' =
z2<1.2>0}. det Dh,oh;!(y. 2) = — >0 for (y. z)€ hy(U;NUy)
z
{(y.2)e R?| y2+22< 1,2 > 0}. det Dh,ohz!(z, y) = ———=—— > 0 for (z. y)€
177 /l_yz_zz

he(U;nUg) = {(z. y)€ R? | y2 + 22 < 1. 2 > 0}, and so forth.
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PROBLEM SET 2.8

L. Lety(0) =y then y () = y g€, yo(t) = ype™ + (e — e)/3. z(t) = z,e% Py(y. 2) =
O YT DY, 2) = (31, ¥ — e ko 2T, Dy(y. 2) = (y,. ¥, — e-2ky(1 + e-3)z2)T.
Dy(y. 2) = (y). ¥, — e 2ko(1 + €3 + e6)22)T. --- where k,, = (e3 - 1)/3e: P (y.2) >
(V1 Y2 - 2T W (y. 2) = 2. Hy(y, 2) = (y,. y, — 2%/3. 2)T. L H,T'(y.z) =
(1 Y2 =23, )V H(y. 2) = (y. Y. - 22/3. 2)". and H''(y. 2) = (y,. y, + 2%/3. 2)T; ES =
{xeR3|x;=0} and H'(E%) = {xeR?| x; = 0}; E" = {x€ R3| x, =x, = 0}, and
H-'(EY) = {xe R3 | x = (0, z/3. z)} = W¥(0).

2. y(O)=ypet zi(t) = z)pel, zy(t) = zppe' + y2(e - e2)/3 + yoz 0(et — 1); Wy(y. 2) =
(21, 2T W \(y. 2) = (21, 2, + Ko y*e + k\yz,/e)'. Wo(y, 2) = (z,. 2, + ko y2(1 + e3)/e +
kiyz, (1 +c)/e)T, Waly. 2) = (z). 2, + Ko y2(1 + e3 + cO)/e + k,yz,(1 + ! + e2)/e)T. -,
where ky = (€3 - 1)/3e2and k, =e — 1: W(y. 2) = (2, 2, + Y3 + yz)T, @, (v, 2) =
yiH(y, 2)=(y, 2. 2, + Y3 + yz)T. H'\(y, 2) = (y, 2y, 2, - Y3 — yz,)T E* =
{xe R3|x,=x; =0}, H''(E5) = {xe R¥| x, = 0. x; = —x¥/3}: E" = {xe R3| x, = 0},

H-'(E*) = {xe R3| x, = 0}.

3. v =ypet y()=yypet +y et —e ). 2(1) = zget + ya(et— e /3 W(y. z) =
z.Vi(y.2)=z+koyle ¥y(y. ) =z + kyy(l + e3)/e, ¥s(y. 2) =z + ko2 (1 +e3 +
e®)/e, -+ where ky = (e3 — 1)/3e2. and ¥ (y, z) = z + yi3: dy(y, 2) = (y,, y)7,
Dy(y.2) = (¥, y2 + kiey)T. @4y, 2) = (y,, y, + kjey>(1 + e)T. Dy(y, 2) =
(Y1 y2 +kpeyl(l + el +e )T -+ where k, = (¢ - 1)/e? and Di(y, 2) > (y,. y, + YT
H(y. 2) = (y;. yo + Y2 2+ y¥3). H'N(y, 2) = (y,, Yo - Y2 2 - y2/3); Ef = {xe R3 | x, = 0},
HYE®) = {xe R3 | X3 =-x/3}:E'= {xeR3 |x,=x,=0}. H'E") =

{xe R3|x,:x2:0}.
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Wn(2) = (2. 2, + mz)T — (z. ©0). If H(z) satisfies (9). then H(e?z,. e* z,+e'z]) =
diag[e?, e*]H(z): therefore. Hy(e2z,, ¢4z, + e4Z)) = e*H,(z,. 2,) and e*0H,/0z,(z,. 7,) =
OH,/02,(e?2,. ez, + e*22)-e2 + OH,/0z,(e22,, e¥z, + e*2?)-2e4 2,1 setting z, =2, = 0
implies that 9H,/dz,(0. 0) = 0. A second differentiation with respect to z, yields
e?92Hy/9z3(0. 0) = e2[9?H,/0z2-¢? + 92 H,/0z, 9z,2e%z,] + 2e4z, [0*H,/0z,0z,-¢2 +
0?H,/023-2¢%2,] + 2e! 0H,/dz,, the right-hand side being evaluated at (e2z,, ez, + e*Z2):
setting z, = z, = 0 then implies that 0 Hy/dz3(0. 0) = 9? H,/9z%(0. 0) + 20H,/dz,(0. 0). i.e..
that 9H,/9z,(0. 0) = 0. Thus J(z) = det DH(z) = 0 at z = 0. Finally. if H™! exists, then
HoH~)(2) = z and then by the chain rule. if H! were differentiable at z = 0 we would

get DH(H (z))-DH~'(z) = 1 which would imply that 0 = det DH(0)-DH'(0) = 1. a

contradiction.

PROBLEM SET 2.9

1.

. (q)

(b)

(©)

. (a)

(b)

(©)

(a, ¢, d) all unstable, (b) (4, 2) is unstable and (-2, —1) is asymptotically stable, (e) 0 is

asymptotically stable fork <1 and for k> 1. 0 is unstable and (#Vk -1 . +Vk — 1.

k — 1) are asymptotically stable.

(1. 0) is an unstable proper node and (-1. 0) is an unstable saddle.

(-1.-1) and (2, 2) are unstable saddles, (V2 , 0) is an asymptotically stable proper node

and (—V2 . 0) is an unstable proper node.

(1, 0) is an unstable saddle and (0, 2) is an asymptotically stable node.

V(x) <0 forx #0500 is asymptotically stable.
V(x) > 0 for x # 0 so 0 is unstable.

V(x) = 0 for all xe R250 0 is a stable equilibrium point which is not asymptotically

stable and solution curves lie on circles centered at the origin.
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5. (@) ForV(x)=x2+ X2, W(x) < 0 for x # 0 therefore, 0 is asymptotically stable.
(b) For V(x) = x2 + x2. it follows that on any given straight line x, = mx, with Im -2|< V3.
Vx) < 0 for all sufficiently small |x| # 0 and on any given straight line x, = mx, with
Im - 2| > V3. (x) > 0 for all sufficiently small x| # 0; i.e., 0 is a saddle and is unstable.
This follows more easily from the Hartman-Grobman theorem since the eigenvalues of the
linear part A = 1 + /3.
(¢) For V(x) = x? + 2x2/3, it follows that V(x) < 0 for 0 < [x| < 1: therefore, 0 is

asymptotically stable. This also follows from the Hartman-Grobman theorem since the

eigenvalues of the linear part A = -2 + V3.

(d) For V(x) = (x) = x, - 4)* - exp[(x,;Xp+ X, = X, + 12) / (4 + X, — x)]. V(x) = 0 and
therefore 0 is a center. This Liapunov function can be found by making the rotation of
coordinates u = X, + X,. V = X; — X, to get du/dv = (u¥/2 + v3/2 + 4v)/(uv — 4u): and then
letting w = u2 to get dw/dv = (w + 8v + v2) / (v — 4). a linear differential equation. The
solution of this linear differential equation then yields the Liapunov function V(x,, X5).
Also. note that the u, v system is symmelric with respect to the v-axis: cf. Theorem 6 in

Section 2.10.

7. Let x; =x and x, = —g(x,). Then X + f(x) X + g(x) = 0 is cquivalent to X, = -g(xy) - f(x))x, =
X, = F(x))x, since F'(x,) = f(x,). And this last equation is (up to an arbitrary constant)
equivalent to x, = x, — F(x,). Let V(x) = x';' /2 + G(x,). Then V(x) >0 forx 0 if G(x) > 0
and W(x) = -g(x,) F(x,) < 0 if g(x) F(x) > 0. Thus 0 is an asymptotically stable equilibrium

point.

8. F(x) = e(x3 - 3x)/3. G(x) = x2/2 > 0 for x # 0, and g(x) F(x) = ex%(x2 = 3)/3 <0 for& > 0
and 0 < [x| < V/3; therefore, for & > 0 the origin is an unstable equilibrium point of the van

der Pol equation.
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PROBLEM SET 2.10

1. (@) t=r. 0=1:the origin is an unstable focus.

(b)
(©)

. (a)

(b)
(c)
(d)

(e)

D

= ry2, 0= 1: the origin is an unstable focus.

r=(x8 +y6)/r > 0 and 6= 1 + xy(y* - x*) / 12 > 0 for sufficiently small r > 0: the origin

is an unstable focus.

Let F(x) = f(x) — Df(0)x. Then according to the definition of differentiability, Definition

I in Section 2.1, |F(x)| / |x] = 0 as|x| = 0. i.c., as x — 0.

(0. 0) is an unstable proper node, (1, 1) and (1. 1) are topological saddles.
(4. 2) is an unstable node and (=2. —1) is a stable focus.
(0, 0) is an unstable proper node and (0, -2), (V3. 1) are topological saddles.

(0, 1) is a center since the system is symmetric with respect to the y-axis and (0. -1) is a

topological saddle.

(0. £1) are centers since the system is Hamiltonian and also since it is symmetric with

respect to the y-axis and (*1. 0) are topological saddles.

(1. 0) is an unstable node and (-1, 0) is a topological saddle.

PROBLEM SET 2.11

1.

In Theorem 2, n =m = | is an odd integer, b, =4 # 0 and A = 8 > 0; therefore the system
has a critical point with an elliptic domain at the origin. For V(x) = y — x%/(2 £ V2) we
have W(x) = 0 on y = x2/(2 + ¥2): thus y = x2/(2 £ V2) are invariant curves of the
system. This system is best understood by drawing its global phase portrait; cf. Section

3.10.

(a.b.e.f) 0is a saddle-node. (c) 0 is a node (and it is unstable). (d) 0 is a topological

saddle.
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3. (a. b) 0 os a cusp. (¢) 0 is a saddie-node. (d) 0 is a focus or center according to Theorem
2 and using V(x) = x* + 2y2? with W(x) = —4x2y?, it is a stable focus. (e) 0 is a topological
saddle. (f) 0 is a focus or center according to Theorem 2: use the coordinate ransformation

€ =X, M =x+y to put the system into the normal form (3). Also, it can be shown that 0 is

a stable focus.

PROBLEM SET 2.12
1. Substituting h(x) = a, X2 + a; x3+ -+~ into (5) yields a, = 0 and na, +a_,, = 0 for integer
n 2 2: and this implies that a, = a, = --- = 0, i.e., that h(x) = 0. For the function h(x, ¢)
given in this problem, we have h’(x. ¢) = 0 for x > 0 and h'(x, ¢) = —ce*/x2 for x < 0.
Substitution into equation (5) yields 0 = 0 for
x 2 0 and —ce!”/x2[x2] — (—ce¥*) =0 forx < 0: o2
1.e.. h(x, c) satisfies equation (5) for all xe R, C-1

Also, since h(x, c) is (real) analytic at each point C=0

x # 0 with h™(x, ¢) = 0 as x = 0 and since 0 X
-C=1
h® 0, c)=0foralln=1, 2. ---. it follows that
-C=2
h(x. ¢) € C=(R).
2. Diagonalization yields a system of the form X = a(x + y)2 —y(x + y), y= -y -a(x +y)?2+

y(x +y); then from (5), h(x) = —ax? + ax? + -+ and on W<(0), x= ax2? + 0(x3); so for

a #0, 0 is a saddle-node. For a = 0, h(x) = 0 and the x-axis is a line of critical points.

3. The linear part of the system is already in diagonal form and from (5), h(x) = —x2 - 2x4 + ---;

on W¢(0). x=—x3 + --- and the origin is a stable node.

4. From (5) we have for h(x) = a,x? + a;x3 + - that (2a,x + 3a,x2 + 4a,x3 + ) (=x3) + (a,x2
+23%X7 + a,x* + agx® + ) — x2 = 0 identically in x for |x| < 8. Therefore setting the
coefficients of like powers of x equal to zero yields a, = 1, a;=0,2a,=242a;,=0,4a3, =

3. a;=0, le.a,=1a,=2a,=2 a5=4a,=24, -, a,, =2'n! and a5,,1 = 0. Thus,
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h(x) = E‘,Z” n! x2m2 diverges except at x = 0 and this polynomial system has no analytic
center 1:1221%01(1. However. since x = —x? < 0 for x > 0 and X = —x3 > 0 for x < 0. any
trajectory y*(t) with y*(0) = (x*(0)). y*(0)) and x*(0) > 0 or x-(0) < 0 can be represented
by a function y = f*(x) which is analytic for x > 0 or x < 0 respectively. And since W<(0)
is invariant under the flow, it follows from Theorem | that given f*(x). there exists an

f=(x) such that the function h(x) = {f*(x) forx > 0, 0 for x = 0. f-(x) for x <0} represents

a C= center manifold, W<(0). and x = —x3 on W<(0): thus. the origin is a stable node.

5. (@ From (5). h(x) = —x} — x3 + =-: on W¢(0). X, = —x, + O(|x]?). %, = x, + O(Jx[*) and the
origin is topologically a stable focus on W¢(0) which follows using the Liapunov function
V(x) = (x3 + x2)/2 or by showing that t= -3 + 0(r*) and 8= 1 + O(r) for the system on

W¢(0): hence, 0 is a symptotically stable critical point.
(b) There is a saddle-node at the origin on W¢(0).

(c) There is a critical point with two hyperbolic sectors at the origin on W<(0).

6. Let h(x) = a,x2 + a;x3 + ---: then from (5). h(x) = dx2 + (ed — 2ad)x3 + --- and on W<(0),
x=ax2 + bdx3 + 0(x*). Thus, for a # 0. the origin is a saddle-node: for a= 0 and bd > 0,
the origin is a saddle; for a = 0 and bd < 0, the origin is a stable node: fora=b =0 and

cd # 0, x=cd?x? + 0(x3) on W¢(0) and the origin is a saddle-node. If a=d = 0. the

X-axis consists of critical points.

7. h(x) = x2 + 0(|x*); on We(0). %, = —x - x3 + O(|x|*); %, = x> = x3 + O([x[*) and the origin
is topologically a stable focus on W¢(0) which follows using the Liapunov function

V(x) = (x} + xI)/4: hence 0 is an asymptotically stable critical point.



42

PROBLEM SET 2.13

1.

(]

Ly[hy(x)] = (byy X2 + (by, = 2a,)xy + (byy — a;,)y2, =2bg Xy — b, y2)T and for
ap =ay; = 0. a5 = (b + 0)/2. by, = —¢. by, = f and by, = —a. Ly[h,(x)] + Fy(x) =

(0, dx2 + (¢ + 2a)xy)T.

Since L;[h3(x)] = byg(x3, =3x2y)T + by, (x2y, —2xy2)T + b »(xy2 —y3)T + (bgy — a72) (y3. 0)T —
3azg(x%y. 0)F = 2a,,(xy2, 0)7, the result for L,(H,) follows: and then it is clear that H, =

Ly(H,)® G,

As in the paragraph preceding Remark 1. for F, = F, = 0, the system x = Jx + Fi(x) +
O(|x[*) can be reduced. by letting x =y + hy(y). to a system of the form y = Jy + F 4(y) +
O(|x]*) with F ;€ Gy, i.c., to a system of the form X = y + O(|x[*). = ax? + bx2y + o(x}*)
for a, be R. And letting y + O(Jx]*) — y, we get a system of the form (3) in Section 2.11:
according to Theorem 2 in 2.11. for a > 0 there is a topological saddle at the origin and for

a < 0 there is a focus or a center at the origin,

Similar to Problem 3. we get a system of the form (3) in 2.11: x = y, y= ax* + bx3y +

0(|x|*) which, for a # 0. has a cusp at the origin.

For x, =y, and x, =y, — y. the given system reduces (0 X =y — x? + xy2 — y3 + 0(|x]*),
y=x2+3x3 + x2y + O(|x|*) and then forx = (y,. y, + y = y;y? + y)Tory =
X|. Xa = X2+ x,x2 — x3)T, this system reduces to y, = y, + O(Jx|*): §, =
1 2 1 1™ 2 I 2 2

y? +3y3 - 2y%y, + O(|x]*).
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PROBLEM SET 2.14

1. (@) H(x.y)=aj,xy +a,,y2 - a,x2/2 + Ax?y - Bxy? + Cy¥/3 — Dx3/3. (b) If x = f(x) is
Hamiltonian, then f = (Hy. - H,) for x€ E and therefore V.f = aHy/ax - dH,/dy = 0 for
x€ E. On the other hand. if V-f = 0. i.e.. if 9f,/0x = —9f,/dy in a simply connecled
region E. then the first-order differential equation —f,dx + f,dy = 0 is exact. (See. for
example. Theorem 2.8.1 in W.E. Boyce and R.C. Di Pima, “Elementary Differential
Equations and Boundary Value Problems,” J. Wiley. NY, 1997.) Thus. there exists a
function He C%E) such that dH = H,dx + Hydy = ~f,dx + f|dy and therefore the system

x=1f, = Hy, y=f, = -H, is Hamiltonian on E.

2. H(x. y) = T(y) + U(x) = y¥/2 + x2/2 — x3/3; U(x) has a strict local minimum at X = 0 and a
strict local maximum at x = |: and therefore the Hamiltonian system has a center at (0, 0)

and a saddle at (1, 0).

3. H(x, y) = y¥/2 + x2/2 — x*/4; there is a center at (0. 0) and saddles at (1, 0).

5. (a) The Hamiltonian system has a center and the gradient system has a stable node at (0. 0).

(¢) The Hamiltonian and gradient systems have saddles at (nm, 0) forne Z.

(¢) The Hamiltonian system has a center and the gradient system has a stable node at (—4/3. =2/3).

6. (a) The surfaces V(x, y, z) = constant are paraboloids with their vertices on the z-axis and
trajectories. other than the z-axis. approach the positive z-axis asymptotically as t — oo,

(b) The surfaces V(x, y. z) = constant are concentric ellipsoids and the origin is a stable,

three-dimensional node.
(c) Each of the surfaces V(x. y. z) = constant has a strict local maximum at the origin, a strict

local minimum at (2/3, 4/3, 0) and saddles at (2/3, 0, 0) and (0. 4/3. 0); the gradient system
has a source at the origin. a sink at (2/3, 4/3, 0) and saddles at (2/3, 0, 0) and (0, 4/3, 0).
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Since X, is a strict local minimum of V(x). there is a § > 0 such that V(x) - V(x,) > 0 for
0 <|x| <8 and d/dt[V(x) - V(x()] = [0V/0x]-x = ~[(@V/Ix,)2 + -+ + (9V/0x,)?] < O for
0<|x| <8.

First of all (x,. 0) is a critical point of the Newtonian system (3) iff U’(x,) = 0. Since

det Df(x,, 0) = U”(x,) and trace Df(x,. 0) = 0, it follows that (xo. 0) is a saddle of the
Newtonian system (3) if U”(xy) < 0. i.e., if X, 18 a strict local maximum of U(x); and
since (3) is symmetric with respect to the x-axis. it follows that (%o 0) is a center of the
Newtonian system (3) if U”(xy) > 0. i.e.. if x, is a strict local minimum of U(x): finally. if
Xg 18 a horizontal inflection point of U(x), then U’(xy) = 0 and the first nonvanishing
derivative of U(x) at x, is odd; therefore, it follows from Theorem 3 in Scction 2.11 that

(Xg- 0) is a cusp for the Newtonian system (3).

Letx, =X,x,=y,y, =xand y, = y. The two-body problem is a Hamiltonian system
with H(x. x5, y. ¥5) = (y2 + y3)/2 - (x3 + x2)""2. The gradient system orthogonal to this
system is X, = ~x,/(x} + x3)*2 %, = x,/(xX2+ D)y, = 2y, $ = -,.

By Problem 1(b). if x= f(x) is Hamiltonian. then V-f = 0 in E (even if E is not simply

connected) and then by Problem 6 in Section 2.3. the flow defined by this system is area

preserving.



3. NONLINEAR SYSTEMS: GLOBAL THEORY

PROBLEM SET 3.1

()

6. (a)

$(t.x) =eAx = X.

The differential equation x = x2/(1 + x2) is separable; its solution is x(t) =

(t +etq(t+c) +4)/2; for xy # 0. x(0) = x,if ¢ = x5 — 1/X, and the * sign is chosen as

Xof|Xo| and this yields the result in Example 1: for Xy = 0 the solution is x(t) = 0.

If f(x) # 0 at x € E. then D|f(x)| = |f(x)| f'(x)/f(x); and this then yields DF(x) =
/(1 + If(x)[)z; if f(x4) = 0 at xy€ E. then DF(x,) = lhm(} [F(xq + h) = F(xy))/h =

,l]in(} f(xq + h)/(1 + |f(x, + h)|)/h = '(xy) and then lim DF(x) = lim f'(x)/(1 + |f(x)|)? =
- X—¥Xg X—%g

f'(xy) since f'e C(E) and since f(x,) = 0; hence Fe C!(E).

f'(x) = =2x/(1 + x2)? and f'(x) assumes its maximum/minimum at x = ¥ 1/43 : thus IF(x)| <
|£'(+1/N73 )| = 3Y3 : then by the mean value theorem |f(x) — f(y)| < 3V3 |x — y| for x. ye R.
The differential equation X = 1/(1 + x2) is separable and its solution satistying x(0) = Xg 18
given by the solution of the cubic x3 + 3x — (3t + k) = 0 with ky = x3 + 3x,: the solution of
this cubic is x(t) = {[(m +ko)+(Bt+ko) + 4]”3 X [(3t + ko) ~/(3t+ ko) +4]1/3}/21/3

and x(t) — oo ast — too,

If X, is an equilibrium point of (1) then ¢ (x,) = x, for all te R; and since 1t(x,, t) maps

R onto R. it follows that s, (H(x,)) = H( (x,)) = H(x,) for all T€ R: i.e.. H(x,) is an

equilibrium point of (2). Alternatively. one may follow the hint given in Problem 6.
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(b) If &,(x,) is a periodic solution of (1) with period t,. then ¢(O(Xo) =X, and therefore if

To = T(Xp. to). it follows that s (H(xg)) = H(d, (X)) = H(x), i.e.. $,(H(xp)) is a

periodic solution of (2) of period T,.

(Cf. [Wi]. p. 25-26.) Differentiating () wih respect to t yields DH(¢ (x))d,(x)/0t =
dt(x, t)/0t-0Ys (H(x))/dt which at t = 0 yields DH(x)f(x) = d1(x, 0)/dt-g(H(x)). Then
differentiating this last equation with respect to x yields DZH(x)f(x) + DH(x)Df(x) =

Jt(x, 0)/9t-Dg(H(x))DH(x) + 92t(x. 0)/dxat-g(H(x)). And then setting x = x,. this
yields ADf(x)A™! = 9t(x,. 0)/0t-Dg(H(x,)). Thus, the eigenvalues of Df(x,) and the

eigenvalues of Dg(H(x,)) are related by the positive constant k,, = d1(x,, 0)/0t.

ForF(x.y) = (y. ux +y —y3 and p # 0. FI(x, y) = (y = x + x3, ux)/u;

0 1 (-1+32)/n 1/p

DF(x.y) = [ :l and DFi(x, y) = are continuous; and an

v 1—3y2 1 0

easy computation yields F(\/ﬁ \/E) = (\/ﬁ \/—l,_t)

PROBLEM SET 3.2

1.

2. (a)

There is a saddle at (0, 0) and stable nodes at (1, 0). [-1, 1] is an attracting set, but it is
not an attractor since it does not contain a dense orbit. (0. 1] is not an attractor since it is
not closed. [1, e°) is an attractor. (0. o), [0, o) and (—1. o) are not atiracting sets. [-1,

©0) and (—oo, o°) are attracting sets.

By the theorem of Hurwitz given in this problem, for any irrational number o and any
integer N > 0. there are positive integers m. n such that n > N and |on - m| < 1/n. Further-
more, for any € > 0. if we choose N 2 2n/e. then |2an — 2nm| < 27t/n < € and then for a =
exp[2mial], la“ - l| <¢€. Let 0 =2nna - 2rnm: then 0 < |6| < € and there exists an integer K
such that K|B| < 21 < (K + 1)|8]. Thus, for any point a, on the unit circle C, there is an

integer j€ {1. ---, K} such that |ai — ag| < &: therefore {ak |k =1,2, -} is dense in C.



(b)

(c)

(d)
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The flow ¢ (w, z) = (e2mitw. e2nditz): it follows that ¢ (w. z) = (e?minw, e2mani z) =

(w. anz).

Let x4 = (wy. zg) € T2. Given any point (w,.z))€ T2 let t, = argw, — argw,,. Then
e2mitow, = wy and for Z, = ez, (W, Zg) = (W), Z) since b (wy. Zg) =

(e?ritw,, e2mitz ). Then for any z, € C and €, = 1/n, there is a positive integer k, > n such
that | Zy exp[2maik, ] - z, | < 1/n: this follows from part (a) with a, = z,/Z, and € = 1/n.
Thus, for any point (w,. z;)€ T2 if we let t; = t;, + Kk, then t, — o0 and ¢ (w,, ;) =
P o P (Wo. Zg) = P, (W) Zg) = (W, 2;) as n — oo therefore, (w). z,) € (Txy): i.e..

(I'y,) = T2. Similarly, it is shown that «(I'y,) = T2

Any trajectory of this system is a solution of the Hamiltonian system with two degrees of
freedom x = -2nay, y = 2noax: = -2nv, v=27u; with H(x) = -n[a(x? + y2) +
(u? + v?)]. Thus, trajectories lie on the ellipsoidal surfaces E, = {xeR! | o(x2+y2) +
(u? +v2) =k2?}. Fora given ke R and Xy € E,. it follows from part (c) that w(T,) is the
torus T?, = {xe R¥ | u2 + v2=hZ x2+ y2 = (k2 - h?)/a} = C, x C, with h' =

(k2 - hz) / o and, as in Section 3.6, for a given ke R, we can project from the north

pole of the surface E, (o obtain the projection of the tori T3 onto R3: cf. Figure 5 in

Section 3.6.

Reflexive: I} ~ I since ¢ (X)) = (X)) for ty = 0. Symmetric: If T, ~ T, then ¢ (x,) =
& 144,(X)) which is equivalent to ¢ (x)) = d(x)). i.e.. I, ~ I. Transitive: If [ ~ I, and
L~ Ty then &,(x,) = dyyyo(X)) and & (x3) = dyy (X3) = 44, (X,). thus [} ~ T, This
equivalence relation partitions the set of solution curves of (1) into equivalence classes

called trajectories.

a(I") cannot consist of one limit orbit and two equilibrium points: in case (d) there are two

different topological types given by the top two figures in Figure 4 in Section 3.3.
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6. (a) Replacing x by —x and y by —y does not change the system.

(b) Forx=y=0.x=0. and y=0, so the z-axis is invariant and consists of three

trajectories: the origin together with the positive and negative z-axes.

(¢) Substituting the coordinates for the equilibrium points into the right-hand side of the

system gives zero: for 6 >0 and p > 1, the linear part at the origin has two negative

eigenvalues and one positive eigenvalue.

(d) V(x) = -26[(px — y)? + Bz2] < 0 except on the line z = 0. y = px; thus. for0<p <1, 0

is globally asymptotically stable.

PROBLEM SET 3.3
1. (@) r=r(l -1?) sin[l/q”l—rzl]. 6=1andr=0ifr= 1/1i(1 / nznz). This defines a
sequence of limit cycles F:fwhich approach the cycle I'onr = 1; the limit cycles T :‘: are

stable for n odd and unstable for n even.

(b) Similarly. 8= 1. r=r(1 -2 sin[1/(1 =12)] =0 if r = 41 —(1/ nm). n a nonzero integer;
I, is stable for n odd and positive or n even and negative and [, is unstable for n even and

positive or odd and negative.

W

O=landi=r(1 -r2)2=0ifr=1andi>0forr#0Qor 1.

3. From the example in Section 1.5 we have a one-parameter family of cycles lying on the

ellipses x(t) = acos2t, y(t) = (0/2) sin2t with parameter oce (0, o) and period T, = 7.

(b) t=0and 6=r>0forr>0: by substitution into the system of differential equations.

x(1) = acosait. y(t) = asinat is a periodic solution with period T, = 21/ for oe (0, o).



4-6.

7. (a)
(b)

8.

9.
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Use the result of Problem 1 in Section 2.14 to show that the system is Hamiltonian and
then use Theorem 2 in Section 2.14 to determine which critical points are saddles and

which are centers.

6=1 1= r(1 —r?) (4 — r2) has two limil cycles I'; : v (1) = (cost, sint)T and I oy, =
(2cost. 2sint)T; T is stable and T}, is unstable; 0, I}, T, are the only limit sets of this

system.

O=1.t=r(l-r2-22)(4-r2-2) forz =z, the spheres S, : 12+ z2 = | and

S, : 12 + 22 = 4 are invariant: there is no attracting set: cf. Example 2 in Section 3.2.

O=1.t=r(l - (4 -r12).2()) = z,et: T, and T, are unstable. Ws(T)) = {x€ R3 | z=0.
O<r<2}, WiI) = {xeR3|r=1}, W([,) = [, W¥[,) = {xe R¥| I <r<eo}. The

unit cylinder is the only attracting set for this system.

[ is a stable periodic orbit WS(I,) = {xe R3 | 1 <r<oo}: the origin. I, the z-axis and
the cylinder r = 2 are attracting sets for this system; and the origin and [, are the only

attractors for this system.

PROBLEM SET 3.4

1.

Substitution into the system of differential equations shows that y(t) is a periodic solution.
Since V-f(v(1)) = -2 (since 1 — x¥/4 — y2 = 0 on (1)), it follows from the corollary to

Theorem 2 that I'is a stable limit cycle.

Substitution shows that y(t) is a periodic solution. In cylindrical coordinates r = r(1 — r2).
® =1 and 2 = z, which has the solution b (1o, 0. 2) = ([1 + (1/rp = De 2712, 1 + 8,
24eD)"; thus P(xy, zg) = ([1 + (1/r3 = De~"]2, 2,¢2M)T, DP(x,,. z) = diag [e-*"r(; 3.

[1+ (/2= De ]2, eZﬂ] and DP(1. 0) = diag [en, e21] = 2B where B = diag [-2. 1].
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3. (a) Forxy=(xy 0). d(Xg) = € Ry, Xo = e(x,c0sbt. x,sinb)T: at t = 2n/[b]. we get P(xy) =

(b)

xgexp [2ma/jb|]: for d(x) = P(x) - x = x exp [2ma/[b|] - x. d'(0) = d’(x) = exp [27a/]p|] - 1

and clearly d(-x) = —d(x).

P(s) = [1 + (1/s2 = 1)e=]"V2 for s # 0 and P(0) = 0: and this is equivalent to P(s) =
s[s2 + (1 — s2)e=7]~12 which is (real) analytic for all s€ R since 52 + (1 —s?)e~" =
e~ + (1 — e=m)s2 > O for all se€ R: since P'(s) = ¢*1[s2(1 —e~7) + e=7]-¥2 for all se R,

P'(0) = e2% and d’(0) = €27 — 1 > 0: thus. the origin is a simple focus which is unstable.

= 1. r=r(1 - r2)2 and Y(t) = (cost, sint)" is a semi-stable limit cycle of this system;
since V-f(y(1)) = 0. it follows from Theorem 2 that d(0) = d’(0) = 0 and hence k 2 2in

Definition 2. i.e., [ is a multiple limit cycle.

Ifa=0.b#0, ay + ay, = byy + by, = 0. then according to equation (3). 6 =d"(0) =0
and therefore the first non-vanishing derivative d®(0) # 0 hask =2m+ 1 25, i.e.. the

origin is either a center or a focus of multiplicity m > 2.

PROBLEM SET 3.5

1.

Direct substitution shows that y(t) is a periodic orbit of the system. The linearization about

0 -1 0 cost —sint O
Yy has A=Df(y(t))=|1 0 Oland®d(t)=|sint cost O |asits
0 0 -1 0 0 e

fundamental matrix satisfying ®(0) = 1. It follows that ®(t) = Q(t)eB' with Q(t) given in
Example 1 and B = diag [0, 0, —1]; therefore, the characteristic exponents of y(t) are A=
0 and A, = -1 and the characteristic multipliers are 1 and e 2t dim S(IN =2,dimC{I) =2

and dim U(I") = 1.



