Lecture 4 Convex functions

- convex functions, epigraph
- examples, properties
- Jensen's inequality
- conjugate functions
- quasiconvex, quasiconcave functions
- log-convex and log-concave functions
- K-convexity

Convex functions 89

Extended-valued extensions

for f convex, it's convenient to define the $\it extension$

$$\tilde{f}(x) = \left\{ \begin{array}{ll} f(x) & x \in \operatorname{dom} f \\ +\infty & x \not\in \operatorname{dom} f \end{array} \right.$$

inequality

$$\tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

holds for all $x, y \in \mathbf{R}^n$, $0 \le \theta \le 1$ (as an inequality in $\mathbf{R} \cup \{+\infty\}$)

we'll use same symbol for f and its extension, *i.e.*, we'll implicitly assume convex functions are extended

Convex functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{dom} f$ is convex and for all $x,y \in \operatorname{dom} f, \ \theta \in [0,1]$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

f is concave if -f is convex

examples (on R)

 $- f(x) = x^2$ is convex

 $-f(x) = \log x$ is concave (dom $f = \{x | x > 0\}$)

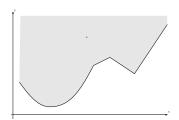
$$- f(x) = 1/x$$
 is convex (**dom** $f = \{x | x > 0\}$)

Chapter II, Lecture 4

Epigraph & sublevel sets

epigraph of a function f is

$$epi f = \{(x, t) \mid x \in dom f, f(x) \le t \}$$



f convex function \Leftrightarrow **epi** f convex set

the $(\alpha$ -)sublevel set of f is

$$C(\alpha) \stackrel{\Delta}{=} \{ x \in \operatorname{dom} f \mid f(x) \leq \alpha \}$$

f convex \Rightarrow sublevel sets are convex (converse false)

93

epigraph interpretation

gradient of $f: \mathbf{R}^n \to \mathbf{R}$

$$abla f(x) = \left[rac{\partial f}{\partial x_1} rac{\partial f}{\partial x_2} \cdots rac{\partial f}{\partial x_n}
ight]^T$$
 (evaluated at x)

Differentiable convex functions

first order Taylor approximation at x_0 :

$$f(x) \simeq f(x_0) + \nabla f(x_0)^T (x - x_0)$$

 $\begin{array}{l} \mbox{first-order condition: for } f \mbox{ differentiable,} \\ f \mbox{ is convex} \iff \mbox{for all } x, x_0 \in \mbox{dom } f, \end{array}$

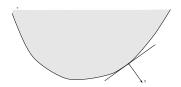
$$f(x) \ge f(x_0) + \nabla f(x_0)^T (x - x_0)$$

i.e., 1st order approx. is a global underestimator

for all $(x,t) \in \operatorname{epi} f$, $[\nabla f(x)]^T [x, x]$

$$\left[\begin{array}{c} \nabla f(x_0) \\ -1 \end{array} \right]^T \left[\begin{array}{c} x - x_0 \\ t - f(x_0) \end{array} \right] \leq 0,$$

i.e., $(\nabla f(x_0), -1)$ defines supporting hyperplane to $\operatorname{\bf epi} f$ at $(x_0, f(x_0))$



Convex functions

Hessian of a twice differentiable function:

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

(evaluated at x)

2nd order Taylor series expansion around x_0 :

$$f(x) \simeq f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0)$$

second order condition: for f twice differentiable, f is convex \iff for all $x \in \operatorname{dom} f$, $\nabla^2 f(x) \succeq 0$

94 Chapter II, Lecture 4

Simple examples

- linear and affine functions are convex and concave
- quadratic function $f(x) = x^T P x + 2q^T x + r$ convex $\iff P \succeq 0$; concave $\iff P \preceq 0$ $(P = P^T)$
- any norm is convex

examples on R:

- x^{α} is convex on \mathbf{R}_{+} for $\alpha\geq1,~\alpha\leq0;$ concave for $0\leq\alpha\leq1$
- $\log x$ is concave, $x \log x$ is convex on \mathbf{R}_+
- $-e^{\alpha x}$ is convex
- |x|, $\max(0, x)$, $\max(0, -x)$ are convex
- $\log \int_{-\infty}^{x} e^{-t^2} dt$ is concave

95

Elementary properties

- a function is convex iff it is convex on all lines: f convex $\iff f(x_0 + th)$ convex in t for all x_0, h
- positive multiple of convex function is convex:

$$f \text{ convex}, \alpha \geq 0 \Longrightarrow \alpha f \text{ convex}$$

- sum of convex functions is convex:

$$f_1, f_2 \text{ convex} \implies f_1 + f_2 \text{ convex}$$

- extends to infinite sums, integrals:

$$g(x,y)$$
 convex in $x \Longrightarrow \int g(x,y)dy$ convex

Convex functions

97

More examples

- piecewise-linear functions: $f(x) = \max_i \{a_i^T x + b_i\}$ is convex in x (**epi** f is polyhedron)
- max distance to any set, $\sup_{s \in S} \|x s\|,$ is convex in x
- $f(x) = x_{[1]} + x_{[2]} + x_{[3]}$ is convex on \mathbb{R}^n $(x_{[i]}$ is the ith largest x_j)
- $f(x) = \left(\Pi_i \, x_i \right)^{1/n}$ is concave on \mathbf{R}^n_+
- $\begin{array}{l} \ f(x) = \mathbf{\Sigma}_{i=1}^m \log(b_i a_i^T x)^{-1} \ \text{is convex} \\ \left(\operatorname{dom} f = \{x \mid a_i^T x < b_i, i = 1, \ldots, m\} \right) \end{array}$
- least-squares cost as functions of weights,

$$f(w) = \inf_{x} \sum_{i} w_i (a_i^T x - b_i)^2,$$

is concave in \boldsymbol{w}

- pointwise maximum:

$$f_1, f_2 ext{ convex } \Longrightarrow \max\{f_1(x), f_2(x)\} ext{ convex}$$
 (corresponds to intersection of epigraphs)

- pointwise supremum:

$$f_{\alpha} \ {\sf convex} \ \Longrightarrow \sup_{lpha \in {\cal A}} f_{lpha} \ {\sf convex}$$

- affine transformation of domain

$$f ext{ convex} \implies f(Ax+b) ext{ convex}$$

Chapter II, Lecture 4

Convex functions of matrices

- $\operatorname{Tr} A^T X = \Sigma_{i,j} A_{ij} X_{ij}$ is linear in X on $\mathbf{R}^{n \times n}$
- $\log \det X^{-1}$ is convex on $X = X^T \succ 0$, $X \in \mathbf{R}^{n \times n}$ proof: let λ_i be the eigenvalues of $X_0^{-1/2} H X_0^{-1/2}$

$$\begin{array}{ll} f(t) & \stackrel{\Delta}{=} & \log \det (X_0 + tH)^{-1} \\ & = & \log \det X_0^{-1} + \log \det (I + tX_0^{-1/2}HX_0^{-1/2})^{-1} \\ & = & \log \det X_0^{-1} - \sum_i \log (1 + t\lambda_i) \end{array}$$

is a convex function of t

- $(\det X)^{1/n}$ is concave on $X = X^T \succeq 0, \ X \in \mathbf{R}^{n \times n}$
- $\lambda_{\max}(X)$ is convex on $X=X^T$

proof:
$$\lambda_{\max}(X) = \sup_{\|y\|=1} y^T X y$$

- $\|X\|=(\lambda_{\max}(X^TX))^{1/2}$ is convex on $\mathbf{R}^{m\times n}$ proof: $\|X\|=\sup_{\|u\|=1}\|Xu\|$

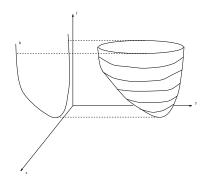
Minimizing over some variables

if h(x, y) is convex in x and y, then

$$f(x)=\inf_y h(x,y)$$

is convex in \boldsymbol{x}

corresponds to projection of epigraph, $(x, y, t) \rightarrow (x, t)$



Convex functions 101

Composition — one-dimensional case

f(x) = h(g(x)) (g: $\mathbb{R}^n \to \mathbb{R}$, h: $\mathbb{R} \to \mathbb{R}$) is convex if

- g convex; h convex, nondecreasing
- g concave; h convex, nonincreasing

proof: (differentiable functions, $x \in \mathbf{R}$)

$$f'' = h''(q')^2 + q''h'$$

examples

- $f(x) = \exp g(x)$ is convex if g is convex
- f(x) = 1/g(x) is convex if g is concave, positive
- $f(x) = g(x)^p$, $p \ge 1$, is convex if g(x) convex, positive
- $f(x) = -\sum_{i} \log(-f_i(x))$ is convex on $\{x \mid f_i(x) < 0\}$ if f_i are convex

examples

- if $S \subseteq \mathbf{R}^n$ is convex then (min) distance to S,

$$\operatorname{dist}\left(x,S\right)=\inf_{s\in S}\left\Vert x-s\right\Vert$$

is convex in x

- if q is convex, then

$$f(y) = \inf\{q(x) \mid Ax = y\}$$

is convex in y

proof: (assume $A \in \mathbf{R}^{m \times n}$ has rank m) find B s.t. $\mathbf{Range}(B) = \mathbf{Nullspace}(A)$; then Ax = y iff

$$x = A^T (AA^T)^{-1} y + Bz$$

for some z, and hence

$$f(y) = \inf g(A^T(AA^T)^{-1}y + Bz)$$

02 Chapter II, Lecture 4

Composition — k-dimensional case

$$f(x) = h(g_1(x), \dots, g_k(x))$$

with $h: \mathbf{R}^k \to \mathbf{R}, g_i: \mathbf{R}^n \to \mathbf{R}$ is convex if

- h convex, nondecreasing in each arg.; g_i convex
- h convex, nonincreasing in each arg.; g_i concave
- etc.

proof: (differentiable functions, n = 1)

$$f'' = \nabla h^T \begin{bmatrix} g_1'' \\ \vdots \\ g_k'' \end{bmatrix} + \begin{bmatrix} g_1' \\ \vdots \\ g_k' \end{bmatrix}^T \nabla^2 h \begin{bmatrix} g_1' \\ \vdots \\ g_k' \end{bmatrix}$$

examples

- $f(x) = \max_i g_i(x)$ is convex if each g_i is
- $f(x) = \log \Sigma_i \exp g_i(x)$ is convex if each g_i is

103

Jensen's inequality

 $f: \mathbf{R}^n \to \mathbf{R}$ convex

- two points: $\theta_1 + \theta_2 = 1$, $\theta_i \ge 0 \implies$

$$f(\theta_1 x_1 + \theta_2 x_2) \le \theta_1 f(x_1) + \theta_2 f(x_2)$$

- more than two points: $\Sigma_i \ \theta_i = 1, \ \theta_i \geq 0 \implies$

$$f(\sum_{i} \theta_{i} x_{i}) \leq \sum_{i} \theta_{i} f(x_{i})$$

– continuous version: $p(x) \geq 0$, if p(x) dx = 1

$$f(\int x p(x) \ dx) \le \int f(x) p(x) \ dx$$

- most general form: for any prob. distr. on x,

$$f(\mathbf{E}x) \leq \mathbf{E}f(x)$$

these are all called Jensen's inequality

interpretation of Jensen's inequality:

(zero mean) randomization, dithering increases average value of a convex function

many (some people claim most) inequalities can be derived from Jensen's inequality

example: arithmetic-geometric mean inequality

$$a, b \ge 0 \Rightarrow \sqrt{ab} \le (a+b)/2$$

proof: $f(x) = \log x$ is concave on $\{x|x>0\}$, so for a,b>0,

$$\frac{1}{2}(\log a + \log b) \le \log \left(\frac{a+b}{2}\right)$$

 $Convex\ functions$

105

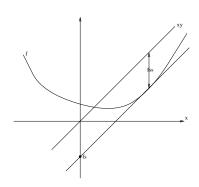
Chapter II, Lecture 4

Conjugate functions

106

the **conjugate** function of $f: \mathbf{R}^n \to \mathbf{R}$ is

$$f^{\star}(y) = \sup_{x \in \mathbf{dom}\, f} \left(y^T x - f(x) \right)$$



- f^* is convex (even if f isn't)
- will be useful later

Examples

$$f(x) = -\log x \text{ (dom } f = \{x \mid x > 0\}):$$

$$f^*(y) = \sup(xy + \log x)$$

$$\begin{split} f^{\star}(y) &= \sup_{x>0} (xy + \log x) \\ &= \begin{cases} -1 - \log(-y) & \text{if } y < 0 \\ +\infty & \text{otherwise} \end{cases} \end{split}$$

$$f(x) = x^T P x (P \succ 0)$$
:

$$f^\star(y) = \sup_x (y^Tx - x^TPx) = \frac{1}{4}y^TP^{-1}y$$