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Abstract. A procedure is outlined for adapting Krylov subspace methods to solving approx-
imately the underdetermined linear systems that arise in path following (continuation, homotopy)
methods. This procedure, in addition to preserving the usual desirable features of Krylov subspace
methods, has the advantages of satisfying orthogonality constraints exactly and of not introducing
ill-conditioning through poor scaling.
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1. Introduction. Krylov subspace methods for iteratively solving linear sys-
tems have enjoyed wide success and great popularity in recent years; see [5] and [7]
for surveys. These methods have been effectively adapted to solving nonlinear systems
through Newton–Krylov methods (cf. [2]), in which they are used to solve approxi-
mately the linear systems that characterize steps of Newton’s method. In this note,
we outline a particular way of adapting Krylov subspace methods to the context of
path following problems, including continuation and homotopy problems (see, e.g.,
[1] and [14]), in which the goal is to determine or follow a curve of solutions of a
parameter-dependent nonlinear system over some range of parameter values. Solu-
tion methods for these problems typically give rise to underdetermined linear systems,
and our specific goal is to describe a simple procedure for applying Krylov subspace
methods to these underdetermined systems. To keep the presentation appropriately
brief and straightforward, only essential issues will be addressed.

We consider a path following problem in the general form.

Problem PF. Given F : Rn × R1 → Rn, solve F (x, λ) = 0 over a range of
(x, λ)-values.

For convenience, we denote (x, λ) = x̄ and regard it as a vector in Rn+1; we
also write F (x, λ) = F (x̄), F ′(x, λ) = F ′(x̄), etc., where F ′ denotes the Jacobian
(matrix) of F . It will usually be convenient to assume that Problem PF has an
associated smooth solution curve, each point x̄ of which is regular or nonsingular in
that F ′(x̄) ∈ Rn×(n+1) is of full rank n. Treatment of points such as bifurcation points
at which F ′ is rank deficient is an important issue but will not be considered here.

Solution algorithms for Problem PF vary but are typically of predictor–corrector
form, in which the next point on the solution curve is “predicted” by some easy but
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relatively inaccurate means, and then a series of Newton-like corrector iterations is
employed to return approximately to the curve. We shall not elaborate on the nature
of predictor methods here, except to note that they typically make key use of one or
more tangent vectors to the solution curve. These tangent vectors are characterized
as null vectors of F ′ and often have to be computed with considerable accuracy in
difficult applications.

The corrector iterations typically begin with x̄0 determined by the predictor and
produce iterates x̄k+1 = x̄k + s̄k through steps s̄k characterized by analogues of the
linear systems that determine steps of Newton’s method, viz.,

F ′(x̄k) s̄k = −F (x̄k).(1.1)

The system (1.1) is underdetermined, and an additional condition must be imposed
to specify s̄k uniquely. This can be done in various ways; here, we take the additional
condition to be of the form

t̄Tk s̄k = 0, t̄k ∈ Rn+1.(1.2)

In (1.2), t̄k may be an approximate unit null vector of F ′(x̄k), as in the normal flow
algorithm (cf. [15] and [16]), or it may be an approximate unit tangent to the solution
curve at the previous point that does not change with k, as in the augmented Jacobian
algorithm of [15] and [16] or in pseudo-arclength continuation as described, e.g., in
[3], [6], and [10]. In either case, computing one or more approximate null vectors of
F ′ may be an important ancillary task.

In section 2 below, we first describe our procedure for adapting Krylov subspace
methods to computing a corrector step, i.e., to computing an approximate solution
of (1.1) subject to the constraint (1.2). We then outline a variant for finding an
approximate unit null vector of F ′(x̄) for a given x̄; as indicated above, this may
be required by either the predictor method or the corrector iterations or both. In
section 3 we demonstrate the effectiveness of these procedures through numerical
experiments on representative model problems. A summary is offered in section 4.

2. The adaptation.

2.1. Computing a corrector step. An obvious way to use a Krylov subspace
method to compute a corrector step is to apply it to the (square) linear system
obtained by augmenting (1.1) with (1.2). However, previous experience in [8] and [4]
suggests that Krylov subspace methods may not perform well on these augmented
systems. Possible difficulties evident in this approach include the following:

• The augmented system may be ill-conditioned if the scale of (1.1) differs
greatly from that of (1.2). Although it may be possible to rescale (1.2) to
obtain a well-conditioned system, it may not be clear how best to do this.
• Iterates produced by a Krylov subspace method applied to the augmented

system only approximately satisfy (1.2). This difficulty may be aggravated
by poor scaling as just discussed. It may be a serious concern when only a
fairly inaccurate approximate solution of the augmented system is desired.

The approach proposed here circumvents these potential difficulties by imposing
(1.2) directly as a constraint on the iterates. The abstract framework is as follows:

1. Find Q ∈ R(n+1)×n such that Range (Q) = {t̄k }⊥ and ‖Qy‖2 = ‖y‖2 for all
y ∈ Rn. Then F ′(x̄k)Q ∈ Rn×n.

2. Apply the Krylov subspace method to solve approximately F ′(x̄k)Qyk =
−F (x̄k) for yk ∈ Rn. Then set s̄k = Qyk.
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Under this approach, s̄k = Qyk satisfies (1.2) regardless of how well it approxi-
mately satisfies (1.1). Scaling associated with (1.2) is not an issue. Moreover, since
‖Qy‖2 = ‖y‖2 for y ∈ Rn, conditioning problems are not worsened as long as t̄k is
an accurate unit null vector. Indeed, if F ′(x̄k) is of full rank and t̄k is exact, i.e.,
F ′(x̄k)t̄k = 0, then the singular values of F ′(x̄k)Q are precisely the positive singular
values of F ′(x̄k).

The particular way of specifying Q that we propose here is based on Householder
transformations, as follows:

1. Choose i, 1 ≤ i ≤ n + 1, and let ēi be the ith column of I ∈ R(n+1)×(n+1).
Determine a Householder transformation P such that P t̄k = ±ēi.

2. Set Q = P Îi, where Îi is obtained by deleting the ith column of I.
It is easy to verify that Q specified in this way has the desired properties Range (Q) =
{t̄k }⊥ and ‖Qy‖2 = ‖y‖2 for all y ∈ Rn. The cost of applying such a Q is just that
of applying P , viz., one dot product and one “saxpy.” The Q of this form that
has been most effective in our testing, and which was used in the experiments in
section 3, is Q = P În+1, i.e., Qv = P

(
v
0

)
for v ∈ Rn. This was very successful in

the experiments in section 3 and in other limited testing, while several other choices
of the form Q = P Îi were not very successful. The success of this choice is perhaps
not surprising, given the special nature of the (n + 1)st coordinate in path following
problems.

This procedure preserves an important property of Krylov subspace methods:
Applying a method requires only products of F ′(x̄k) and perhaps also F ′(x̄k)T with
vectors. If these products are computed analytically, then sparsity of F ′(x̄k) can be
fully exploited. If analytic computation is infeasible, then products involving F ′(x̄k),
if not F ′(x̄k)T , can be approximated in a well-known way with finite differences of
F -values.

Preconditioning is essential for success on most large scale problems and is a
particularly important issue here. In difficult applications, there is often a major
investment in constructing a preconditioning operator M : Rn → Rn that is effective
in the “fixed-parameter” case, i.e., for solving F (x, λ) = 0 for a fixed value of λ. It
would be highly desirable if such a preconditioner could be used for path following
as well. In our approach, left preconditioning with such an M can be accomplished
in the usual way, i.e., by replacing (1.1) with M−1F ′(x̄k) s̄k = −M−1F (x̄k). Right
preconditioning with M can be done in two ways. First, one can approximately solve
F ′(x̄k)QM−1zk = −F (x̄k) for zk ∈ Rn and then set s̄k = QM−1zk, corresponding to
the usual implementation of right preconditioning. Second, writing

M̄ =

(
M 0
0 1

)
,

one can approximately solve F ′(x̄k)M̄−1Qzk = −F (x̄k) for zk ∈ Rn and set s̄k =
M̄−1Qzk. These alternatives were equally effective in limited testing; since the first
is somewhat simpler and more natural, it was used in the experiments in section 3.

2.2. Computing a unit null vector of F ′. In our approach to computing
an approximate unit null vector t̄ of F ′(x̄) for given x̄, we assume that an initial
approximate null vector t̄0 is given. In practice, this t̄0 can be postulated at the first
continuation step or obtained from previous continuation steps or corrector iterations
once the path following algorithm is under way. The proposed procedure is as follows:

1. Solve F ′(x̄) s̄ = −F ′(x̄) t̄0 subject to t̄T0 s̄ = 0.
2. Set t̄ = (t̄0 + s̄)/‖t̄0 + s̄‖2.
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Step 1 of this procedure is precisely the same mathematically as solving (1.1) sub-
ject to (1.2), and so for step 1 we propose using the procedure outlined in section 2.1
for computing a corrector step, with the appropriate straightforward changes. As in
section 2.1, conditioning problems should not be worsened if t̄0 is reasonably accu-
rate. Even if serious ill-conditioning occurs because of inaccuracy of t̄0, the resulting
t̄ should be a better approximate unit null vector than t̄0, and the procedure can be
repeated.

An analogue of the alternative approach noted at the outset in section 2.1 is
available here, viz., solving the augmented system(

F ′(x̄)

t̄ T0

)
s̄ =

(−F ′(x̄) t̄0

0

)
.

However, this would be subject to the potential difficulties noted in section 2.1. An-
other possibility is to solve the n× n system DxF (x̄)s = −F ′(x̄)t̄0 for s ∈ Rn×n and
then to take t̄ = [t̄0 + (s, 0)]/‖t̄0 + (s, 0)‖2. However, this system is singular at fold
points (also known as turning points or limit points) and ill-conditioned near them.

3. Numerical experiments. We implemented and tested the procedures out-
lined in section 2 in a rudimentary predictor–corrector algorithm using a simple Euler
predictor (cf. [1]), in which prediction is along an approximate tangent to the solution
curve. The stepsize h along the approximate tangent was adaptively adjusted to give
satisfactory corrector convergence in a modest number of corrector iterations. We
note in each case below how the approximate tangent was constructed and how the
vectors t̄k in (1.2) were selected. The Krylov subspace methods used were GMRES(m)
[11] and BiCGSTAB [13]. Only left preconditioning was used; particular precondi-
tioners in each case are described below. All computing was done in Matlab on a
Sun Microsystems SPARCstation 20.

The test problems all involved elliptic PDEs in D ≡ [0, 1] × [0, 1], as described
further below. Discretization was with the usual centered differences on a regularly
spaced rectangular grid of interior points in each case.

3.1. Two nonlinear eigenvalue problems. These two problems have been
suggested as simplified models of combustion phenomena. The first is the Bratu (or
Gelfand) problem, which is a classical test problem for continuation methods (see,
e.g., [6]), given by

∆u+ λeu = 0 in D, u = 0 on ∂D.(3.1)

The second is a problem considered by Chan [3] and given by

∆u+ λ

(
1 +

u+ u2/2

1 + u2/100

)
= 0 in D, u = 0 on ∂D.(3.2)

The Bratu problem has one fold point at λ ≈ 6.81, and the Chan problem has two at
λ ≈ 7.98 and λ ≈ 6.41.

Determining curves of solutions of these problems as λ varies is rather easy for
path following methods, and the algorithm was kept appropriately simple. In the
predictor–corrector method, each approximate unit tangent used in the Euler pre-
dictor was just the normalized difference of the current and previous points on the
solution curve. In the corrector iterations, we took t̄k to be this approximate unit
tangent for each k. In particular, no null vectors of F ′ were computed.
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Our main interest is in assessing the performance of the Krylov solvers on the
corrector iterations with a fast Poisson solver preconditioner.1 This preconditioner is
very effective on (3.1) and (3.2) with fixed small λ and gives mesh independent Krylov
solver convergence, i.e., convergence that does not slow as the grid is refined.

To investigate the effectiveness of this preconditioner and its mesh independence
in the present context, we ran the algorithm on the two problems with four different
grid sizes, using GMRES(40) and BiCGSTAB as the Krylov solvers. (In fact, con-
vergence was always so fast that there were no GMRES restarts.) In each case, we
calculated the geometric mean of successive linear residual norm ratios ‖rk+1‖2/‖rk‖2
over all Krylov iterations at all corrector steps along the computed solution curve over
a specified arclength interval containing the fold point(s).2 The results are shown in
Tables 3.1 and 3.2. In these tables, the convergence of both Krylov solvers is seen
to be very fast overall. The convergence of GMRES is quite mesh independent; that
of BiCGSTAB slows slightly but not greatly as the mesh is refined. These results
suggest that convergence is at most mildly dependent on the grid size.

We also note that the convergence of GMRES and BiCGSTAB with this pre-
conditioner was not adversely affected near fold points in these experiments. To
illustrate this, for a 64× 64 grid, we show in Figure 3.1 geometric means of the ratios
‖rk+1‖2/‖rk‖2 at each continuation step along the curves, plotted over the (λ, ‖u‖∞)-
plane.

3.2. The driven cavity problem. This problem is a standard test problem
for Navier–Stokes solvers and for continuation methods (see [6] and [12]), considered
here in stream function form

(1/Re)∆2ψ +
∂ψ

∂x1

∂

∂x2
∆ψ − ∂ψ

∂x2

∂

∂x1
∆ψ = 0 in D,

ψ = 0 and
∂ψ

∂n
= g on ∂D,

(3.3)

where g = 0 on the bottom and sides of the square and g = 1 on the top.
Our goal here is to demonstrate the ability of the methods in section 2 to deter-

mine curves of solutions of (3.3) as the Reynolds number Re varies when the “stan-
dard” centered-difference discretization of (3.3) is applied on a regular coarse grid.
This can be a difficult problem, as explained further below. The discretization involves
unknowns ψij at interior gridpoints (ih, jh), 1 ≤ i, j ≤ m, where h = 1/(m + 1). To
treat the boundary conditions, gridpoints are added on and are exterior to the bound-
ary by allowing i, j = −1, 0, m+ 1, m+ 2. The boundary conditions are imposed on
the top boundary by requiring

ψi,m+1 = 0,
ψi,m+2 − ψim

2h
= 1, 1 ≤ i ≤ m.

Imposition of the boundary conditions on other boundary segments is similar.
It has been shown in [12] that this “standard” discretization gives rise to spurious

nonphysical solutions on coarse grids. In particular, it is demonstrated in [12] that,
on several coarse grids, the branch of physically significant solutions has two fold
points, with loss of physical significance beyond the first. Following the solution curve
through these fold points is difficult: care must be taken to remain near the curve in

1The Matlab code used for this was the code accompanying [9].
2Arclength was normalized so that the curves traversed were similar for all discretizations.
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Table 3.1
Bratu problem, geometric means of ‖rk+1‖2/‖rk‖2.

Grid size 16× 16 32× 32 64× 64 128× 128

GMRES(40) .0291 .0294 .0282 .0285

BiCGSTAB .0681 .0961 .1091 .1278

Table 3.2
Chan problem, geometric means of ‖rk+1‖2/‖rk‖2.

Grid size 16× 16 32× 32 64× 64 128× 128

GMRES(40) .0207 .0197 .0196 .0205

BiCGSTAB .0575 .0655 .0789 .0935

Fig. 3.1. Bratu problem (left) and Chan problem (right), geometric means of ‖rk+1‖2/‖rk‖2
along the solution curves for GMRES (top) and BiCGSTAB (bottom), 64× 64 grid.

the predictor steps and to return very close to it in the corrector steps. Accordingly,
for these experiments, we modified the simple predictor–corrector algorithm outlined
in section 3.1 to use the procedure in section 2.2 both to compute each unit tangent
used by the Euler predictor and to compute each t̄k in (1.2) to be a unit null vector
of F ′(x̄k) as in the normal flow algorithm. The preconditioner was a biharmonic
solver implemented by initially performing a Cholesky factorization of the discrete
biharmonic operator and then using the factors for each preconditioner solve. This
preconditioner is very effective for small values of Re but loses its effectiveness as
Re grows. For the values of Re of ultimate interest here, BiCGSTAB was not very
effective in our experiments. In the experiments noted below, GMRES(m) was used
with a large restart value of m = 200 in order to obtain convergence in a tolerable
number of iterations.

With very tight tolerances for computing approximate tangents and corrector
steps and for terminating the corrector iterations, the algorithm succeeded in follow-
ing the solution curves through the fold points on a number of coarse grids. The
curves for four coarse grids are shown in Figure 3.2. Aside from slow convergence
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Fig. 3.2. Continuation curves for the driven cavity problem, Re versus ‖ψ‖∞, “standard”
discretization, m×m grids with (left to right) m = 24, 28, 32, 36.
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Fig. 3.3. Three solutions of the driven cavity problem at Re = 1100, “standard” discretization,
32× 32 grid. The left, middle, and right solutions are on the upper, middle, and lower branches of
the curve, respectively.

associated with large Reynolds numbers, no undue difficulties were observed with
GMRES convergence near the fold points, either in computing corrector steps or in
computing approximate null vectors of F ′; such difficulties as occurred were associ-
ated with problem nonlinearity near the fold points. For an additional perspective
on the nature of the spurious solutions, three solutions for Re = 1100 on a 32 × 32
grid are shown in Figure 3.3. The most physically significant solution, which suffers
some degradation due to the coarse grid, lies on the upper branch of the curve and is
shown on the left in Figure 3.3.

4. Summary. We have proposed a simple procedure for adapting Krylov sub-
space methods to the two major linear algebra tasks arising in path following (con-
tinuation, homotopy) methods, viz., solving the underdetermined linear systems that
arise in Newton-like corrector iterations and computing approximate null vectors of
the Jacobian (matrix). With this procedure, orthogonality constraints on approximate
solutions are satisfied exactly, and problem conditioning is not worsened through poor
scaling. Moreover, applying a Krylov subspace method using this procedure requires
only products of the Jacobian (and perhaps its transpose) with vectors, as is usual
with Krylov subspace methods. Preconditioners developed for the “fixed-parameter”
case can be applied in a straightforward way. The effectiveness of the procedure has
been demonstrated on several representative 2D elliptic PDE model problems.

In the interest of brevity, a number of important issues have been left open for
future consideration. These include, most notably, the usefulness of the proposed pro-
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cedure in treating bifurcation, the possibility of exploiting special problem structure,
such as symmetry of DxF , and the effectiveness of the proposed procedure with a
broader range of test problems, Krylov subspace methods, and preconditioners.
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