Homework 4 Math 576

Pedro Madrid

December 18, 2009

Problem

Prove

$$H_{+}^{-1} = \left(I_{n} - \frac{sy^{T}}{s^{T}y}\right)H_{c}^{-1}\left(I_{n} - \frac{ys^{T}}{s^{T}y}\right) + \frac{ss^{T}}{s^{T}y}$$
(1)

where

$$H_{+} = H_{c} + \frac{yy^{T}}{y^{T}s} - \frac{(H_{c}s)(H_{c}s)^{T}}{s^{T}H_{c}s},$$
(2)

 $\text{here}H_c \in \mathbb{R}^{n \times n}$ is invertible and symmetric, $y, s \in \mathbb{R}^{n \times 1}$ and I_n is the $n \times n$ identity matrix.

Proof

Equation (2) admits the following representation

$$H_{+} = H_c + CD^T, (3)$$

where¹

$$C = \begin{bmatrix} y & H_c s \end{bmatrix}, \quad D^T = \begin{bmatrix} \frac{y^T}{y^T s} \\ -\frac{(H_c s)^T}{s^T H_c s} \end{bmatrix}, \tag{4}$$

if we apply the Sherman-Morrison-Woodbury formula to (3) we obtain

$$H_{+}^{-1} = H_{c}^{-1} - H_{c}^{-1}C \left(I_{2} + D^{T}H_{c}^{-1}C\right)^{-1}D^{T}H_{c}^{-1},\tag{5}$$

after substituting (4) in (5) we obtain

$$H_{+}^{-1} = H_{c}^{-1} - P^{T}QR, (6)$$

 $^{{}^{1}}C$ and D are $n \times 2$ matrices represented in block form.

 $where^{2}$

$$\begin{split} P^T &= H_c^{-1} \left[y \;\; H_c s \right], \\ Q &= \left(I_2 + \left[\begin{array}{c} \frac{y^T}{y^T s} \\ -\frac{(H_c s)^T}{s^T H_c s} \end{array} \right] H_c^{-1} \left[y \; H_c s \right] \right)^{-1}, \\ R &= \left[\begin{array}{c} \frac{y^T}{y^T s} \\ -\frac{(H_c s)^T}{s^T H_c s} \end{array} \right] H_c^{-1}. \end{split}$$

The matrices P^T , Q and R can be simplified to

$$\begin{split} P^T &=& \left[H_c^{-1} y \ s \right], \\ Q &=& \frac{s^T H_c s}{s^T y} \left(\begin{array}{cc} 0 & -1 \\ \frac{s^T y}{s^T H_c s} & 1 + \frac{y^T H_c^{-1} y}{y^T s} \end{array} \right), \\ R &=& \left[\begin{array}{cc} \frac{y^T H_c^{-1}}{y^T s} \\ -\frac{s^T}{s^T H_c s} \end{array} \right], \end{split}$$

where property $H_c^T = H_c$ was used. Now, after doing some block-matrix multiplication we simplify the product P^TQR to

$$\begin{split} P^TQR & = & \frac{s^TH_cs}{s^Ty} \left[\frac{s^Ty}{s^TH_cs} \frac{sy^TH_c^{-1}}{y^Ts} + \frac{H_c^{-1}ys^T}{s^TH_cs} - \left(1 + \frac{y^TH_c^{-1}y}{y^Ts}\right) \frac{ss^T}{s^TH_cs} \right] \\ & = & \frac{sy^TH_c^{-1}}{s^Ty} + \frac{H_c^{-1}ys^T}{s^Ty} - \frac{ss^T}{s^Ty} - \frac{y^TH_c^{-1}y}{(s^Ty)^2}ss^T, \end{split}$$

then (6) takes the form

$$\begin{split} H_{+}^{-1} &= H_{c}^{-1} + \frac{ss^{T}}{s^{T}y} + \frac{y^{T}H_{c}^{-1}y}{(s^{T}y)^{2}}ss^{T} - \frac{sy^{T}H_{c}^{-1}}{s^{T}y} - \frac{H_{c}^{-1}ys^{T}}{s^{T}y} \\ &= H_{c}^{-1}\left(I_{n} - \frac{ys^{T}}{s^{T}y}\right) + \frac{y^{T}H_{c}^{-1}y}{(s^{T}y)^{2}}ss^{T} - \frac{sy^{T}H_{c}^{-1}}{s^{T}y} + \frac{ss^{T}}{s^{T}y}, \end{split}$$

but³ $\frac{y^T H_c^{-1} y}{(s^T y)^2} s s^T = \frac{s y^T H_c^{-1} y s^T}{(s^T y)^2}$, therefore

$$H_{+}^{-1} = H_{c}^{-1} \left(I_{n} - \frac{ys^{T}}{s^{T}y} \right) + \frac{sy^{T}H_{c}^{-1}ys^{T}}{(s^{T}y)^{2}} - \frac{sy^{T}H_{c}^{-1}}{s^{T}y} + \frac{ss^{T}}{s^{T}y}$$

$$= H_{c}^{-1} \left(I_{n} - \frac{ys^{T}}{s^{T}y} \right) - \frac{sy^{T}H_{c}^{-1}}{s^{T}y} \left(I_{n} - \frac{ys^{T}}{s^{T}y} \right) + \frac{ss^{T}}{s^{T}y}$$

$$= \left(I_{n} - \frac{sy^{T}}{s^{T}y} \right) H_{c}^{-1} \left(I_{n} - \frac{ys^{T}}{s^{T}y} \right) + \frac{ss^{T}}{s^{T}y},$$
(7)

It's clear that $P^T \in \mathbb{R}^{n \times 2}$, $Q \in \mathbb{R}^{2 \times 2}$ and $R \in \mathbb{R}^{2 \times n}$.
Indeed, $y^T H_c^{-1} y$ is a scalar and it can be located between s and s^T , the final product is consistent respect to matrix dimensions.

where $H_c^{-1}\left(I_n - \frac{ys^T}{s^Ty}\right)$ was factored to the right of the first two terms of (7). Therefore (1) is true provided H_c is invertible and symmetric.