141

Optimization problem: standard form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x) = 0, \quad i=1,\ldots,p \end{array}$$

where $f_i, h_i : \mathbf{R}^n \to \mathbf{R}$

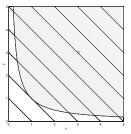
- x is optimization variable
- f_0 is objective or cost function; $f_i(x) \leq 0$ are the inequality constraints; $h_i(x) = 0$ are the equality constraints
- x is feasible if it satisfies the constraints;
 the feasible set C is the set of all feasible points;
 problem is feasible if there are feasible points
- problem is unconstrained if m = p = 0
- optimal value is $f^* = \inf_{x \in C} f_0(x)$ (can be $-\infty$; convention: $f^* = +\infty$ if infeasible); optimal point: $x \in C$ s.t. $f(x) = f^*$; optimal set: $X_{\text{opt}} = \{x \in C \mid f(x) = f^*\}$

example:

minimize
$$x_1+x_2$$
 subject to $-x_1 \leq 0$
$$-x_2 \leq 0$$

$$1-x_1x_2 \leq 0$$
 (1)

- feasible set $\,C\,$ is half-hyperboloid
- optimal value is $f^{\star}=2$
- only optimal point is $x^* = (1, 1)$



140 Chapter II, Lecture 7

Implicit and explicit constraints

explicit constraints: $f_i(x) \leq 0$, $h_i(x) = 0$

implicit constraint: $x \in \operatorname{dom} f_i, x \in \operatorname{dom} h_i$

 $D = \operatorname{dom} f_0 \cap \ldots \cap \operatorname{dom} f_m \cap \operatorname{dom} h_1 \cap \ldots \cap \operatorname{dom} h_p$

is called domain of the problem

Convex optimization problems

Feasibility problem

suppose objective $f_0 = 0$, so

$$f^{\star} = \left\{ \begin{matrix} 0 & \text{if } C \neq \emptyset \\ +\infty & \text{if } C = \emptyset \end{matrix} \right.$$

thus, problem is really to

- either find $x \in C$
- or determine that $C = \emptyset$

nas an implicit constraint

$$f_i(x) \le 0, \quad i = 1, \dots, m$$

 $h_i(x) = 0, \quad i = 1, \dots, p$

i.e., solve the inequality / equality system

or determine that it is inconsistent

example

minimize
$$-\log x_1 - \log x_2$$

subject to $x_1 + x_2 - 1 \le 0$

has an implicit constraint

$$x \in D = \{x \in \mathbf{R}^2 \mid x_1 > 0, x_2 > 0\}$$

Convex optimization problem

convex optimization problem in standard form:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & a_i^T x - b_i = 0, \quad i=1,\ldots,p \end{array}$$

- f_0, f_1, \ldots, f_m convex
- affine equality constraints
- feasible set is convex

often written as

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \ i = 1, \dots, m$
 $Ax = b$

where $A \in \mathbf{R}^{p \times n}$

44 Chapter II, Lecture 7

example. f_i all affine yields *linear program*

$$\begin{array}{ll} \text{minimize} & c_0^Tx + d_0 \\ \text{subject to} & c_i^Tx + d_i \leq 0, \ i = 1, \ldots, m \\ & Ax = b \end{array}$$

which is a convex optimization problem

example. minimum norm approximation with limits on variables

minimize
$$||Ax - b||$$

subject to $l_i \le x_i \le u_i, i = 1, ..., n$

is convex

example. maximum entropy with linear equality constraints

$$\begin{array}{ll} \text{minimize} & \Sigma_i \, x_i \log x_i \\ \text{subject to} & x_i \geq 0, \ i=1,\ldots,n \\ & \Sigma_i \, x_i = 1 \\ & Ax = b \end{array}$$

is convex

(more on these later)

example. problem (1)

- has convex objective and feasible set
- is **not** a standard form convex optimization problem since $f_3(x)=1-x_1x_2$ is not convex

can be easily cast as standard form convex optimization problem:

$$\label{eq:continuous_subject} \begin{array}{ll} \mbox{minimize} & x_1+x_2 \\ \mbox{subject to} & -x_1 \leq 0 \\ & -x_2 \leq 0 \\ & 1-\sqrt{x_1x_2} \leq 0 \end{array}$$

 $(1-\sqrt{x_1x_2} \text{ is convex on } \mathbf{R}_+^2)$

many different ways, e.g.,

$$\label{eq:continuous_subject} \begin{aligned} & \min & & x_1 + x_2 \\ & \text{subject to} & & -x_1 \leq 0 \\ & & & -x_2 \leq 0 \\ & & & -\log x_1 - \log x_2 \leq 0 \end{aligned}$$

Convex optimization problems

145

Local and global optimality

 $x \in C$ is locally optimal if it satisfies

$$y \in C$$
, $||y - x|| \le R \implies f_0(y) \ge f_0(x)$

for some R>0

c.f. (globally) optimal, which means $x \in C$,

$$y \in C \implies f_0(y) \ge f_0(x)$$

for cvx opt problems, any local solution is also global

proof:

- suppose x is locally optimal, but $y \in C$, $f_0(y) < f_0(x)$
- take small step from x towards y, i.e., $z = \lambda y + (1 \lambda)x$ with $\lambda > 0$ small
- z is near x, with $f_0(z) < f_0(x)$; contradicts local optimality

Quasiconvex optimization problem

quasiconvex optimization problem in standard form:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax - b$

- f_0 is quasiconvex
- f_1, \ldots, f_m are convex
- affine equality constraints
- feasible set, all sublevel sets are convex

example. linear-fractional programming

minimize
$$(a^Tx+b)/(c^Tx+d)$$

subject to $Ax=b, Fx \leq g, c^Tx+d>0$

Chapter II, Lecture 7

bisection method for quasiconvex problem:

```
given l < p^*; feasible x; \epsilon > 0
u := f_0(x)
repeat
   t := (u + l)/2
   solve convex feasibility problem
       \phi(x, t) \le 0, f_i(x) \le 0, Ax = b
   if feasible,
      x:= {\sf any} \; {\sf solution} \; {\sf of} \; {\sf feas.} \; {\sf problem}
   \mathsf{else}\ l := t
until u - l \le \epsilon
```

- reduces quasiconvex problem to sequence of convex feasibility problems
- finds ϵ -suboptimal solution in $\log_2(1/\epsilon)$ iterations

Solving quasiconvex problems via bisection

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $Ax = b$

 f_i convex, f_0 quasiconvex

idea: express sublevel set $f_0(x) \leq t$ as sublevel set of convex function:

$$f_0(x) \le t \iff \phi(x,t) \le 0$$

where $\phi: \mathbf{R}^{n+1} \to \mathbf{R}$ is convex in x for each t

now solve quasiconvex problem by bisection on t, solving convex feasibility problem

$$\phi(x,t) \leq 0, \quad f_i(x) \leq 0, \quad i=1,\ldots,m, \quad Ax=b$$
 (with variable x) at each iteration

Convex optimization problems

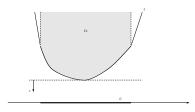
149

Epigraph form

write standard form problem as

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & f_0(x) - t \leq 0, \\ & f_i(x) \leq 0, \ i = 1, \ldots, m \\ & h_i(x) = 0, \ i = 1, \ldots, p \end{array}$$

- variables are (x, t)
- m+1 inequality constraints
- objective is $\mathit{linear}\colon t = e_{n+1}^T(x,t)$
- if original problem is cvx, so is epigraph form



linear objective is 'universal' for convex optimization

Standard form with generalized inequalities

convex optimization problem in standard form with generalized inequalities:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \preceq_{K_i} 0, \ i=1,\ldots,L \\ & Ax=b \end{array}$$

where:

- $f_0: \mathbf{R}^n \to \mathbf{R}$ convex
- \preceq_{K_i} are generalized inequalities on \mathbf{R}^{m_i}
- $f_i: \mathbf{R}^n
 ightarrow \mathbf{R}^{m_i}$ are K_i -convex

example. semidefinite programming

minimize
$$c^T x$$

subject to $A_0 + x_1 A_1 + \cdots + x_n A_n \leq 0$

where $A_i \in \mathbf{R}^{p \times p}$

152 Chapter II, Lecture 7

Some hard problems

'slight' modification of convex problem can be very hard

- convex maximization, concave minimization, e.g.

$$\begin{array}{ll} \text{maximize} & \|x\| \\ \text{subject to} & Ax \preceq b \end{array}$$

- nonlinear equality constraints, e.g.

minimize
$$c^T x$$

subject to $x^T P_i x + q_i^T x + r_i = 0, i = 1, ..., K$

minimizing over non-convex sets, e.g., Boolean variables

find
$$x$$
 such that $Ax \leq b$, $x_i \in \{0, 1\}$

Convex optimization problems

How f_i , h_i are described

analytical form

functions can have analytical form, e.g.,

$$f(x) = x^T P x + 2q^T x + r$$

f is specified by giving the problem data, coefficients, or parameters, e.g.

$$P = P^T \in \mathbf{R}^{n \times n}, \quad q \in \mathbf{R}^n, \quad r \in \mathbf{R}$$

oracle form

functions can be given by *oracle* or *subroutine* that, given x, computes f(x) (and maybe $\nabla f(x)$, $\nabla^2 f(x)$, ...)

- oracle model can be useful even if f has analytic form, e.g., linear but sparse
- how f given affects choice of algorithm, storage required to specify problem, etc.

Convex optimization problems

153

Multicriterion optimization

vector objective

$$F(x) = (F_1(x), \dots, F_N(x))$$

$$F_1, \ldots, F_N : \mathbf{R}^n \to \mathbf{R}$$

(can include equality, inequality constraints)

 F_i called *objective functions*: roughly speaking, want all F_i small

family of *specifications* indexed by $t \in \mathbf{R}^N$:

$$F(x) \leq t$$

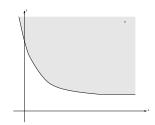
i.e.,
$$F_i(x) \leq t_i$$
, $i = 1, ..., N$.

achievable specification: t s.t. $F(x) \leq t$ feasible

Achievable specifications

set of achievable objectives:

$$\mathcal{A} = \{ t \in \mathbf{R}^N \mid \exists x \text{ s.t. } F(x) \leq t \}$$



if F_i are convex then ${\cal A}$ is convex

 ${\cal A}$ is projection of vector function epigraph

$$epi(F) = \{(x, t) \in \mathbf{R}^n \times \mathbf{R}^N \mid F(x) \leq t\}$$

on t-space.

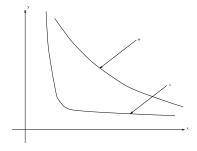
boundary of A is called (optimal) tradeoff surface

Chapter II, Lecture 7

Pareto problem: find Pareto-optimal x

real (but more vague) engineering problem: search/explore/characterize tradeoff surface, e.g.:

- 'can reduce F_5 below 0.1, but only at huge cost in F_4
- 'can pretty much minimize F_3 independently of other objectives'
- ' F_1 and F_2 tradeoff strongly for $F_1 \leq 1$, $F_2 \leq 2$ '



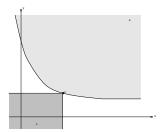
Pareto optimality

x dominates (is better than) \tilde{x} if $F(x) \neq F(\tilde{x})$

$$F(x) \preceq F(\tilde{x})$$

 $\emph{i.e.},~x$ is no worse than \tilde{x} in any objective, and better in at least one

 x_0 is Pareto optimal if no x dominates it



roughly, x_0 Pareto optimal means $F(x_0)$ is on tradeoff surface $(F(x_0) \in \partial A)$

Convex optimization problems

157

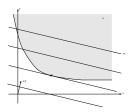
Scalarization

multicriterion problem with F_1,\ldots,F_N

minimize weighted sum of objectives: choose weights $w_i > 0$, and solve

minimize
$$\sum\limits_i w_i F_i(x)$$

which is the same as



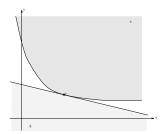
- solution x_0 is Pareto optimal
- for many cvx problems, all Pareto optimal points can be found this way, as weights vary

interpretation

- hyperplane $w^T t = w^T F(x_0)$ supports $\mathcal A$ at $F(x_0)$
- specifications in halfspace

$$\{t \mid w^T t < w^T F(x_0)\}$$

are unachievable



160 Chapter II, Lecture 7

Restriction and relaxation

original problem, with optimal value f^\star :

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$$

new problem, with optimal value \tilde{f}^\star :

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \tilde{C} \end{array}$$

new problem is

- relaxation (of original) if $\tilde{C} \supseteq C$ (in which case $\tilde{f}^* \le f^*$)
- restriction if $\tilde{C} \subseteq C$ (in which case $\tilde{f}^\star \geq f^\star$)

Example. f is convex, C is nonconvex; $\tilde{C} = \operatorname{Co} C$

relaxation is convex problem that gives lower bound for original, nonconvex problem